Chemical Industry and Engineering Progress ›› 2023, Vol. 42 ›› Issue (9): 4706-4715.DOI: 10.16085/j.issn.1000-6613.2022-1924
• Industrial catalysis • Previous Articles Next Articles
WANG Weitao1(), BAO Tingyu1, JIANG Xulu1, HE Zhenhong1, WANG Kuan1, YANG Yang1, LIU Zhaotie1,2()
Received:
2022-10-17
Revised:
2023-03-15
Online:
2023-09-28
Published:
2023-09-15
Contact:
LIU Zhaotie
王伟涛1(), 鲍婷玉1, 姜旭禄1, 何珍红1, 王宽1, 杨阳1, 刘昭铁1,2()
通讯作者:
刘昭铁
作者简介:
王伟涛(1985—),男,副教授,硕士生导师,研究方向为绿色催化反应。E-mail:wangweitao@sust.edu.cn。
基金资助:
CLC Number:
WANG Weitao, BAO Tingyu, JIANG Xulu, HE Zhenhong, WANG Kuan, YANG Yang, LIU Zhaotie. Oxidation of benzene to phenol over aldehyde-ketone resin based metal-free catalyst[J]. Chemical Industry and Engineering Progress, 2023, 42(9): 4706-4715.
王伟涛, 鲍婷玉, 姜旭禄, 何珍红, 王宽, 杨阳, 刘昭铁. 醛酮树脂基非金属催化剂催化氧气氧化苯制备苯酚[J]. 化工进展, 2023, 42(9): 4706-4715.
Add to citation manager EndNote|Ris|BibTeX
URL: https://hgjz.cip.com.cn/EN/10.16085/j.issn.1000-6613.2022-1924
催化剂 | 比表面积①/m2·g-1 | 孔体积②/cm3·g-1 | 孔径③/nm |
---|---|---|---|
HPG | 7.4 | 0.0086 | 4.7 |
HCG | 5.5 | 0.0077 | 5.5 |
使用后HCG | 9.1 | 0.0148 | 6.6 |
催化剂 | 比表面积①/m2·g-1 | 孔体积②/cm3·g-1 | 孔径③/nm |
---|---|---|---|
HPG | 7.4 | 0.0086 | 4.7 |
HCG | 5.5 | 0.0077 | 5.5 |
使用后HCG | 9.1 | 0.0148 | 6.6 |
序号 | 催化剂 | 苯酚产率/% |
---|---|---|
1 | — | 0.4 |
2② | HCG | 0.0 |
3③ | HCG | 4.8 |
4 | HCG | 12.5 |
5 | HPG | 11.9 |
序号 | 催化剂 | 苯酚产率/% |
---|---|---|
1 | — | 0.4 |
2② | HCG | 0.0 |
3③ | HCG | 4.8 |
4 | HCG | 12.5 |
5 | HPG | 11.9 |
序号 | 条件 | 苯酚产率/% |
---|---|---|
1 | 环己酮(100mg) | 13.3 |
2 | 乙二醛(100mg) | 0.8 |
3 | 环己醇(100mg) | 0.9 |
4 | TBA(2mmol) | 5.1 |
5 | BHT(2mmol) | 5.8 |
6 | TBA(5mmol) | 3.7 |
7 | BHT(5mmol) | 1.6 |
8② | 无氧气 | — |
9③ | H2O2 | 6.3 |
10④ | LiCl | 1.7 |
11⑤ | NaOAc | 12.5 |
12 | 标准条件 | 16.3 |
序号 | 条件 | 苯酚产率/% |
---|---|---|
1 | 环己酮(100mg) | 13.3 |
2 | 乙二醛(100mg) | 0.8 |
3 | 环己醇(100mg) | 0.9 |
4 | TBA(2mmol) | 5.1 |
5 | BHT(2mmol) | 5.8 |
6 | TBA(5mmol) | 3.7 |
7 | BHT(5mmol) | 1.6 |
8② | 无氧气 | — |
9③ | H2O2 | 6.3 |
10④ | LiCl | 1.7 |
11⑤ | NaOAc | 12.5 |
12 | 标准条件 | 16.3 |
1 | WU Yuzhou, ZHANG Xubin, WANG Fumin, et al. Synergistic effect between Fe and Cu species on mesoporous silica for hydroxylation of benzene to phenol[J]. Industrial & Engineering Chemistry Research, 2021, 60(23): 8386-8395. |
2 | GU Yaqi, LI Qi, ZANG Dejin, et al. Light-induced efficient hydroxylation of benzene to phenol by quinolinium and polyoxovanadate-based supramolecular catalysts[J]. Angewandte Chemie International Edition, 2021, 60(24): 13310-13316. |
3 | HIROSE Kensaku, OHKUBO Kei, FUKUZUMI Shunichi. Catalytic hydroxylation of benzene to phenol by dioxygen with an NADH analogue[J]. Chemistry: A European Journal, 2016, 22(36): 12904-12909. |
4 | YAMADA Mihoko, KARLIN Kenneth D, FUKUZUMI Shunichi. One-step selective hydroxylation of benzene to phenol with hydrogen peroxide catalysed by copper complexes incorporated into mesoporous silica-alumina[J]. Chemical Science, 2016, 7(4): 2856-2863. |
5 | MISHRA Subhashree, Rajaram BAL, DEY R K. Heterogeneous recyclable copper oxide supported on activated red mud as an efficient and stable catalyst for the one pot hydroxylation of benzene to phenol[J]. Molecular Catalysis, 2021, 499: 111310. |
6 | OKEMOTO Atsushi, UEYAMA Kohei, TANIYA Keita, et al. Direct oxidation of benzene with molecular oxygen in liquid phase catalysed by heterogeneous copper complexes encapsulated in Y-type zeolite[J]. Catalysis Communications, 2017, 100: 29-32. |
7 | FARAHMAND Shohreh, GHIACI Mehran, VATANPARAST Morteza, et al. One-step hydroxylation of benzene to phenol over Schiff base complexes incorporated onto mesoporous organosilica in the presence of different axial ligands[J]. New Journal of Chemistry, 2020, 44(18): 7517-7527. |
8 | 王伟涛, 姚敏, 马养民, 等. 氧气直接氧化苯制备苯酚[J]. 化学进展, 2014, 26(10): 1665-1672. |
WANG Weitao, YAO Min, MA Yangmin, et al. Direct oxidation of liquid benzene to phenol with molecular oxygen[J]. Progress in Chemistry, 2014, 26(10): 1665-1672. | |
9 | LONG Zhouyang, LIU Yangqing, ZHAO Pingping, et al. Aerobic oxidation of benzene to phenol over polyoxometalate-paired PdⅡ-coordinated hybrid: Reductant-free heterogeneous catalysis[J]. Catalysis Communications, 2015, 59: 1-4. |
10 | LONG Zhouyang, ZHOU Yu, GE Weilin, et al. Ionic-liquid-functionalized polyoxometalates for heterogeneously catalyzing the aerobic oxidation of benzene to phenol: Raising efficacy through specific design[J]. ChemPlusChem, 2014, 79(11): 1590-1596. |
11 | CHEN Qiang, PENG Qingyu, ZHAO Xu, et al. Grafting carbon nanotubes densely on carbon fibers by poly(propylene imine) for interfacial enhancement of carbon fiber composites[J]. Carbon, 2020, 158: 704-710. |
12 | ZOU Rongge, QIAN Moriko, WANG Chenxi, et al. Biochar: From by-products of agro-industrial lignocellulosic waste to tailored carbon-based catalysts for biomass thermochemical conversions[J]. Chemical Engineering Journal, 2022, 441: 135972. |
13 | LIU Xiaohong, CHEN Xiejie, ZHANG Qiang, et al. Effect of N, P co-doped activated carbon supported Cu-based catalyst for acetylene hydration[J]. Molecular Catalysis, 2022, 522: 112223. |
14 | SANGSIRI Pimpajee, LAOSIRIPOJANA Navadol, DAORATTANACHAI Pornlada. Synthesis of sulfonated carbon-based catalysts from organosolv lignin and methanesulfonic acid: Its activity toward esterification of stearic acid[J]. Renewable Energy, 2022, 193: 113-127. |
15 | SHAN Wanjian, LI Shuai, CAI Xiaochun, et al. Carbon catalyzed hydroxylation of benzene with dioxygen to phenol over surface carbonyl groups[J]. ChemCatChem, 2019, 11(3): 1076-1085. |
16 | CHEN Tao, YE Tingting, ZHU Jie, et al. Small-sized biomass-derived hydrothermal carbon with enriched oxygen groups quickens benzene hydroxylation to phenol with dioxygen[J]. Applied Catalysis A: General, 2021, 626: 118356. |
17 | ZHU Jie, LI Guoqing, WANG Qian, et al. Engineering surface groups of commercially activated carbon for benzene hydroxylation to phenol with dioxygen[J]. Industrial & Engineering Chemistry Research, 2019, 58(44): 20226-20235. |
18 | WANG Weitao, SHI Leilei, LI Na, et al. V x O y @C catalyst prepared from biomass for hydroxylation of benzene to phenol with molecular oxygen[J]. RSC Advances, 2017, 7(21): 12738-12744. |
19 | WANG Weitao, TANG Hao, JIANG Xulu, et al. Quinone-amine polymers as metal-free and reductant-free catalysts for hydroxylation of benzene to phenol with molecular oxygen[J]. Chemical Communications, 2019, 55(54): 7772-7775. |
20 | WANG Weitao, LI Na, SHI Leilei, et al. Vanadium-zirconium catalyst on different support for hydroxylation of benzene to phenol with O2 as the oxidant[J]. Applied Catalysis A: General, 2018, 553: 117-125. |
21 | GONG Yutong, XIE Lei, LI Haoran, et al. Sustainable and scalable production of monodisperse and highly uniform colloidal carbonaceous spheres using sodium polyacrylate as the dispersant[J]. Chemical Communications, 2014, 50(84): 12633-12636. |
22 | WANG Qisong, YE Chao, ZHAO Yuan, et al. Preparation of polydopamine-derived carbon-based nano-Fe catalysts and its catalytic conversion of toluene for hydrogen production[J]. Fuel, 2022, 324: 124692. |
23 | SHENG Yeliang, PENG Jinfei, MA Lei, et al. Nickel nanoparticles embedded in porous carbon-coated honeycomb ceramics: A potential monolithic catalyst for continuous hydrogenation reaction[J]. Carbon, 2022, 197: 171-182. |
24 | 李鹏, 张一甫, 林晓丹, 等. 苯乙酮-环己酮-甲醛共缩聚树脂的合成研究[J]. 化学与黏合, 2006, 28(5): 295-298. |
LI Peng, ZHANG Yifu, LIN Xiaodan, et al. Study on synthesis of acetophenone-cyclohexanone-formaldehyde resin[J]. Chemistry and Adhesion, 2006, 28(5): 295-298. | |
25 | YANG Guo, JIANG Junqing, ZHANG Yanwu. Synthesis of cyclohexanone-formaldehyde resin catalyzed by rehydrated Mg-Al hydrotalcite[J]. Progress in Organic Coatings, 2015, 78: 55-58. |
26 | LASKAR Ikbal B, RAJKUMARI Kalyani, GUPTA Rajat, et al. Acid-functionalized mesoporous polymer-catalyzed acetalization of glycerol to solketal, a potential fuel additive under solvent-free conditions[J]. Energy & Fuels, 2018, 32(12): 12567-12576. |
27 | ZHANG Kejing, MIN Xiaoye, ZHANG Tingzheng, et al. Selenium and nitrogen co-doped biochar as a new metal-free catalyst for adsorption of phenol and activation of peroxymonosulfate: Elucidating the enhanced catalytic performance and stability[J]. Journal of Hazardous Materials, 2021, 413: 125294. |
28 | PAN Fuping, CAO Zhongyue, ZHAO Qiuping, et al. Nitrogen-doped porous carbon nanosheets made from biomass as highly active electrocatalyst for oxygen reduction reaction[J]. Journal of Power Sources, 2014, 272: 8-15. |
29 | YANG Xu, ZHANG Rongyu, CHEN Nan, et al. Assembly of SnSe nanoparticles confined in graphene for enhanced sodium-ion storage performance[J]. Chemistry: A European Journal, 2016, 22(4): 1445-1451. |
30 | KUBO Shiori, TAN Irene, WHITE Robin J, et al. Template synthesis of carbonaceous tubular nanostructures with tunable surface properties[J]. Chemistry of Materials, 2010, 22(24): 6590-6597. |
31 | ZHAO Xiaochen, ZHANG Qiang, ZHANG Bingsen, et al. Dual-heteroatom-modified ordered mesoporous carbon: Hydrothermal functionalization, structure, and its electrochemical performance[J]. Journal of Materials Chemistry, 2012, 22(11): 4963-4969. |
32 | CHEN Yandan, AI Xiaolin, HUANG Biao, et al. Consecutive preparation of hydrochar catalyst functionalized in situ with sulfonic groups for efficient cellulose hydrolysis[J]. Cellulose, 2017, 24(7): 2743-2752. |
33 | YAN Pengqiang, ZHANG Bingsen, WU Kuang-Hsu, et al. Surface chemistry of nanocarbon: Characterization strategies from the viewpoint of catalysis and energy conversion[J]. Carbon, 2019, 143: 915-936. |
34 | WEI Qinhong, FAN Huailin, QIN Fangfang, et al. Metal-free honeycomb-like porous carbon as catalyst for direct oxidation of benzene to phenol[J]. Carbon, 2018, 133: 6-13. |
35 | YANG Jinghe, SUN Geng, GAO Yongjun, et al. Direct catalytic oxidation of benzene to phenol over metal-free graphene-based catalyst[J]. Energy & Environmental Science, 2013, 6(3): 793-798. |
36 | HEATH Aubrey A, EHRENHAUSER Franz S, VALSARAJ Kalliat T. Effects of temperature, oxygen level, ionic strength, and pH on the reaction of benzene with hydroxyl radicals in aqueous atmospheric systems[J]. Journal of Environmental Chemical Engineering, 2013, 1(4): 822-830. |
37 | SUN Wei, GAO Lingfeng, ZHENG Gengxiu. A radical capture mechanism for immediate Csp2-H bond hydroxylation via a heterogeneous Cu-graphene catalyst[J]. Chemical Communications, 2019, 55(61): 8915-8918. |
38 | 张进, 罗茜, 唐英, 等. 钒钼磷杂多酸催化苯直接羟化为苯酚的动力学研究[J]. 化学研究与应用, 2005, 17(5): 603-606. |
ZHANG Jin, LUO Qian, TANG Ying, et al. Kinetics studies of the direct hydroxylation of benzene to phenol catalysed by vanadium substituted heteropolymolybdates[J]. Chemical Research and Application, 2005, 17(5): 603-606. | |
39 | QIN Qin, LIU Yangqing, SHAN Wanjian, et al. Synergistic catalysis of Fe2O3 nanoparticles on mesoporous poly(ionic liquid)-derived carbon for benzene hydroxylation with dioxygen[J]. Industrial & Engineering Chemistry Research, 2017, 56(43): 12289-12296. |
40 | WANG Weitao, WEI Yaoyao, JIANG Xulu, et al. Rational designed polymer as a metal-free catalyst for hydroxylation of benzene to phenol with dioxygen[J]. Catalysis Letters, 2021, 151(5): 1330-1335. |
41 | MUSTATA FANICA, BICU IOAN. Cyclohexanone-aniline-formaldehyde resins—Synthesis and characterization[J]. Polimery, 2002, 47(11/12): 817-821. |
42 | SHIMIZU Atsushi, TANAKA Katsutoshi, OGAWA Hiroo, et al. An industrial process for adipic acid production by the liquid-phase oxidation of cyclohexanone with molecular oxygen[J]. Bulletin of the Chemical Society of Japan, 2003, 76(10): 1993-2001. |
43 | WILSON R J, BEEZER A E, MITCHELL J C. A kinetic study of the oxidation of L-ascorbic acid (vitamin C) in solution using an isothermal microcalorimeter[J]. Thermochimica Acta, 1995, 264: 27-40. |
44 | GAO Jinhao, WANG Huan, CAO Xiaomei, et al. Nitrogen doped carbon solid acid for improving its catalytic transformation of xylose and agricultural biomass residues to furfural[J]. Molecular Catalysis, 2023, 535: 112890. |
[1] | ZHANG Mingyan, LIU Yan, ZHANG Xueting, LIU Yake, LI Congju, ZHANG Xiuling. Research progress of non-noble metal bifunctional catalysts in zinc-air batteries [J]. Chemical Industry and Engineering Progress, 2023, 42(S1): 276-286. |
[2] | SHI Yongxing, LIN Gang, SUN Xiaohang, JIANG Weigeng, QIAO Dawei, YAN Binhang. Research progress on active sites in Cu-based catalysts for CO2 hydrogenation to methanol [J]. Chemical Industry and Engineering Progress, 2023, 42(S1): 287-298. |
[3] | XIE Luyao, CHEN Songzhe, WANG Laijun, ZHANG Ping. Platinum-based catalysts for SO2 depolarized electrolysis [J]. Chemical Industry and Engineering Progress, 2023, 42(S1): 299-309. |
[4] | YANG Xiazhen, PENG Yifan, LIU Huazhang, HUO Chao. Regulation of active phase of fused iron catalyst and its catalytic performance of Fischer-Tropsch synthesis [J]. Chemical Industry and Engineering Progress, 2023, 42(S1): 310-318. |
[5] | GAO Yufei, LU Jinfeng. Mechanism of heterogeneous catalytic ozone oxidation:A review [J]. Chemical Industry and Engineering Progress, 2023, 42(S1): 430-438. |
[6] | WANG Lele, YANG Wanrong, YAO Yan, LIU Tao, HE Chuan, LIU Xiao, SU Sheng, KONG Fanhai, ZHU Canghai, XIANG Jun. Influence of spent SCR catalyst blending on the characteristics and deNO x performance for new SCR catalyst [J]. Chemical Industry and Engineering Progress, 2023, 42(S1): 489-497. |
[7] | GU Yongzheng, ZHANG Yongsheng. Dynamic behavior and kinetic model of Hg0 adsorption by HBr-modified fly ash [J]. Chemical Industry and Engineering Progress, 2023, 42(S1): 498-509. |
[8] | DENG Liping, SHI Haoyu, LIU Xiaolong, CHEN Yaoji, YAN Jingying. Non-noble metal modified vanadium titanium-based catalyst for NH3-SCR denitrification simultaneous control VOCs [J]. Chemical Industry and Engineering Progress, 2023, 42(S1): 542-548. |
[9] | WANG Fu'an. Consumption and emission reduction of the reactor of 300kt/a propylene oxide process [J]. Chemical Industry and Engineering Progress, 2023, 42(S1): 213-218. |
[10] | CHENG Tao, CUI Ruili, SONG Junnan, ZHANG Tianqi, ZHANG Yunhe, LIANG Shijie, PU Shi. Analysis of impurity deposition and pressure drop increase mechanisms in residue hydrotreating unit [J]. Chemical Industry and Engineering Progress, 2023, 42(9): 4616-4627. |
[11] | WANG Peng, SHI Huibing, ZHAO Deming, FENG Baolin, CHEN Qian, YANG Da. Recent advances on transition metal catalyzed carbonylation of chlorinated compounds [J]. Chemical Industry and Engineering Progress, 2023, 42(9): 4649-4666. |
[12] | ZHANG Qi, ZHAO Hong, RONG Junfeng. Research progress of anti-toxicity electrocatalysts for oxygen reduction reaction in PEMFC [J]. Chemical Industry and Engineering Progress, 2023, 42(9): 4677-4691. |
[13] | GE Quanqian, XU Mai, LIANG Xian, WANG Fengwu. Research progress on the application of MOFs in photoelectrocatalysis [J]. Chemical Industry and Engineering Progress, 2023, 42(9): 4692-4705. |
[14] | GE Yafen, SUN Yu, XIAO Peng, LIU Qi, LIU Bo, SUN Chengying, GONG Yanjun. Research progress of zeolite for VOCs removal [J]. Chemical Industry and Engineering Progress, 2023, 42(9): 4716-4730. |
[15] | LEI Wei, JIANG Weijia, WANG Yugao, HE Minghao, SHEN Jun. Synthesis of N,S co-doped coal-based carbon quantum dots by electrochemical oxidation and its application in Fe3+ detection [J]. Chemical Industry and Engineering Progress, 2023, 42(9): 4799-4807. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||
京ICP备12046843号-2;京公网安备 11010102001994号 Copyright © Chemical Industry and Engineering Progress, All Rights Reserved. E-mail: hgjz@cip.com.cn Powered by Beijing Magtech Co. Ltd |