Chemical Industry and Engineering Progress ›› 2019, Vol. 38 ›› Issue (12): 5323-5329.DOI: 10.16085/j.issn.1000-6613.2019-0389
• Energy processes and technology • Previous Articles Next Articles
Guojie MA1,2(),Chun CHANG1,2,Shaohui SUN1
Received:
2019-03-15
Online:
2019-12-05
Published:
2019-12-05
Contact:
Guojie MA
通讯作者:
马国杰
作者简介:
马国杰(1965─),男,副教授,研究方向为生物质能技术经济评价。E-mail: 基金资助:
CLC Number:
Guojie MA,Chun CHANG,Shaohui SUN. Research progress on influencing factors of large scale cultivation of microalgae for energy production[J]. Chemical Industry and Engineering Progress, 2019, 38(12): 5323-5329.
马国杰,常春,孙绍辉. 能源微藻规模化培养影响因素的研究进展[J]. 化工进展, 2019, 38(12): 5323-5329.
项目 | 理论情况 | 最好情况 |
---|---|---|
全光谱太阳能/MJ·m-2·a-1 | 11616 | 5623~7349 |
光-油转化效率(STO)/% | 6.1 | 1.5 |
每天最高产量/g·m-2·d-1 | 196 | 33~42 |
微藻油的年产量/L·m-2·a-1 | ||
吉隆坡 | 35.4 | 4.07 |
丹佛 | 4.40 | |
马拉加 | 4.60 | |
特拉维夫 | 4.88 | |
檀香山 | 5.17 | |
菲尼克斯 | 5.32 |
项目 | 理论情况 | 最好情况 |
---|---|---|
全光谱太阳能/MJ·m-2·a-1 | 11616 | 5623~7349 |
光-油转化效率(STO)/% | 6.1 | 1.5 |
每天最高产量/g·m-2·d-1 | 196 | 33~42 |
微藻油的年产量/L·m-2·a-1 | ||
吉隆坡 | 35.4 | 4.07 |
丹佛 | 4.40 | |
马拉加 | 4.60 | |
特拉维夫 | 4.88 | |
檀香山 | 5.17 | |
菲尼克斯 | 5.32 |
生物质 | 产能/kJ·hm-2·a-1 | 国土面积/km2 | 占中国耕地面积/% |
---|---|---|---|
玉米 | 5.87×106 | 1.57×106 | 130 |
油菜 | 4.14×107 | 2.22×105 | 18 |
棕榈油 | 2.08×108 | 4.43×104 | 3.6 |
微藻 微藻 | 10.8×108(乐观) 2.62×108(保守) | 0.59×104 3.53×104 | 0.5 3.0 |
生物质 | 产能/kJ·hm-2·a-1 | 国土面积/km2 | 占中国耕地面积/% |
---|---|---|---|
玉米 | 5.87×106 | 1.57×106 | 130 |
油菜 | 4.14×107 | 2.22×105 | 18 |
棕榈油 | 2.08×108 | 4.43×104 | 3.6 |
微藻 微藻 | 10.8×108(乐观) 2.62×108(保守) | 0.59×104 3.53×104 | 0.5 3.0 |
1 | LAWAN I, ZHOU W, GARBA Z N, et al. Critical insights into the effects of bio-based additives on biodiesels properties[J]. Renewable and Sustainable Energy Reviews, 2019, 102: 83-95. |
2 | ERDOGAN S, BALKI M K, AYDIN S, et al. The best fuel selection with hybrid multiple-criteria decision making approaches in a CI engine fueled with their blends and pure biodiesels produced from different sources[J]. Renewable Energy, 2019, 134: 653-668. |
3 | 方正, 吕德义. 微藻制备生物柴油的研究进展[J]. 现代化工, 2017, 37(9): 57-61. |
FANG Z, LÜ D Y. Research progress on biodiesel production by microalgae[J]. Modern Chemical Industry, 2017, 37(9): 57-61. | |
4 | 朱顺妮, 刘芬, 樊均辉, 等. 微藻生物能源研究现状及展望[J]. 新能源进展, 2018, 6(6): 467-474. |
ZHU S N, LIU F, FAN J H, et al. Research progress and prospect of microalgae bioenergy[J]. Advance in New and Renewable Energy, 2018, 6(6): 467-474. | |
5 | XU Y J, LI G X, SUN Z Y. Development of biodiesel industry in China: upon the terms of production and consumption[J]. Renewable and Sustainable Energy Reviews, 2016, 54: 18-330. |
6 | RAJAK U, VERMA T N. Efficient of emission from ethylic biodiesel of edible and non-edible vegetable oil, animal fats, waste oil and alcohol in CI engine[J]. Energy Conversion and Management, 2018, 166(15): 704-718. |
7 | MOFIJUR M, RASUL M G, HASSAN N M S, et al. Recent development in the production of third generation biodiesel from microalgae[J]. Energy Procedia, 2019, 156: 53-58. |
8 | GOH B H H, ONG H C, CHEAH M Y, et al. Sustainability of direct biodiesel synthesis from microalgae biomass: a critical review[J]. Renewable and Sustainable Energy Reviews, 2019, 107: 59-74. |
9 | 张冀翔, 王东, 魏耀东. 微藻水热液化生物油物理性质与测量方法综述[J]. 化工进展, 2016, 35(1): 98-103. |
ZHANG J X, WANG D, WEI Y D. Physical properties and their measuring methods of hydrothermal liquefaction bio-crude from microalgae: a review[J]. Chemical Industry and Engineering Progress, 2016, 35(1): 98-103. | |
10 | FARIED M, SAMER M, ABDELSALAM E, et al. Biodiesel production from microalgae: processes, technologies and recent advancements[J]. Renewable and Sustainable Energy Reviews, 2017, 79: 893-913. |
11 | WEYER K M, BUSH D R, DARZINS A, et al. Theoretical maximum algal oil production[J]. BioEnergy Research, 2010, 3(2): 204-213. |
12 | 邓帅, 李双俊, 宋春风, 等. 微藻光合固氮效能研究:进展、挑战和解决路径[J]. 化工进展, 2018, 37(3): 928-936. |
DENG S, LI S J, SONG C F. et al. Energy efficiency research on photochemical-based microalgae carbon capture: progress, challenge and developing pathway[J]. Chemical Industry and Engineering Progress, 2018, 37(3): 928-936. | |
13 | TAN X B, LAM M K, UEMURA Y, et al. Cultivation of microalgae for biodiesel production: a review on upstream and downstream processing[J]. Chinese Journal of Chemical Engineering, 2018, 26(1): 17-30. |
14 | 高保燕, 黄罗冬, 张成武. 微藻藻种的筛选和育种及基因工程改造[J]. 生物产业技术, 2016, 4(7): 27-31. |
GAO B Y, HUANG L D, ZHANG C W. Screening and breeding of microalgae species and genetic engineering modification[J]. Biotechnology & Business, 2017, 4(7): 27-31. | |
15 | 陈百灵, 白凤武, 赵心清. 微藻代谢工程改造研究进展及展望[J]. 中国科学: 生命科学, 2017, 47(5): 554-562. |
CHEN B L, BAI F W, ZHAO X Q. Metabolic engineering of microalgae: a review and future prospects[J]. Scientia Sinica Vitae, 2017, 47(5): 554-562. | |
16 | TRENTACOSTE E M, SHRESTHA R P, SMITH S R, et al. Metabolic engineering of lipid catabolism increases microalgal lipid accumulation without compromising growth[J]. Proceeding of the National Academy of Science of the USA, 2013, 110: 19748-19753. |
17 | OEY M, ROSS I L, STEPHENS E, et al. RNAi knock-down of LHCBM1, 2 and 3 increases photosynthetic H2 production efficiency of the green alga Chlamydomonas reinhardtii[J]. PLoS One, 2013, 8(6): 375-380. |
18 | 任丽, 张永刚, 马睿, 等.代谢组学及其在微藻研究中的应用[J]. 微生物学通报, 2018, 45(1): 166-172. |
REN L, ZHANG Y G, MA R, et al. Metabolomics and its application in the study of microalgae[J]. Microbiology China, 2018, 45(1): 166-172. | |
19 | 刘伟, 潘杨, 陈园. 微藻培养及其应用于水处理的主要形式[J]. 现代化工, 2016, 36(5): 44-47. |
LIU W, PAN Y, CHEN Y. Research progress of microalgae cultivation and its application in wastewater treatment[J]. Modern Chemical Industry, 2016, 36(5): 44-47. | |
20 | WIGMOSTA M S, COLEMAN A M, SKAGGS R J, et al. National microalgae biofuel production potential and resource demand[J]. Water Resources Research, 2011, 47(3): 1-13. |
21 | MUNOZ R, GUIEVSSE B. Algal-bacterial processes for the treatment of hazardous contaminants: a review[J]. Water Research, 2006, 40: 799-815. |
22 | 张方, 熊绍专, 何加龙, 等. 用于生物柴油生产的微藻培养技术研究进展[J]. 化学与生物工程, 2018, 35(1): 5-11. |
ZHANG F, XIONG S Z, HE J L, et al. Research progress in cultivation technology of microalgae for biodiesel production[J]. Chemistry & Bio-Engineering, 2018, 35(1): 5-11. | |
23 | CHISTI Y. Biodiesel from microalgae[J]. Biotechnology Advances, 2007, 25(3): 294-306. |
24 | PULZ O. Photobioreactors: production systems for phototrophic microorganisms[J]. Applied Microbiology and Biotechnology, 2001, 57(3): 287-293. |
25 | BEILEN J B VAN. Why microalgal biofuels won't save the internal combustion machine[J]. Biofuels, Bioproducts and Biorefining, 2010, 4(1): 41-52. |
26 | HARISKOS I, POSTEN C. Biorefinery of microalgae-opportunities and constraints for different production scenarios[J]. Biotechnology Journal, 2014, 9: 739-752. |
27 | NARALA R R, GARG S, SHARMA K K, et al. Comparison of microalgae cultivation in photobioreactor, open raceway pond, and a two-stage hybrid system[J]. Frontiers in Energy Research, 2016, 4: 29-32. |
28 | 黎秋玲, 李志, 张庆华, 等. 富油微藻的选育及规模化培养研究进展[J]. 中国油脂, 2018, 44(7): 122-126. |
LI Q L, LI Z, ZHANG Q H, et al. Advance in screening and scale cultivation of oil-producing microalgae[J].China Oils and Fats, 2018, 44(7): 122-126. | |
29 | RA C H, KANG C H, NA K K, et al. Cultivation of four microalgae for biomass and oil production using a two-stage culture strategy with salt stress[J]. Renewable Energy, 2015, 80: 117-122. |
30 | FAN J, HUANG J, LI Y, et al. Sequential heterotrophy-dilution-photo induction cultivation for efficient microalgal biomass and lipid production[J]. Bioresource Technology, 2012, 112(5): 206-211. |
31 | 郭沛, 马荣江, 余南阳, 等. 基于微藻培养的沼液处理相关耦合技术进展[J]. 化工进展, 2019, 38(2): 1027-1037. |
GUO P, MA R J, YU N Y, et al. Recent progress in coupling technologies of biogas slurry treatment based on microalgae cultivation[J]. Chemical Industry and Engineering Progress, 2019, 38(2): 1027-1037. | |
32 | CHEIRSILP B, SUWANNARAT W, NIYOMDECHA R. Mixed culture of oleaginous yeast Rhodotorula glutinis and microalga Chlorella vulgaris for lipid production from industrial wastes and its use as biodiesel feedstock[J]. New Biotechnology, 2011, 28(4): 362-368. |
33 | 左正三, 孙小曼, 任路静, 等. 微藻生产油脂培养新技术[J]. 中国生物工程杂志, 2018, 38(7): 102-109. |
ZUO Z S, SUN X M, REN L J, et al. Improvement of lipid accumulation in microalgae by novel cultivation strategies[J]. China Biotechnology, 2018, 38(7): 102-109. | |
34 | LARDON L, HELIAS A, SIALVE B, et al. Life-cycle assessment of biodiesel production from microalgae[J]. Environmental Science and Technology, 2009, 43(17): 6475-6481. |
35 | 姜加伟, 程丽华, 徐新华, 等. 微藻固定转化烟气CO2强化技术[J]. 化工进展, 2014, 33(7): 1884-1894. |
JIANG J W, CHENG L H, XU X H, et al. Intensified technology for microalgal CO2 fixation and conversion from flue gas[J]. Chemical Industry and Engineering Progress, 2014, 33(7): 1884-1894. | |
36 | STEPHENSON A L, KAZAMIA E, DENNIS J S, et al. Life-cycle assessment of potential algal biodiesel production in the United Kingdom: a comparison of raceways and air-lift tubular bioreactors[J]. Energy and Fuels, 2010, 24(7): 4062-4077. |
[1] | LI Dongxian, WANG Jia, JIANG Jianchun. Producing biofuels from soapstock via pyrolysis and subsequent catalytic vapor-phase hydrotreating process [J]. Chemical Industry and Engineering Progress, 2023, 42(6): 2874-2883. |
[2] | CHEN Hao, ZHANG Chuanhao, YU Feng, FAN Binbin, LI Ruifeng. Catalytic performance of zeolite Y in oligomerization of isobutyl alcohol [J]. Chemical Industry and Engineering Progress, 2023, 42(2): 794-802. |
[3] | XUE Machen, YANG Bolun, XIA Chungu, ZHU Gangli. Progress in heterogeneous catalyst for ethanol upgrading to higher (C6+) alcohols [J]. Chemical Industry and Engineering Progress, 2023, 42(1): 194-203. |
[4] | QIN Zhenfang, LIAO Rihong, MA Weifang. Research progress on absorption-microalgae fixation of low concentration CO2 and synchronous oil production in gas power plant [J]. Chemical Industry and Engineering Progress, 2023, 42(1): 94-106. |
[5] | PENG Yuanting, WANG Ao, WEI Tong, LI Nanqi, LI Jian. Reforming of liquid bio-fuels for solid oxide fuel cell application [J]. Chemical Industry and Engineering Progress, 2021, 40(6): 2972-2979. |
[6] | ZHONG Xueqing, ZHU Yali, WANG Yujiao, ZHAO Quanyu. Progress on antibiotic wastewater treatment by microalgae [J]. Chemical Industry and Engineering Progress, 2021, 40(4): 2308-2317. |
[7] | GUO Dongwen, ZHAO Wenguang, LIU Xianxiang, YIN Dulin. Advances in catalytic conversion of biomass carbohydrates into biofuel 2,5-dimethylfuran [J]. Chemical Industry and Engineering Progress, 2021, 40(4): 2092-2108. |
[8] | ZHANG Cunsheng, LIU Yan, YANG Li, TIAN Yufei. Research progress of hexanol production through anaerobic fermentation of wasted industrial syngas [J]. Chemical Industry and Engineering Progress, 2021, 40(3): 1604-1610. |
[9] | Tong WANG, Hualiang AN, Fang LI, Wei XUE, Yanji WANG. Research progress of the heterogeneous catalysts for 2,5-dimethylfuran synthesis via hydrogenolysis of 5-hydroxymethylfufural [J]. Chemical Industry and Engineering Progress, 2021, 40(2): 824-834. |
[10] | Hongshen LI, Shizhong LI. Advances in research and application of vapor permeation for biofuel ethanol production [J]. Chemical Industry and Engineering Progress, 2020, 39(5): 1620-1631. |
[11] | Ke LI, Qingyi LI, Wenwen GUO, Guoneng LI. Influencing mechanism of high CO2 and light regulation on microalgal carbon mitigation [J]. Chemical Industry and Engineering Progress, 2020, 39(11): 4600-4607. |
[12] | Fen LIU, Pingzhong FENG, Shunni ZHU, Bo WANG, Zhongming WANG. Effects of toxic components of flue gas from coal chemical industry on growth and cell components of Chlorella pyrenoidosa [J]. Chemical Industry and Engineering Progress, 2020, 39(11): 4668-4676. |
[13] | Zejian HUANG,Yiqing LUO,Xigang YUAN. Environmental impact assessment of water treatment integrated microalgae biodiesel life cycle system [J]. Chemical Industry and Engineering Progress, 2020, 39(1): 34-41. |
[14] | Xin LIN,Hailong LIN,Guojun YUE. An effective mechanism connecting the production and marketing of biofuels—RINs [J]. Chemical Industry and Engineering Progress, 2019, 38(08): 3621-3630. |
[15] | Hao HE,Ziheng XING,Dingjie LI,Jia ZHANG,Jiaren ZHANG,Ling WANG. Industry impact and countermeasures for the promotion and application of sustainable aviation biofuel [J]. Chemical Industry and Engineering Progress, 2019, 38(08): 3497-3507. |
Viewed | ||||||||||||||||||||||||||||||||||||||||||||||||||
Full text 947
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||
Abstract 351
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||
京ICP备12046843号-2;京公网安备 11010102001994号 Copyright © Chemical Industry and Engineering Progress, All Rights Reserved. E-mail: hgjz@cip.com.cn Powered by Beijing Magtech Co. Ltd |