Chemical Industry and Engineering Progress ›› 2021, Vol. 40 ›› Issue (6): 2972-2979.DOI: 10.16085/j.issn.1000-6613.2020-1328
• Column: New Energy Chemical Industry • Previous Articles Next Articles
PENG Yuanting1(), WANG Ao1(), WEI Tong2, LI Nanqi2(), LI Jian2
Received:
2020-07-13
Revised:
2020-09-11
Online:
2021-06-22
Published:
2021-06-06
Contact:
WANG Ao,LI Nanqi
彭元亭1(), 王傲1(), 韦童2, 李南奇2(), 李箭2
通讯作者:
王傲,李南奇
作者简介:
彭元亭(1966—),男,研究员,研究方向为燃料电池等新能源领域。E-mail:基金资助:
CLC Number:
PENG Yuanting, WANG Ao, WEI Tong, LI Nanqi, LI Jian. Reforming of liquid bio-fuels for solid oxide fuel cell application[J]. Chemical Industry and Engineering Progress, 2021, 40(6): 2972-2979.
彭元亭, 王傲, 韦童, 李南奇, 李箭. 液态生物质燃料重整及其在固体氧化物燃料电池中的应用[J]. 化工进展, 2021, 40(6): 2972-2979.
Add to citation manager EndNote|Ris|BibTeX
URL: https://hgjz.cip.com.cn/EN/10.16085/j.issn.1000-6613.2020-1328
10 | BRETT Daniel J L, ATKINSON Alan, BRANDON Nigel P, et al. Intermediate temperature solid oxide fuel cells[J]. Chemical Society Reviews, 2008, 37(8): 1568. |
11 | FAUNGNAWAKIJ Kajornsak, KIKUCHI Ryuji, EGUCHI Koichi. Thermodynamic analysis of carbon formation boundary and reforming performance for steam reforming of dimethyl ether[J]. Journal of Power Sources, 2007, 164: 73-79. |
12 | 张启俭, 杜凤, 何欣欣, 等. 二甲醚部分氧化重整制氢中的部分氧化催化剂的考察[J]. 催化学报, 2009, 30(6): 519-524. |
ZHANG Qijian, DU Feng, HE Xinxin, et al. Hydrogen production by partial oxidation and reforming of dimethyl ether: investigation of partial oxidation catalysts[J]. Chinese Journal of Catalysis, 2009, 30(6): 519-524. | |
13 | KANG Inyong, CARSTENSEN Hans-heinrich, DEAN Anthony M. Impact of gas-phase reactions in the mixing region upstream of a diesel fuel autothermal reformer[J]. Journal of Power Sources, 2011, 196(4): 2020-2026. |
14 | FAUNGNAWAKIJ Kajomsak, KIKUCHI Ryuji, EGUCHI Koichi. Thermodynamic evaluation of methanol steam reforming for hydrogen production[J]. Journal of Power Sources, 2006, 161(1): 87-94. |
15 | YAO Chengzhang, WANG Lucun, LIU Yongmei, et al. Effect of preparation method on the hydrogen production from methanol steam reforming over binary Cu/ZrO2 catalysts[J]. Applied Catalysis A: General, 2006, 297(2): 151-158. |
16 | TRIMM David L, Ilsen ÖNSAN Z. Onboard fuel conversion for hydrogen-fuel-cell-driven vehicles[J]. Catalysis Reviews, 2001, 43(1/2): 31-84. |
17 | SHISHIDO Tetsuya, YAMAMOTO Yoshihiro, MORIOKA Hiroyuki, et al. Active Cu/ZnO and Cu/ZnO/Al2O3 catalysts prepared by homogeneous precipitation method in steam reforming of methanol[J]. Applied Catalysis A: General, 2004, 263(2): 249-253. |
18 | LIU Yi, CHEN Yiming, YU Hongpeng, et al. Bimetallic Ni-Co catalysts for co-productionof methane and liquid fuels from syngas[J]. Catalysis Today, 2021, 369: 167-174. |
19 | HIRAI Toshihide, IKENAGA Na-Oki, MIYAKE Takanori, et al. Production of hydrogen by steam reforming of glycerin on ruthenium catalyst[J]. Energy Fuels, 2005, 19: 1761-1762. |
20 | ARAQUE M, MARTÍNEZ L, VARGAS J. Hydrogen production by glycerol steam reforming over CeZrCo fluorite typeoxides[J]. Catalysis Today, 2011, 176: 352-356. |
1 | 袁艳文, 赵立欣, 孟海波, 等. 生物质炭化热解气催化重整制取费-托合成气研究进展[J]. 化工进展, 2019, 38(S1): 152-158. |
YUAN Yanwen, ZHAO Lixin, MENG Haibo, et al. Research on the preparation of Fischer-Tropsch synthesis gas by biomass carbonization pyrolysis gas catalytic reforming[J]. Chemical Industry and Engineering Progress, 2019, 38(S1): 152-158. | |
21 | ADHIKARI Sushil, FERNANDO Sandun, HARYANTO Agus. Production of hydrogen by steam reforming of glycerine over alumina-supported metal catalysts[J]. Catalysis Today, 2007, 129: 355-364. |
22 | STEFAN Czernik, RICHARD French, CALVIN Feik, et al. Hydrogen by catalytic steam reforming of liquid byproducts from biomass thermoconversion processes[J]. Industrial & Engineering Chemistry Research, 2002, 41(17): 4209-4215. |
23 | FATSIKOSTAS Athanasios N, VERYKIOS Xenophon E. Reaction network of steam reforming of ethanol over Ni-based catalysts[J]. Journal of Catalysis, 2004, 225(2): 439-452. |
2 | 卢亮, 陈军昊, 王树荣. 模拟生物油分子蒸馏的响应面法工况优化[J]. 化工进展, 2018, 37(7): 2605-2612. |
LU Liang, CHEN Junhao, WANG Shurong. Condition optimization of simulated bio-oil molecular distillation via response surface method[J]. Chemical Industry and Engineering Progress, 2018, 37(7): 2605-2612. | |
3 | PTASINSKI K J, HAMELINCK C, KERKHOF P J A M. Exergy analysis of methanol from the sewage sludge process[J]. Energy Conversion & Management, 2002, 43(9-12): 1445-1457. |
4 | ADAMSON Kerry-Ann, PEARSON Peter. Hydrogen and methanol: a comparison of safety,economics,efficiencies and emissions[J]. Journal of Power Sources, 2000, 86(1/2): 548-555. |
5 | FANG Yanru, WU Yi, XIE Guanghui. Crop residue utilizations and potential for bioethanol production in China[J]. Renewable and Sustainable Energy Reviews, 2019, 113: 109-288. |
6 | JIANG Dong, HAO Mengmeng, FU Jingying, et al. Potential bioethanol production from sweet sorghum on marginal land in China[J]. Journal of Cleaner Production, 2019, 220: 225-234. |
7 | REGASSA Teshome H, WORTMANN Charles S. Sweet sorghum as a bioenergy crop: literature review[J]. Biomass and Bioenergy, 2014, 64: 348-355. |
8 | MA Fangrui, HANNA Milford A. Biodiesel production: a review[J]. Bioresour Technology, 1999, 70(1): 1-15. |
9 | WINCEWICZ Keegan C, COOPER Joyce S. Taxonomies of SOFC material and manufacturing alternatives[J]. Journal of Power Sources, 2005, 140(2): 280-296. |
24 | ANJANEYULU Chatla, COSTA Lídia O O D, RIBEIRO Mauro C, et al. Effect of Zn addition on the performance of Ni/Al2O3 catalyst for steam reforming of ethanol[J]. Applied Catalysis A: General, 2016, 519: 85-98. |
25 | WU Gaowei, ZHANG Chengxi, LI Shuirong, et al. Hydrogen production via glycerol steam reforming over Ni/Al2O3: influence of nickel precursors[J]. ACS Sustainable Chemistry & Engineering, 2013, 1(8): 1052-1062. |
26 | LI Nanqi, PU Jian, CHI Bo, et al. Ethanol steam reforming with a Ni-BaZr0.1Ce0.7Y0.1Yb0.1O3-δ catalyst[J]. Materials Today Energy, 2019, 12: 371-378. |
27 | KIM Taeyoon, Kipyung AHN, VOHS John M, et al. Deactivation of ceria-based SOFC anodes in methanol[J]. Journal of Power Sources, 2007, 164(1): 42-48. |
28 | LIU Mingfei, PENG Ranran, DONG Dehua, et al. Direct liquid methanol-fueled solid oxide fuel cell[J]. Journal of Power Sources, 2008, 185(1): 188-192. |
29 | CIMENTI Massimiliano, HILL Josephine M. Direct utilization of methanol and ethanol in solid oxide fuel cells using Cu-Co(Ru)/Zr0.35Ce0.65O2-δ anodes[J]. Journal of Power Sources, 2010, 195(13): 3996-4001. |
30 | GAO Zhan, RAZA Rizwan, ZHU Bin, et al. Development of methanol-fueled low-temperature solid oxide fuel cells[J]. International Journal of Energy Research, 2011, 35(8): 690-696. |
31 | FARO M LO, REIS R M, SAGLIETTI G G A, et al. Solid oxide fuel cells fed with dry ethanol: the effect of a perovskite protective anodic layer containing dispersed Ni-alloy @ FeOx core-shell nanoparticles[J]. Applied Catalysis B: Environmental, 2018, 220: 98-110. |
32 | YE Xixaofeng, HUANG Bo, WANG S R, et al. Preparation and performance of a Cu-CeO2-ScSZ composite anode for SOFCs running on ethanol fuel[J]. Journal of Power Sources, 2007, 164(1): 203-209. |
33 | YE Xiaofeng, WANG S R, WANG Z R, et al. Use of a catalyst layer for anode-supported SOFCs running on ethanol fuel[J]. Journal of Power Sources, 2008, 177(2): 419-425. |
34 | FARO M LO, OLIVEIRA V L, REIS R M, et al. Solid oxide fuel cell be fed directly with dry glycerol[J]. Energy Technology, 2017, 7(1): 45-47. |
35 | PATCHARAVORACHOT Yaneeporn, SAEBE Dang, AUTHAYANUN Suthida. Hydrogen and power generation from supercritical water reforming of glycerol and pressurized SOFC integrated system: use of different CO2 adsorption process[J]. International Journal of Hydrogen Energy, 2018, 43(37): 17821-17834. |
36 | LENG Y J, CHAN S H, KHOR K A, et al. Performance evaluation of anode-supported solid oxide fuel cells with thin film YSZ electrolyte[J]. International Journal of Hydrogen Energy, 2004, 29(10): 1025-1033. |
37 | TUYEN Tran, SHIRATORI Yusuke, SASAKI Kazunari. Feasibility of palm-biodiesel fuel for a direct internal reforming solid oxide fuel cell[J]. International Journal of Energy Research, 2013, 37(6): 609-616. |
38 | 庄晓如, 徐心海, 夏鑫, 等. 甲醇蒸汽重整制氢反应动力学研究进展[J]. 化工进展, 2020, 39(1): 152-165. |
ZHUANG Xiaoru, XU Xinhai, XIA Xin, et al. Review of reaction kinetics of methanol steam reforming for hydrogen production[J]. Chemical Industry and Engineering Progress, 2020, 39(1): 152-165. | |
39 | YONG S T, OOI C W, CHAI S P, et al. Review of methanol reforming-Cu-based catalysts, surface reaction mechanisms, and reaction schemes[J]. International Journal of Hydrogen Energy, 2013, 38(22): 9541-9552. |
40 | NIAZI Zahra, IRANKHAH Abdullah, WANG Yuan, et al. Cu, Mg and Co effect on nickel-ceria supported catalysts for ethanol steam reforming reaction[J]. International Journal of Hydrogen Energy, 2020, 45: 21512-21522. |
41 | ROSLAN Nurul Asmawati, ABIDIN Sumaiya Zainal, IDERIS Asmida. A review on glycerol reforming processes over Ni-based catalyst for hydrogen and syngas productions[J]. International Journal of Hydrogen Energy, 2020, 45: 18466-18489. |
42 | AMMARU I, CHEN H H, SHAO Y. Renewable hydrogen production from steam reforming of glycerol (SRG) over ceria-modified γ-alumina supported Ni catalyst[J]. Chinese Journal of Chemical Engineering, 2020, 28(9): 2328-2336. |
43 | FISHTIK I, ALEXANDER A, DATTA R, et al. A thermodynamic analysis of hydrogen production by steam reforming of ethanol via response reactions[J]. International Journal of Hydrogen Energy, 2000, 25(1): 31-45. |
44 | LIN Kuanhung, WANG Chenbin, CHEN Shuahua. Catalytic performance of steam reforming of ethanol at low temperature over LaNiO3 perovskite[J]. International Journal of Hydrogen Energy, 2013, 38(8): 3226-3232. |
45 | TAHERIAN Zahra, GHARAHSHIRAN Vahid Shahed, KHATAEE Alireza, et al. Comparative study of modified Ni catalysts over mesoporous CaO-Al2O3 support for CO2/methane reforming[J]. Catalysis Communications, 2020, 145: 106100. |
46 | SANTAMARIA Laura, LOPEZ Gartzen, ARREGI Aitor, et al. Catalytic steam reforming of biomass fast pyrolysis volatiles over Ni-Co bimetallic catalysts[J]. Journal of Industrial and Engineering Chemistry, 2020. |
47 | 王文举. Ni催化剂催化乙醇重整制氢的研究[D]. 天津: 天津大学, 2009. |
WANG Wenju. Reforming of ethanol for hydrogen production catalyzed by nickel catalysts[J]. Tianjin: Tianjin University, 2009. | |
48 | Joongmyeon BAE, LEE Sangho, KIM Sunyoung, et al. Liquid fuel processing for hydrogen production:a review[J]. International Journal of Hydrogen Energy, 2016, 41: 19990-20022. |
49 | BSHISH Ahmed, YAKOOB Zahira, NARAYANAN Binitha, et al. Steam-reforming of ethanol for hydrogen production[J]. Chemical Papers, 2011, 65: 251. |
50 | TOEBES Marjolein L, BITTER Johannes H, A Jos Van DILLEN, et al. Impact of the structure and reactivity of nickel particles on the catalytic growth of carbon nanofibers[J]. Catalysis Today, 2002, 76(1): 33-42. |
51 | LI Shuirong, GONG Jinlong. Strategies for improving the performance and stability of Ni-based catalysts for reforming reactions[J]. Chemical Society Reviews,2014, 43(21): 7245-7256. |
52 | LI Yu, ZHANG Changsen, LIU Yonggang, et al. Coke formation on the surface of Ni/HZSM-5 and Ni-Cu/HZSM-5 catalysts during bio-oil hydrodeoxygenation[J]. Fuel, 2017, 189: 23-31. |
53 | ZHAO Lin, HAN Tong, WANG Hong, et al. Ni-Co alloy catalyst from LaNi1-xCoxO3 perovskite supported on zirconia for steam reforming of ethanol[J]. Applied Catalysis B: Environmental, 2016, 187: 19-29. |
54 | XU Wenqian, LIU Zongyuan, JOHNSTON-PECK Aaron C. Steam reforming of ethanol on Ni/CeO2:reaction pathway and interaction between Ni and the CeO2 support[J]. ACS Catalysis, 2013, 3(5): 975-984. |
[1] | CHEN Kuangyin, LI Ruilan, TONG Yang, SHEN Jianhua. Structure design of gas diffusion layer in proton exchange membrane fuel cell [J]. Chemical Industry and Engineering Progress, 2023, 42(S1): 246-259. |
[2] | XU Jiaheng, LI Yongsheng, LUO Chunhuan, SU Qingquan. Optimization of methanol steam reforming process [J]. Chemical Industry and Engineering Progress, 2023, 42(S1): 41-46. |
[3] | ZHANG Qi, ZHAO Hong, RONG Junfeng. Research progress of anti-toxicity electrocatalysts for oxygen reduction reaction in PEMFC [J]. Chemical Industry and Engineering Progress, 2023, 42(9): 4677-4691. |
[4] | WANG Junjie, PAN Yanqiu, NIU Yabin, YU Lu. Molecular level catalytic reforming model construction and application [J]. Chemical Industry and Engineering Progress, 2023, 42(7): 3404-3412. |
[5] | JIANG Bolong, CUI Yanyan, SHI Shunjie, CHANG Jiacheng, JIANG Nan, TAN Weiqiang. Synthesis of transition metal Co3O4/ZnO-ZIF oxygen reduction catalyst by Co/Zn-ZIF template method and its electricity generation performance [J]. Chemical Industry and Engineering Progress, 2023, 42(6): 3066-3076. |
[6] | MA Zhejie, ZHANG Wenli, ZHAO Xuankai, LI Ping. Progress on the influence of oxygen mass transfer resistance in PEMFC cathode catalyst layer [J]. Chemical Industry and Engineering Progress, 2023, 42(6): 2860-2873. |
[7] | LI Dongxian, WANG Jia, JIANG Jianchun. Producing biofuels from soapstock via pyrolysis and subsequent catalytic vapor-phase hydrotreating process [J]. Chemical Industry and Engineering Progress, 2023, 42(6): 2874-2883. |
[8] | CHEN Hao, ZHANG Chuanhao, YU Feng, FAN Binbin, LI Ruifeng. Catalytic performance of zeolite Y in oligomerization of isobutyl alcohol [J]. Chemical Industry and Engineering Progress, 2023, 42(2): 794-802. |
[9] | YU Haiqiang, GUO Quanzhong, DU Keqin, WANG Chuan. Application of pulse electrodeposition PbO2 coating on stainless steel bipolar plate of PEMFC [J]. Chemical Industry and Engineering Progress, 2023, 42(2): 917-924. |
[10] | XUE Machen, YANG Bolun, XIA Chungu, ZHU Gangli. Progress in heterogeneous catalyst for ethanol upgrading to higher (C6+) alcohols [J]. Chemical Industry and Engineering Progress, 2023, 42(1): 194-203. |
[11] | GAO Weitao, YIN Qinan, TU Ziqiang, GONG Fan, LI Yang, XU Hong, WANG Cheng, MAO Zongqiang. Proton transport in metal-organic frameworks and their applications in proton exchange membranes [J]. Chemical Industry and Engineering Progress, 2022, 41(S1): 260-268. |
[12] | CHEN Zhekun, PAN Weitong, YAO Dingsong, DING Lu, WANG Fuchen. Microstructure and rheology of microporous layer ink for proton exchange membrane fuel cells [J]. Chemical Industry and Engineering Progress, 2022, 41(7): 3808-3815. |
[13] | PAN Wenzheng, JI Zhiyong, WANG Jing, LI Shuming, HUANG Zhihui, GUO Xiaofu, LIU Jie, ZHAO Yingying, YUAN Junsheng. Research on the electricity production performance and degradation process of microbial fuel cell treating azo-dye saline wastewater [J]. Chemical Industry and Engineering Progress, 2022, 41(6): 3306-3313. |
[14] | GAO Weitao, LEI Yijie, ZHANG Xun, HU Xiaobo, SONG Pingping, ZHAO Qing, WANG Cheng, MAO Zongqiang. An overview of proton exchange membrane fuel cell [J]. Chemical Industry and Engineering Progress, 2022, 41(3): 1539-1555. |
[15] | ZHANG Dong, ZHANG Rui, ZHANG Bin, AN Zhoujian, LEI Che. Research progress of combined cooling-heat-and-power systems based on PEMFC [J]. Chemical Industry and Engineering Progress, 2022, 41(3): 1608-1621. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||
京ICP备12046843号-2;京公网安备 11010102001994号 Copyright © Chemical Industry and Engineering Progress, All Rights Reserved. E-mail: hgjz@cip.com.cn Powered by Beijing Magtech Co. Ltd |