Chemical Industry and Engineering Progress ›› 2019, Vol. 38 ›› Issue (12): 5330-5338.DOI: 10.16085/j.issn.1000-6613.2019-0482
• Energy processes and technology • Previous Articles Next Articles
Yan LI(),Yuzhen DENG,Jingling YU,Sifang LI()
Received:
2019-04-01
Online:
2019-12-05
Published:
2019-12-05
Contact:
Sifang LI
通讯作者:
黎四芳
作者简介:
李燕(1993—),女,硕士研究生,研究方向为能源化工。E-mail:CLC Number:
Yan LI,Yuzhen DENG,Jingling YU,Sifang LI. Research progress in hydrogen production from decomposition of ammonia borane and its regeneration[J]. Chemical Industry and Engineering Progress, 2019, 38(12): 5330-5338.
李燕,邓雨真,俞晶铃,黎四芳. 氨硼烷分解制氢及其再生的研究进展[J]. 化工进展, 2019, 38(12): 5330-5338.
Add to citation manager EndNote|Ris|BibTeX
URL: https://hgjz.cip.com.cn/EN/10.16085/j.issn.1000-6613.2019-0482
催化剂 | n(Catalyst)/n(AB) | T/K | 氢气产生速率/mL·min-1·gcatalyst -1 | TOF/molH2·min-1·molcatalyst -1 | Ea /kJ·mol-1 | 参考文献 |
---|---|---|---|---|---|---|
Ni5P4 | 0.02 | 298 | — | 22.0 | 39.00 | [ |
CuO-1 | 0.06 | 318 | 294 | — | 49.20 | [ |
Co/石墨烯 | 0.05 | 298 | — | 13.8 | 32.75 | [ |
3% Ni/ZIF-8 | 0.03 | 298 | — | 85.7 | 42.70 | [ |
Co/MIL-101-1-U | 0.02 | 298 | — | 51.4 | 31.30 | [ |
催化剂 | n(Catalyst)/n(AB) | T/K | 氢气产生速率/mL·min-1·gcatalyst -1 | TOF/molH2·min-1·molcatalyst -1 | Ea /kJ·mol-1 | 参考文献 |
---|---|---|---|---|---|---|
Ni5P4 | 0.02 | 298 | — | 22.0 | 39.00 | [ |
CuO-1 | 0.06 | 318 | 294 | — | 49.20 | [ |
Co/石墨烯 | 0.05 | 298 | — | 13.8 | 32.75 | [ |
3% Ni/ZIF-8 | 0.03 | 298 | — | 85.7 | 42.70 | [ |
Co/MIL-101-1-U | 0.02 | 298 | — | 51.4 | 31.30 | [ |
催化剂 | n(catalyst)/n(AB) | 温度T/K | 氢气产生速率/mL·min-1·gcatalyst -1 | TOF/molH2·min-1·molcatalyst -1 | E a/kJ·mol-1 | 参考文献 |
---|---|---|---|---|---|---|
Fe0.3Co0.7 | 0.120 | 293 | 8945.50 | — | 16.30 | [ |
Co0.50Cu0.50/NPs | 0.083 | 333 | 10000.56 | — | 38.12 | [ |
Co0.52Cu0.48 | — | 298 | 2179.00 | 3.40 | 33.70 | [ |
Cu0.2@Co0.8 | — | 298 | 1364.00 | — | 59.10 | [ |
Co0.9Mo0.1 | 0.060 | 298 | — | 14.90min-1 | 51.00 | [ |
Co@SiO2/Ag | 0.020 | 298 | — | 10.10min-1 | 25.60 | [ |
Ni0.19Cu0.81 | — | 298 | 2066.00 | 2.70 | 33.30 | [ |
AuCo@MIL-101 | 0.017 | 298 | — | 23.50 | — | [ |
Pd@Co@MIL-101 | 0.011 | 303 | — | 51.00 | 22.00 | [ |
CuCo/MIL-101-1-U | 0.020 | 298 | — | 51.70 | 30.50 | [ |
Cu@Co/rGO | 0.100 | 298 | — | 8.36 | 51.30 | [ |
Cu0.49Co0.51/C | 0.033 | 298 | — | 45.00 | 51.90 | [ |
Co0.9Ni0.1/石墨烯 | 0.050 | 298 | — | 16.40 | 13.49 | [ |
Ru@Co/CCF | — | 303 | — | 139.59molH2·min-1·molRu -1 | 57.02 | [ |
催化剂 | n(catalyst)/n(AB) | 温度T/K | 氢气产生速率/mL·min-1·gcatalyst -1 | TOF/molH2·min-1·molcatalyst -1 | E a/kJ·mol-1 | 参考文献 |
---|---|---|---|---|---|---|
Fe0.3Co0.7 | 0.120 | 293 | 8945.50 | — | 16.30 | [ |
Co0.50Cu0.50/NPs | 0.083 | 333 | 10000.56 | — | 38.12 | [ |
Co0.52Cu0.48 | — | 298 | 2179.00 | 3.40 | 33.70 | [ |
Cu0.2@Co0.8 | — | 298 | 1364.00 | — | 59.10 | [ |
Co0.9Mo0.1 | 0.060 | 298 | — | 14.90min-1 | 51.00 | [ |
Co@SiO2/Ag | 0.020 | 298 | — | 10.10min-1 | 25.60 | [ |
Ni0.19Cu0.81 | — | 298 | 2066.00 | 2.70 | 33.30 | [ |
AuCo@MIL-101 | 0.017 | 298 | — | 23.50 | — | [ |
Pd@Co@MIL-101 | 0.011 | 303 | — | 51.00 | 22.00 | [ |
CuCo/MIL-101-1-U | 0.020 | 298 | — | 51.70 | 30.50 | [ |
Cu@Co/rGO | 0.100 | 298 | — | 8.36 | 51.30 | [ |
Cu0.49Co0.51/C | 0.033 | 298 | — | 45.00 | 51.90 | [ |
Co0.9Ni0.1/石墨烯 | 0.050 | 298 | — | 16.40 | 13.49 | [ |
Ru@Co/CCF | — | 303 | — | 139.59molH2·min-1·molRu -1 | 57.02 | [ |
催化剂 | n(catalyst)/n(AB) | T/K | 氢气产生速率/mL·min-1·gcatalyst -1 | TOF/ molH2·min-1·molcatalyst -1 | E a/kJ·mol-1 | 参考文献 |
---|---|---|---|---|---|---|
Cu0.4@Co0.5Ni0.1 | 0.040 | 298 | 7340.8 | — | 36.08 | [ |
Cu0.3@Fe0.1Co0.6 | — | 298 | 6674.2 | 10.50 | 38.75 | [ |
Cu0.81@Mo0.09Co0.10 | 0.040 | 298 | — | 49.60 | 22.20 | [ |
Cu@FeCoNi/石墨烯 | 0.040 | 298 | --- | 20.93 | 31.82 | [ |
Cu0.8Ni0.1Co0.1@MIL-101 | 0.027 | 298 | --- | 70.10 | 29.10 | [ |
催化剂 | n(catalyst)/n(AB) | T/K | 氢气产生速率/mL·min-1·gcatalyst -1 | TOF/ molH2·min-1·molcatalyst -1 | E a/kJ·mol-1 | 参考文献 |
---|---|---|---|---|---|---|
Cu0.4@Co0.5Ni0.1 | 0.040 | 298 | 7340.8 | — | 36.08 | [ |
Cu0.3@Fe0.1Co0.6 | — | 298 | 6674.2 | 10.50 | 38.75 | [ |
Cu0.81@Mo0.09Co0.10 | 0.040 | 298 | — | 49.60 | 22.20 | [ |
Cu@FeCoNi/石墨烯 | 0.040 | 298 | --- | 20.93 | 31.82 | [ |
Cu0.8Ni0.1Co0.1@MIL-101 | 0.027 | 298 | --- | 70.10 | 29.10 | [ |
1 | 赵永志, 蒙波, 陈霖新, 等 . 氢能源的利用现状分析[J]. 化工进展, 2015, 34(9): 3248-3255. |
ZHAO Y Z , MENG B , CHEN L X , et al . Utilization status of hydrogen energy[J]. Chemical Industry and Engineering Progess, 2015, 34(9): 3248-3255. | |
2 | SPECHT M , STAISS F , BANDI A , et al . Comparison of the renewable transportation fuels, liquid hydrogen and methanol, with gasoline-energetic and economic aspects[J]. International Journal of Hydrogen Energy, 1998, 23(5): 387-396. |
3 | YANG Z X , SUN H R , LI H , et al . Enhancing the thermal dehydrogenation properties of ammonia borane (AB) by using monodisperse MnO2 hollow spheres (MHS)[J]. Journal of Alloys and Compounds, 2019, 781: 111-117. |
4 | ÖZHAVA D , KILIÇASLAN N Z , ÖZKAR S . PVP-stabilized nickel(0) nanoparticles as catalyst in hydrogen generation from the methanolysis of hydrazine borane or ammonia borane[J]. Applied Catalysis B: Environmental, 2015, 162: 573-582. |
5 | FENG X G , CHEN X M , QIU P T , et al . Copper oxide hollow spheres: synthesis and catalytic application in hydrolytic dehydrogenation of ammonia borane[J]. International Journal of Hydrogen Energy, 2018, 43(45): 20875-20881. |
6 | HU M G , GEANANGEL R A , WENDLANDT W W . The thermal decomposition of ammonia borane[J]. Thermochimica Acta, 1978, 23(2): 249-255. |
7 | STAUBITZ A , ROBERTSON A P M , MANNERS I . Ammonia-borane and related compounds as dihydrogen sources[J]. Chemical Reviews, 2010, 110(7): 4079-4124. |
8 | NAKAGAWA Y , IKARASHI Y , ISOBE S , et al . Ammonia borane-metal alanate composites: hydrogen desorption properties and decomposition processes[J]. RSC Advances, 2014, 4(40): 20626-20631. |
9 | NAKAGAWA Y , ZHANG T , KITAMURA M , et al . A systematic study of the effects of metal chloride additives on H2 desorption properties of ammonia borane[J]. Journal of Chemical & Engineering Data, 2016, 61(5): 1924-1929. |
10 | YU C , FU J J , MUZZIO M , et al . CuNi nanoparticles assembled on graphene for catalytic methanolysis of ammonia borane and hydrogenation of nitro/nitrile compounds[J]. Chemistry of Materials, 2017, 29(3): 1413-1418. |
11 | LIU J Q , CUI L , CAO X Y , et al . Bunch-like copper oxide nanowire array as an efficient, durable and economical catalyst for methanolysis of ammonia borane[J]. ChemCatChem, 2018, 10: 710-715. |
12 | ÖZHAVA D , ÖZKAR S . Nanoceria supported rhodium(0) nanoparticles as catalyst for hydrogen generation from methanolysis of ammonia borane[J]. Applied Catalysis B: Environmental, 2018, 237: 1012-1020. |
13 | 张磊, 涂倩, 陈学年, 等 . 氨硼烷释氢纳米金属催化剂的研究[J]. 化学进展, 2014, 26(5): 749-755. |
ZHANG L , TU Q , CHEN X N , et al . Nano metal catalyis in dehydrogenation of ammonia borane[J]. Progess in Chemistry, 2014, 26(5): 749-755. | |
14 | WEI W Y , WANG Z M , XU J , et al . Cobalt hollow nanospheres: controlled synthesis, modification and highly catalytic performance for hydrolysis of ammonia borane[J]. Science Bulletin, 2017, 62(5): 326-331. |
15 | FENG X , ZHAO Y H , LIU D K , et al . Towards high activity of hydrogen production from ammonia borane over efficient non-noble Ni5P4 catalyst[J]. International Journal of Hydrogen Energy, 2018, 43(36): 17112-17120. |
16 | YANG L , CAO N , DU C , et al . Graphene supported cobalt(0) nanoparticles for hydrolysis of ammonia borane[J]. Materials Letters, 2014, 115: 113-116. |
17 | WANG C L , TUNINETTI J , WANG Z , et al . Hydrolysis of ammonia-borane over Ni/ZIF-8 nanocatalyst: high efficiency, mechanism, and controlled hydrogen release[J]. Journal of the American Chemical Society, 2017, 139(33): 11610-11615. |
18 | LIU P L , GU X J , KANG K , et al . Highly efficient catalytic hydrogen evolution from ammonia borane using the synergistic effect of crystallinity and size of noble-metal-free nanoparticles supported by porous metal-organic frameworks[J]. ACS Applied Materials & Interfaces, 2017, 9(12): 10759-10767. |
19 | LIU X W , WANG D S , LI Y D . Synthesis and catalytic properties of bimetallic nanomaterials with various architectures[J]. Nano Today, 2012, 7(5): 448-466. |
20 | QIU F Y , WANG Y J , WANG Y P , et al . Dehydrogenation of ammonia borane catalyzed by in situ synthesized Fe-Co nano-alloy in aqueous solution[J]. Catalysis Today, 2011, 170(1): 64-68. |
21 | COŞKUNER FILIZ B , KANTÜRK FIGEN A , SABRIYE P . Dual combining transition metal hybrid nanoparticles for ammonia borane hydrolytic dehydrogenation[J]. Applied Catalysis A: General, 2018, 550: 320-330. |
22 | LI J , ZHU Q L , XU Q . Highly active AuCo alloy nanoparticles encapsulated in the pores of metal-organic frameworks for hydrolytic dehydrogenation of ammonia borane[J]. Chemical Communications, 2014, 50(44): 5899-5901. |
23 | 杨昆, 姚淇露, 卢章辉, 等 . 快速合成廉价CuMo 纳米粒子高效催化氨硼烷水解产氢[J]. 物理化学学报, 2017, 33(5): 993-1000. |
YANG K , YAO Q L , LU Z H , et al . Facile synthesis of CuMo nanoparticles as highly active and cost-effective catalysts for the hydrolysis of ammonia borane[J]. Acta Physico-Chimica Sinica, 2017, 33(5): 993-1000. | |
24 | SANG W L , WANG C Y , ZHANG X H , et al . Dendritic Co0.52Cu0.48 and Ni0.19Cu0.81 alloys as hydrogen generation catalysts via hydrolysis of ammonia borane[J]. International Journal of Hydrogen Energy, 2017, 42(52): 30691-30703. |
25 | 李雷, 李彦兴, 姚瑶, 等 . 核壳结构纳米材料的创制及在催化化学中的应用[J]. 化学进展, 2013, 25(10): 1681-1690. |
LI L , LI Y X , YAO Y , et al . Progess and prospective in fabrication and application of core-shell structure nnaomaterials in catalytic chemistry[J]. Progess in Chemistry, 2013, 25(10): 1681-1690. | |
26 | 王海霞, 周丽敏, 陶占良, 等 . Cu@Co纳米颗粒合成及催化氨硼烷水解放氢性能[J]. 功能材料与器件学报, 2015, 21(4): 7-12. |
WANG H X , ZHOU L M , TAO Z L , et al .Synthesis of Cu@Co core-shell nanoparticles for the catalytic hydrolysis of ammonia borane[J]. Journal of Functional Materials and Devices, 2015, 21(4): 7-12. | |
27 | CHEN Y Z , XU Q , YU S H , et al . Tiny Pd@Co core-shell nanoparticles confined inside a metal-organic framework for highly efficient catalysis[J]. Small, 2015, 11(1): 71-76. |
28 | DU Y S , CAO N , YANG L , et al . One-step synthesis of magnetically recyclable rGO supported Cu@Co core-shell nanoparticles: highly efficient catalysts for hydrolytic dehydrogenation of ammonia borane and methylamine borane[J]. New Journal of Chemistry, 2013, 37(10): 3035-3042. |
29 | YANG J , CUI Z K , MA J T , et al . Ru coated Co nanoparticles decorated on cotton derived carbon fibers as a highly efficient and magnetically recyclable catalyst for hydrogen generation from ammonia borane[J]. International Journal of Hydrogen Energy, 2018, 43(3): 1355-1364. |
30 | YAO Q L , LU Z H , HU Y J , et al . Core-shell Co@SiO2 nanosphere immobilized Ag nanoparticles for hydrogen evolution from ammonia borane[J]. RSC Advances, 2016, 6(92): 89450-89456. |
31 | 张以敏, 姜浩锡 . 超临界流体沉积技术制备负载型金属催化剂的研究进展[J]. 化工进展, 2013, 32(8): 1825-1831. |
ZHANG Y M , JIANG H X . Preparation of supported metal catalyst via supercritical fluid deposition[J]. Chemical Industry and Engineering Progess, 2013, 32(8): 1825-1831. | |
32 | 杨晓丽, 苏雄, 杨小峰, 等 . 负载型金属催化剂的热稳定机制[J]. 化工学报, 2016, 67(1): 73-82. |
YANG X L , SU X , YANG X F , et al . Stabilization mechanism of supported metal catalyst[J]. CIESC Journal, 2016, 67(1): 73-82. | |
33 | 关尹双, 赵炜, 刘开帅, 等 . 石墨烯基催化剂的研究进展[J]. 化工进展, 2017, 36(s1): 221-227. |
GUAN Y S , ZHAO W , LIU K S , et al . Research progess on graphene-based catalyst[J]. Chemical Industry and Engineering Progess, 2017, 36(s1): 221-227. | |
34 | 桑琬璐, 李兰兰, 高若源, 等 . 氨硼烷水解制氢催化剂载体的研究进展[J]. 材料导报, 2017, 31(17): 27-33. |
SANG W L , LI L L , GAO R Y , et al . Progess in catalyst support for hydrogen generation of ammonia borane[J]. Materials Review, 2017, 31(17): 27-33. | |
35 | BULUT A , YURDERI M , ERTAS İ E , et al . Carbon dispersed copper-cobalt alloy nanoparticles: a cost-effective heterogeneous catalyst with exceptional performance in the hydrolytic dehydrogenation of ammonia-borane[J]. Applied Catalysis B: Environmental, 2016, 180: 121-129. |
36 | FENG W Q , YANG L , CAO N , et al . In situ facile synthesis of bimetallic CoNi catalyst supported on graphene for hydrolytic dehydrogenation of amine borane[J]. International Journal of Hydrogen Energy, 2014, 39(7): 3371-3380. |
37 | 陈丹, 杨蓉, 张卫华, 等 . 有机金属骨架材料在电化学储能领域中的研究进展[J]. 化工进展, 2018, 37(2): 628-636. |
CHEN D , YANG R , ZHANG W H , et al . Research progess of MOFs-based materials in electrochemical energy storage[J]. Chemical Industry and Engineering Progess, 2018, 37(2): 628-636. | |
38 | AKDIM O , DEMIRCI U B , MIELE P . A bottom-up approach to prepare cobalt-based bimetallic supported catalysts for hydrolysis of ammonia borane[J]. International Journal of Hydrogen Energy, 2013, 38(14): 5627-5637. |
39 | KITCHIN J R , NØRSKOV J K , BARTEAU M A , et al . Role of strain and ligand effects in the modification of the electronic and chemical properties of bimetallic surfaces[J]. Physical Review Letters, 2004, 93(15): 156801(1)-156801(4). |
40 | QIU F Y , DAI Y L , LI L , et al . Synthesis of Cu@FeCo core-shell nanoparticles for the catalytic hydrolysis of ammonia borane[J]. International Journal of Hydrogen Energy, 2014, 39(1): 436-441. |
41 | ZHANG H , WANG X F , CHEN C C , et al . Facile synthesis of Cu@CoNi core-shell nanoparticles composites for the catalytic hydrolysis of ammonia borane[J]. International Journal of Hydrogen Energy, 2015, 40(36): 12253-12261. |
42 | WANG C , WANG H L , WANG Z L , et al . Mo remarkably enhances catalytic activity of Cu@MoCo core-shell nanoparticles for hydrolytic dehydrogenation of ammonia borane[J]. International Journal of Hydrogen Energy, 2018, 43(15): 7347-7355. |
43 | MENG X Y , LI S S , XIA B Q , et al . Decoration of graphene with tetrametallic Cu@FeCoNi core-shell nanoparticles for catalytic hydrolysis of amine boranes[J]. RSC Advances, 2014, 4(62): 32817-32825. |
44 | LIANG Z J , XIAO X Z , YU X Y , et al . Non-noble trimetallic Cu-Ni-Co nanoparticles supported on metal-organic frameworks as highly efficient catalysts for hydrolysis of ammonia borane[J]. Journal of Alloys and Compounds, 2018, 741: 501-508. |
45 | RELLER C , MERTENS F O R L . A self-contained regeneration scheme for spent ammonia borane based on the catalytic hydrodechlorination of BCl3 [J]. Angewandte Chemie International Edition, 2012, 51(47): 11731-11735. |
46 | RELLER C , MERTENS F . The recycling of spent ammonia borane with HBr/AlBr3 and other HX/AlX3-based schemes[J]. ChemPlusChem, 2018, 83(11): 1013-1020. |
47 | TAN Y B , ZHANG L J , CHEN X W , et al . Reductive dechlorination of BCl3 for efficient ammonia borane regeneration[J]. Dalton Transactions, 2015, 44(2): 753-757. |
48 | RAMACHANDRAN P V , GAGARE P D . Preparation of ammonia borane in high yield and purity, methanolysis and regeneration[J]. Inorganic Chemistry, 2007, 46(19): 7810-7817. |
49 | RAMACHANDRAN P V , RAJU B C , GAGARE P D . One-pot synthesis of ammonia borane and trialkylamine boranes from trimethyl borate[J]. Organic Letters, 2012, 14(24): 6119-6121. |
50 | 张军, 李华博, 姚海瑞, 等 . 循环利用硼氧酸铵电化学还原制备氨硼烷的工艺方法: CN104630819 [P]. 2015-05-20. |
ZHANG J , LI H B , YAO H R , et al . Process for recycling ammonia borane by electrochemical reduction of ammonium borohydride: CN104630819 [P]. 2015-05-20. |
[1] | YANG Jianping. PSE for feedstock consumption reduction in reaction system of HPPO plant [J]. Chemical Industry and Engineering Progress, 2023, 42(S1): 21-32. |
[2] | ZHANG Mingyan, LIU Yan, ZHANG Xueting, LIU Yake, LI Congju, ZHANG Xiuling. Research progress of non-noble metal bifunctional catalysts in zinc-air batteries [J]. Chemical Industry and Engineering Progress, 2023, 42(S1): 276-286. |
[3] | SHI Yongxing, LIN Gang, SUN Xiaohang, JIANG Weigeng, QIAO Dawei, YAN Binhang. Research progress on active sites in Cu-based catalysts for CO2 hydrogenation to methanol [J]. Chemical Industry and Engineering Progress, 2023, 42(S1): 287-298. |
[4] | XIE Luyao, CHEN Songzhe, WANG Laijun, ZHANG Ping. Platinum-based catalysts for SO2 depolarized electrolysis [J]. Chemical Industry and Engineering Progress, 2023, 42(S1): 299-309. |
[5] | YANG Xiazhen, PENG Yifan, LIU Huazhang, HUO Chao. Regulation of active phase of fused iron catalyst and its catalytic performance of Fischer-Tropsch synthesis [J]. Chemical Industry and Engineering Progress, 2023, 42(S1): 310-318. |
[6] | WANG Lele, YANG Wanrong, YAO Yan, LIU Tao, HE Chuan, LIU Xiao, SU Sheng, KONG Fanhai, ZHU Canghai, XIANG Jun. Influence of spent SCR catalyst blending on the characteristics and deNO x performance for new SCR catalyst [J]. Chemical Industry and Engineering Progress, 2023, 42(S1): 489-497. |
[7] | DENG Liping, SHI Haoyu, LIU Xiaolong, CHEN Yaoji, YAN Jingying. Non-noble metal modified vanadium titanium-based catalyst for NH3-SCR denitrification simultaneous control VOCs [J]. Chemical Industry and Engineering Progress, 2023, 42(S1): 542-548. |
[8] | CHENG Tao, CUI Ruili, SONG Junnan, ZHANG Tianqi, ZHANG Yunhe, LIANG Shijie, PU Shi. Analysis of impurity deposition and pressure drop increase mechanisms in residue hydrotreating unit [J]. Chemical Industry and Engineering Progress, 2023, 42(9): 4616-4627. |
[9] | WANG Peng, SHI Huibing, ZHAO Deming, FENG Baolin, CHEN Qian, YANG Da. Recent advances on transition metal catalyzed carbonylation of chlorinated compounds [J]. Chemical Industry and Engineering Progress, 2023, 42(9): 4649-4666. |
[10] | ZHANG Qi, ZHAO Hong, RONG Junfeng. Research progress of anti-toxicity electrocatalysts for oxygen reduction reaction in PEMFC [J]. Chemical Industry and Engineering Progress, 2023, 42(9): 4677-4691. |
[11] | GE Quanqian, XU Mai, LIANG Xian, WANG Fengwu. Research progress on the application of MOFs in photoelectrocatalysis [J]. Chemical Industry and Engineering Progress, 2023, 42(9): 4692-4705. |
[12] | WANG Weitao, BAO Tingyu, JIANG Xulu, HE Zhenhong, WANG Kuan, YANG Yang, LIU Zhaotie. Oxidation of benzene to phenol over aldehyde-ketone resin based metal-free catalyst [J]. Chemical Industry and Engineering Progress, 2023, 42(9): 4706-4715. |
[13] | GE Yafen, SUN Yu, XIAO Peng, LIU Qi, LIU Bo, SUN Chengying, GONG Yanjun. Research progress of zeolite for VOCs removal [J]. Chemical Industry and Engineering Progress, 2023, 42(9): 4716-4730. |
[14] | SHI Keke, LIU Muzi, ZHAO Qiang, LI Jinping, LIU Guang. Properties and research progress of magnesium based hydrogen storage materials [J]. Chemical Industry and Engineering Progress, 2023, 42(9): 4731-4745. |
[15] | LIU Muzi, SHI Keke, ZHAO Qiang, LI Jinping, LIU Guang. Research progress of solid hydrogen storage materials [J]. Chemical Industry and Engineering Progress, 2023, 42(9): 4746-4769. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||
京ICP备12046843号-2;京公网安备 11010102001994号 Copyright © Chemical Industry and Engineering Progress, All Rights Reserved. E-mail: hgjz@cip.com.cn Powered by Beijing Magtech Co. Ltd |