Chemical Industry and Engineering Progress ›› 2021, Vol. 40 ›› Issue (6): 2962-2971.DOI: 10.16085/j.issn.1000-6613.2020-1771
• Column: New Energy Chemical Industry • Previous Articles Next Articles
GAO Jiajia(), MI Yuanyuan, ZHOU Yang, ZHOU Hongjun, XU Quan()
Received:
2020-09-02
Revised:
2021-01-27
Online:
2021-06-22
Published:
2021-06-06
Contact:
XU Quan
通讯作者:
徐泉
作者简介:
高佳佳(1996—),女,硕士研究生,研究方向为量子点纳米材料。E-mail:基金资助:
CLC Number:
GAO Jiajia, MI Yuanyuan, ZHOU Yang, ZHOU Hongjun, XU Quan. Recent developments in new hydrogen storage materials[J]. Chemical Industry and Engineering Progress, 2021, 40(6): 2962-2971.
高佳佳, 米媛媛, 周洋, 周红军, 徐泉. 新型储氢材料研究进展[J]. 化工进展, 2021, 40(6): 2962-2971.
Add to citation manager EndNote|Ris|BibTeX
URL: https://hgjz.cip.com.cn/EN/10.16085/j.issn.1000-6613.2020-1771
1 | 罗佐县, 曹勇. 氢能产业发展前景及其在中国的发展路径研究[J]. 中外能源, 2020, 25(2): 9-15. |
LUO Zuoxian, CAO Yong. Development prospect of hydrogen energy industry and its development path in China[J]. Sino-Global Energy, 2020, 25(2): 9-15. | |
2 | 符冠云. 氢能在我国能源转型中的地位和作用[J]. 中国煤炭, 2019, 45(10): 15-21. |
FU Guanyun. The status and role of hydrogen energy in China’s energy transformation[J]. China Coal, 2019, 45(10): 15-21. | |
3 | REN J W, MUSYOKA N M, LANGMI H W, et al. Current research trends and perspectives on materials-based hydrogen storage solutions: a critical review[J]. International Journal of Hydrogen Energy, 2017, 42(1): 289-311. |
4 | HIRSCHER M, YARTYS V A, BARICCO M, et al. Materials for hydrogen-based energy storage—past, recent progress and future outlook[J]. Journal of Alloys and Compounds, 2020, 827: 153548. |
5 | 李璐伶, 樊栓狮, 陈秋雄, 等. 储氢技术研究现状及展望[J]. 储能科学与技术, 2018, 7(4): 586-594. |
LI Luling, FAN Shuanshi, CHEN Qiuxiong, et al. Hydrogen storage technology: current status and prospects[J]. Energy Storage Science and Technology, 2018, 7(4): 586-594. | |
6 | 黄明宇, 冯小保, 厉丹彤, 等. 车载储氢技术的发展现状及展望[J]. 现代化工, 2013, 33(7): 1-5. |
HUANG Mingyu, FENG Xiaobao, LI Dantong, et al. Development status and prospect of onboard hydrogen storage technology[J]. Modern Chemical Industry, 2013, 33(7): 1-5. | |
7 | 周超, 王辉, 欧阳柳章, 等. 高压复合储氢罐用储氢材料的研究进展[J]. 材料导报, 2019, 33(1): 117-126. |
ZHOU Chao, WANG Hui, OUYANG Liuzhang, et al. The state of the art of hydrogen storage materials for high-pressure hybrid hydrogen vessel[J]. Materials Reports, 2019, 33(1): 117-126. | |
8 | 张娜, 陈红, 马骁, 等. 高密度固态储氢材料技术研究进展[J]. 载人航天, 2019, 25(1): 116-121. |
ZHANG Na, CHEN Hong, MA Xiao, et al. Research progress of high density solid-state hydrogen storage materials[J]. Manned Spaceflight, 2019, 25(1): 116-121. | |
9 | 刘美琴, 李奠础, 乔建芬, 等. 氢能利用与碳质材料吸附储氢技术[J]. 化工时刊, 2013, 27(11): 35-38. |
LIU Meiqin, LI Dianchu, QIAO Jianfen, et al. The use of hydrogen energy and hydrogen adsorption storage technology of carbonaceous materials[J]. Chemical Industry Times, 2013, 27(11): 35-38. | |
10 | 陈宏善, 刘鑫. 物理吸附储氢的最佳条件分析[J]. 西北师范大学学报(自然科学版), 2015, 51(2): 32-36, 41. |
CHEN Hongshan, LIU Xin. Optimum conditions for physisorption storage of hydrogen[J]. Journal of Northwest Normal University (Natural Science), 2015, 51(2): 32-36, 41. | |
11 | 贾志华, 魏立军, 殷平, 等. 硫化物电化学储氢材料的性能研究[J]. 化工时刊, 2019, 33(1): 9-11. |
JIA Zhihua, WEI Lijun, YIN Ping, et al. Studies on sulfide electrochemical hydrogen storage materials[J]. Chemical Industry Times, 2019, 33(1): 9-11. | |
12 | 赵琳, 张建星, 祝维燕, 等. 液态有机物储氢技术研究进展[J]. 化学试剂, 2019, 41(1): 47-53. |
ZHAO Lin, ZHANG Jianxing, ZHU Weiyan, et al. Research progress of hydrogen storage technology for liquid organic matter[J]. Chemical Reagents, 2019, 41(1): 47-53. | |
13 | TEICHMANN D, ARLT W, WASSERSCHEID P. Liquid organic hydrogen carriers as an efficient vector for the transport and storage of renewable energy[J]. International Journal of Hydrogen Energy, 2012, 37(23): 18118-18132. |
14 | TEICHMANN D, ARLT W, WASSERSCHEID P, et al. A future energy supply based on liquid organic hydrogen Carriers (LOHC)[J]. Energy & Environmental Science, 2011, 4(8): 2767. |
15 | GEORGIADIS M C, KIKKINIDES E S, MAKRIDIS S S, et al. Design and optimization of advanced materials and processes for efficient hydrogen storage[J]. Computers & Chemical Engineering, 2009, 33(5): 1077-1090. |
16 | ZHU Y F, YANG C, ZHU J Y, et al. Structural and electrochemical hydrogen storage properties of Mg2Ni-based alloys[J]. Journal of Alloys and Compounds, 2011, 509(17): 5309-5314. |
17 | YE H, XIA B J, WU W Q, et al. Effect of rare earth composition on the high-rate capability and low-temperature capacity of AB5-type hydrogen storage alloys[J]. Journal of Power Sources, 2002, 111(1): 145-151. |
18 | VALØEN L O, ZALUSKA A, ZALUSKI L, et al. Structure and related properties of (La, Ce, Nd, Pr)Ni5 alloys[J]. Journal of Alloys and Compounds, 2000, 306(1/2): 235-244. |
19 | MENDELSOHN M H, GRUEN D M, DWIGHT A E. The effect on hydrogen decomposition pressures of group IIIA and IVA element substitutions for Ni In LaNi5 alloys[J]. Materials Research Bulletin, 1978, 13(11): 1221-1224. |
20 | SRIDHAR KUMAR M P, ZHANG W L, PETROV K, et al. Effect of Ce, Co, and Sn substitution on gas phase and electrochemical hydriding/dehydriding properties of LaNi5[J]. Journal of the Electrochemical Society, 1995, 142(10): 3424-3428. |
21 | VOGT T. Crystal structure of nonstoichiometric La(Ni, Sn)5+x alloys and their properties as metal hydride electrodes[J]. Electrochemical and Solid-State Letters, 1999, 2(3): 111. |
22 | PRINCIPI G, AGRESTI F, MADDALENA A, et al. The problem of solid state hydrogen storage[J]. Energy, 2009, 34(12): 2087-2091. |
23 | TERESIAK A, UHLEMANN M, THOMAS J, et al. Influence of Co and Pd on the formation of nanostructured LaMg2Ni and its hydrogen reactivity[J]. Journal of Alloys and Compounds, 2014, 582: 647-658. |
24 | TIAN X, YUN G H, WANG H Y, et al. Preparation and electrochemical properties of La-Mg-Ni-based La0.75Mg0.25Ni3.3Co0.5 multiphase hydrogen storage alloy as negative material of Ni/MH battery[J]. International Journal of Hydrogen Energy, 2014, 39(16): 8474-8481. |
25 | BOGDANOVIĆ B, SCHWICKARDI M. Ti-doped alkali metal aluminium hydrides as potential novel reversible hydrogen storage materials[J]. Journal of Alloys and Compounds, 1997, 253/254: 1-9. |
26 | SRINIVASAN S S, BRINKS H W, HAUBACK B C, et al. Long term cycling behavior of titanium doped NaAlH4 prepared through solvent mediated milling of NaH and Al with titanium dopant precursors[J]. Journal of Alloys and Compounds, 2004, 377(1/2): 283-289. |
27 | NICKELS E A, JONES M O, DAVID W I, et al. Tuning the decomposition temperature in complex hydrides: synthesis of a mixed alkali metal borohydride[J]. Angewandte Chemie: International Edition, 2008, 47(15): 2817-2819. |
28 | CHOUDHURY P, SRINIVASAN S S, BHETHANABOTLA V R, et al. Nano-Ni doped Li-Mn-B-H system as a new hydrogen storage candidate[J]. International Journal of Hydrogen Energy, 2009, 34(15): 6325-6334. |
29 | GEORGE L, SAXENA S K. Structural stability of metal hydrides, alanates and borohydrides of alkali and alkali-earth elements: a review[J]. International Journal of Hydrogen Energy, 2010, 35(11): 5454-5470. |
30 | CAI W T, WANG H, LIU J W, et al. Towards easy reversible dehydrogenation of LiBH4 by catalyzing hierarchic nanostructured CoB[J]. Nano Energy, 2014, 10: 235-244. |
31 | ZHU Y Y, OUYANG L Z, ZHONG H, et al. Closing the loop for hydrogen storage: facile regeneration of NaBH4 from its hydrolytic product[J]. Angewandte Chemie: International Edition, 2020, 59(22): 8623-8629. |
32 | TERZIEVA M, KHRUSSANOVA M, PESHEV P. Hydriding and dehydriding characteristics of Mg-LaNi5 composite materials prepared by mechanical alloying[J]. Journal of Alloys and Compounds, 1998, 267(1/2): 235-239. |
33 | URBANCZYK R, PEINECKE K, FELDERHOFF M, et al. Aluminium alloy based hydrogen storage tank operated with sodium aluminium hexahydride Na3AlH6[J]. International Journal of Hydrogen Energy, 2014, 39(30): 17118-17128. |
34 | ZÜTTEL A, WENGER P, RENTSCH S, et al. LiBH4 a new hydrogen storage material[J]. Journal of Power Sources, 2003, 118(1/2): 1-7. |
35 | SRINIVASAN S, ESCOBAR D, GOSWAMI Y, et al. Effects of catalysts doping on the thermal decomposition behavior of Zn(BH4)2[J]. International Journal of Hydrogen Energy, 2008, 33(9): 2268-2272. |
36 | SCHÜTH F, BOGDANOVIĆ B, FELDERHOFF M. Light metal hydrides and complex hydrides for hydrogen storage[J]. Chemical Communications, 2004(20): 2249-2258. |
37 | 周亚平, 冯奎, 孙艳, 等. 述评碳纳米管储氢研究[J]. 化学进展, 2003, 15(5): 345-350. |
ZHOU Yaping, FENG Kui, SUN Yan, et al. A brief review on the study of hydrogen storage in terms of carbon nanotubes[J]. Progress in Chemistry, 2003, 15(5): 345-350. | |
38 | DILLON A C, JONES K M, BEKKEDAHL T A, et al. Storage of hydrogen in single-walled carbon nanotubes[J]. Nature, 1997, 386(6623): 377-379. |
39 | CHEN P, WU X, LIN J, et al. High H2 uptake by alkali-doped carbon nanotubes under ambient pressure and moderate temperatures[J]. Science, 1999, 285(5424): 91-93. |
40 | LIU C, FAN Y Y, LIU M, et al. Hydrogen storage in single-walled carbon nanotubes at room temperature[J]. Science, 1999, 286(5442): 1127-1129. |
41 | TIBBETTS G G, MEISNER G P, OLK C H. Hydrogen storage capacity of carbon nanotubes, filaments, and vapor-grown fibers[J]. Carbon, 2001, 39(15): 2291-2301. |
42 | YANG F H, YANG R T. Ab initio molecular orbital study of adsorption of atomic hydrogen on graphite: insight into hydrogen storage in carbon nanotubes[J]. Carbon, 2002, 40(3): 437-444. |
43 | YANG R T. Hydrogen storage by alkali-doped carbon nanotubes: revisited[J]. Carbon, 2000, 38(4): 623-626. |
44 | LIU C, CHEN Y, WU C Z, et al. Hydrogen storage in carbon nanotubes revisited[J]. Carbon, 2010, 48(2): 452-455. |
45 | ARIHARAN A, VISWANATHAN B, NANDHAKUMAR V. Nitrogen-incorporated carbon nanotube derived from polystyrene and polypyrrole as hydrogen storage material[J]. International Journal of Hydrogen Energy, 2018, 43(10): 5077-5088. |
46 | SANKARAN M, VISWANATHAN B, SRINIVASA MURTHY S. Boron substituted carbon nanotubes—How appropriate are they for hydrogen storage?[J]. International Journal of Hydrogen Energy, 2008, 33(1): 393-403. |
47 | NARESH MUTHU R, RAJASHABALA S, KANNAN R. Hexagonal boron nitride (h-BN) nanoparticles decorated multi-walled carbon nanotubes (MWCNT) for hydrogen storage[J]. Renewable Energy, 2016, 85: 387-394. |
48 | MANANGHAYA M, YU D, SANTOS G N, et al. Scandium and titanium containing single-walled carbon nanotubes for hydrogen storage: a thermodynamic and first principle calculation[J]. Scientific Reports, 2016, 6: 27370. |
49 | GHOSH S, PADMANABHAN V. Hydrogen storage in titanium-doped single-walled carbon nanotubes with stone-Wales defects[J]. Diamond and Related Materials, 2017, 77: 46-52. |
50 | GHOSH S, PADMANABHAN V. Beryllium-doped single-walled carbon nanotubes with Stone-Wales defects: a promising material to store hydrogen at room temperature[J]. International Journal of Hydrogen Energy, 2017, 42(38): 24237-24246. |
51 | 张峰, 冯翠红, 张丽鹏, 等. 物理吸附储氢材料的研究进展[J]. 硅酸盐通报, 2013, 32(9): 1785-1789, 1793. |
ZHANG Feng, FENG Cuihong, ZHANG Lipeng, et al. Study progress on the hydrogen storage material by physical absorption[J]. Bulletin of the Chinese Ceramic Society, 2013, 32(9): 1785-1789, 1793. | |
52 | 杜晓明, 李静, 吴尔冬. 沸石吸附储氢研究进展[J]. 化学进展, 2010, 22(1): 248-254. |
DU Xiaoming, LI Jing, WU Erdong. The study of adsorption of hydrogen on zeolites[J]. Progress in Chemistry, 2010, 22(1): 248-254. | |
53 | ROY P, DAS N. Ultrasonic assisted synthesis of Bikitaite zeolite: a potential material for hydrogen storage application[J]. Ultrasonics Sonochemistry, 2017, 36: 466-473. |
54 | WEITKAMP J, FRITZ M, ERNST S. Zeolites as media for hydrogen storage[J]. International Journal of Hydrogen Energy, 1995, 20(12): 967-970. |
55 | DONG J X, WANG X Y, XU H, et al. Hydrogen storage in several microporous zeolites[J]. International Journal of Hydrogen Energy, 2007, 32(18): 4998-5004. |
56 | WU H, ZHOU W, YILDIRIM T. Hydrogen storage in a prototypical zeolitic imidazolate framework-8[J]. Journal of the American Chemical Society, 2007, 129(17): 5314-5315. |
57 | NISHIHARA H, HOU P X, LI L X, et al. High-pressure hydrogen storage in zeolite-templated carbon[J]. The Journal of Physical Chemistry C, 2009, 113(8): 3189-3196. |
58 | YANG Z, XIA Y, MOKAYA R. Enhanced hydrogen storage capacity of high surface area zeolite-like carbon materials[J]. Journal of the American Chemical Society, 2007, 129(6): 1673-1679. |
59 | ISIDRO-ORTEGA F J, PACHECO-SÁNCHEZ J H, DESALES-GUZMÁN L A. Hydrogen storage on lithium decorated zeolite templated carbon, DFT study[J]. International Journal of Hydrogen Energy, 2017, 42(52): 30704-30717. |
60 | HANB, P-H LYU, SUN W-F, SUN, et al. First-principles study on hydrogen storage performance of transition metal-doped zeolite template carbon[J]. Crystals, 2019, 9(8): 397. |
61 | MUSYOKA N M, RAMBAU K M, MANYALA N, et al. Utilization of waste tyres pyrolysis oil vapour in the synthesis of Zeolite Templated Carbons (ZTCs) for hydrogen storage application[J]. Journal of Environmental Science and Health, Part A, 2018, 53(11): 1022-1028. |
62 | MOLEFE L Y, MUSYOKA N M, REN J, et al. Polymer-based shaping strategy for zeolite templated carbons(ZTC) and their metal organic framework (MOF) composites for improved hydrogen storage properties[J]. Frontiers in Chemistry, 2019, 7: 864. |
63 | ISIDRO-ORTEGA F J, PACHECO-SÁNCHEZ J H, ALEJO R, et al. Theoretical studies in the stability of vacancies in zeolite templated carbon for hydrogen storage[J]. International Journal of Hydrogen Energy, 2019, 44(13): 6437-6447. |
64 | MYRZAKHANOV M, SHARIPOV R, UTELBAYEVA A, et al. Storage of hydrogen in the benzene by catalytic hydrogenation[C]//6th International Conference on Environment (ICENV2018): Empowering Environment and Sustainable Engineering Nexus Through Green Technology. Penang, Malaysia. AIP Publishing, 2019. |
65 | BOUFADEN N, AKKARI R, PAWELEC B, et al. Dehydrogenation of methylcyclohexane to toluene over partially reduced silica-supported Pt-Mo catalysts[J]. Journal of Molecular Catalysis A: Chemical, 2016, 420: 96-106. |
66 | KALENCHUK A N, BOGDAN V I, DUNAEV S F, et al. Dehydrogenation of polycyclic naphthenes on a Pt/C catalyst for hydrogen storage in liquid organic hydrogen carriers[J]. Fuel Processing Technology, 2018, 169: 94-100. |
67 | BINIWALE R B, RAYALU S, DEVOTTA S, et al. Chemical hydrides: a solution to high capacity hydrogen storage and supply[J]. International Journal of Hydrogen Energy, 2008, 33(1): 360-365. |
68 | OKADA Y, SASAKI E, WATANABE E, et al. Development of dehydrogenation catalyst for hydrogen generation in organic chemical hydride method[J]. International Journal of Hydrogen Energy, 2006, 31(10): 1348-1356. |
69 | MARKIEWICZ M, ZHANG Y Q, BÖSMANN A, et al. Environmental and health impact assessment of Liquid Organic Hydrogen Carrier (LOHC) systems—challenges and preliminary results[J]. Energy & Environmental Science, 2015, 8(3): 1035-1045. |
70 | YAN J, WANG W Y, MIAO L, et al. Dehydrogenation of methylcyclohexane over PtSn supported on MgAl mixed metal oxides derived from layered double hydroxides[J]. International Journal of Hydrogen Energy, 2018, 43(19): 9343-9352. |
71 | BANO S, SILUVAI ANTONY P, JANGDE V, et al. Hydrogen transportation using liquid organic hydrides: a comprehensive life cycle assessment[J]. Journal of Cleaner Production, 2018, 183: 988-997. |
[1] | GONG Pengcheng, YAN Qun, CHEN Jinfu, WEN Junyu, SU Xiaojie. Properties and mechanism of eriochrome black T degradation by carbon nanotube-cobalt ferrite composites activated persulfate [J]. Chemical Industry and Engineering Progress, 2023, 42(7): 3572-3581. |
[2] | SUN Xudong, ZHAO Yuying, LI Shirui, WANG Qi, LI Xiaojian, ZHANG Bo. Textual quantitative analysis on China’s local hydrogen energy development policies [J]. Chemical Industry and Engineering Progress, 2023, 42(7): 3478-3488. |
[3] | XU Chunshu, YAO Qingda, LIANG Yongxian, ZHOU Hualong. Effects of graphene oxide/carbon nanotubes on the properties of several typical polymer materials [J]. Chemical Industry and Engineering Progress, 2023, 42(6): 3012-3028. |
[4] | XUE Bo, YANG Tingting, WANG Xuefeng. Research progress of polyaniline/carbon nanotube gas sensing materials [J]. Chemical Industry and Engineering Progress, 2023, 42(3): 1448-1456. |
[5] | CHEN Shaoyun, ZHOU Xiantai, JI Hongbing. Preparation of metalloporphyrin/carbon nanotube biomimetic catalysts and its catalytic mechanism in baeyer-villiger oxidation [J]. Chemical Industry and Engineering Progress, 2023, 42(3): 1332-1340. |
[6] | SUN Hui, MENG Xianghai, WEI Jinghai, ZHOU Hongjun, XU Chunming. New scene for ammonia synthesis by green hydrogen [J]. Chemical Industry and Engineering Progress, 2023, 42(2): 1098-1102. |
[7] | ZHANG Xinhai, ZHAO Sichen, ZHU Hui, ZHANG Shoushi, WANG Kai. Comparative study on desulfurization performance of various carbon materials combined with sodium carbonate [J]. Chemical Industry and Engineering Progress, 2022, 41(S1): 424-435. |
[8] | WANG Hongxia, XU Wanyi, ZHANG Zaoxiao. Development status and suggestions of green hydrogen energy produced by water electrolysis from renewable energy [J]. Chemical Industry and Engineering Progress, 2022, 41(S1): 118-131. |
[9] | ZHOU Hongjun, ZHOU Ying, XU Chunming. Exploration of the CO2 conversion under China’s carbon neutrality goal [J]. Chemical Industry and Engineering Progress, 2022, 41(6): 3381-3385. |
[10] | ZHOU Hongjun, ZHOU Ying, XU Chunming. Exploration of refining and chemical integration under China’s dual-carbon target [J]. Chemical Industry and Engineering Progress, 2022, 41(4): 2226-2230. |
[11] | ZHANG Aijing, JIANG Shengjuan, ZHOU Mingzheng, CHAI Maorong, ZHANG Jin. Effect of wall number on the electro-catalytic activity of nitrogen-doped carbon nanotubes for oxygen reduction reaction [J]. Chemical Industry and Engineering Progress, 2022, 41(4): 2038-2045. |
[12] | CHEN Weifeng, SHANG Juan, XING Baihui, WEI Haotian, GU Chaohua, HUA Zhengli. Discussion on 10% as a safe ratio of hydrogen mixing into natural gas grids [J]. Chemical Industry and Engineering Progress, 2022, 41(3): 1487-1493. |
[13] | LI Haoyang, ZHANG Wei, LI Xiaosen, XU Chungang. Research process of hydrate-based hydrogen storage [J]. Chemical Industry and Engineering Progress, 2022, 41(12): 6285-6294. |
[14] | ZHANG Zhenyang, MIAO Cong, WANG Feng, LAN Yuqi, AN Gang, YANG Shenyin. Analysis of present status and future technical route on large-scale hydrogen liquefaction plant [J]. Chemical Industry and Engineering Progress, 2022, 41(12): 6261-6274. |
[15] | MU Shiyun, LIU Kai, LYU Xiaoqi, JIAO Yilai, LI Xingang, LI Hong, FAN Xiaolei, GAO Xin. Conversion of fructose to 5-hydroxymethylfurfural catalyzed by microwave-assisted zirconia@carbon nanotubes [J]. Chemical Industry and Engineering Progress, 2022, 41(11): 5858-5869. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||
京ICP备12046843号-2;京公网安备 11010102001994号 Copyright © Chemical Industry and Engineering Progress, All Rights Reserved. E-mail: hgjz@cip.com.cn Powered by Beijing Magtech Co. Ltd |