Chemical Industry and Engineering Progress ›› 2023, Vol. 42 ›› Issue (9): 4692-4705.DOI: 10.16085/j.issn.1000-6613.2023-0598
• Industrial catalysis • Previous Articles Next Articles
GE Quanqian1,2(), XU Mai2(), LIANG Xian2, WANG Fengwu2()
Received:
2023-04-14
Revised:
2023-05-18
Online:
2023-09-28
Published:
2023-09-15
Contact:
XU Mai, WANG Fengwu
通讯作者:
徐迈,王凤武
作者简介:
葛全倩(1998—),女,硕士研究生,研究方向为光电催化纳米复合材料。E-mail:3288903561@qq.com。
基金资助:
CLC Number:
GE Quanqian, XU Mai, LIANG Xian, WANG Fengwu. Research progress on the application of MOFs in photoelectrocatalysis[J]. Chemical Industry and Engineering Progress, 2023, 42(9): 4692-4705.
葛全倩, 徐迈, 梁铣, 王凤武. MOFs材料在光电催化领域应用的研究进展[J]. 化工进展, 2023, 42(9): 4692-4705.
Add to citation manager EndNote|Ris|BibTeX
URL: https://hgjz.cip.com.cn/EN/10.16085/j.issn.1000-6613.2023-0598
工艺 | 优点 | 缺点 | 实例 |
---|---|---|---|
溶剂热/水热法 | 无须特定的设备、结晶度高和形貌好 | 耗时、溶剂用量大、不经济环保 | MIL-125[ |
电化学法 | 操作条件简单、合成速度快、能耗低、对设备无特殊要求 | 产率低、容易产生副产物 | MIL-101(Fe)[ |
机械力化学法 | 合成效率高、反应条件温和 | 晶体结构差、杂质多 | MOF-74[ |
超声法 | 经济环保、产率高、反应条件温和 | 反应不易控制、杂质多 | HKUST-1[ |
微波法 | 反应时间短、环保、易操作 | 实验需要精密仪器 | MIL-100 (Fe)[ |
工艺 | 优点 | 缺点 | 实例 |
---|---|---|---|
溶剂热/水热法 | 无须特定的设备、结晶度高和形貌好 | 耗时、溶剂用量大、不经济环保 | MIL-125[ |
电化学法 | 操作条件简单、合成速度快、能耗低、对设备无特殊要求 | 产率低、容易产生副产物 | MIL-101(Fe)[ |
机械力化学法 | 合成效率高、反应条件温和 | 晶体结构差、杂质多 | MOF-74[ |
超声法 | 经济环保、产率高、反应条件温和 | 反应不易控制、杂质多 | HKUST-1[ |
微波法 | 反应时间短、环保、易操作 | 实验需要精密仪器 | MIL-100 (Fe)[ |
催化剂 | 金属中心 | 电解质 | 光电流密度(vs. RHE 1.230V)/mA·cm-2 | 参考文献 |
---|---|---|---|---|
TiO2/NH2⁃MIL⁃125 | Ti | 1mol/L NaOH | 1.63 | [ |
BiVO4@CoNi⁃MOF | Co/Ni | 0.5mol/L Na2SO4 | 3.20 | [ |
TiO2//UiO⁃67 | Zr | 1mol/L H2SO4 | 2.10 | [ |
Co3O4@NH2⁃MOF⁃5/NF | Zn | 1mol/L KOH | 32.93 | [ |
Mn(Ⅱ)-FeBTC/NIF | Fe | 0.1mol/L KOH | — | [ |
α-Fe2O3@Ag@ZIF-67 | Co | 0.1mol/L NaOH | 1.04 | [ |
催化剂 | 金属中心 | 电解质 | 光电流密度(vs. RHE 1.230V)/mA·cm-2 | 参考文献 |
---|---|---|---|---|
TiO2/NH2⁃MIL⁃125 | Ti | 1mol/L NaOH | 1.63 | [ |
BiVO4@CoNi⁃MOF | Co/Ni | 0.5mol/L Na2SO4 | 3.20 | [ |
TiO2//UiO⁃67 | Zr | 1mol/L H2SO4 | 2.10 | [ |
Co3O4@NH2⁃MOF⁃5/NF | Zn | 1mol/L KOH | 32.93 | [ |
Mn(Ⅱ)-FeBTC/NIF | Fe | 0.1mol/L KOH | — | [ |
α-Fe2O3@Ag@ZIF-67 | Co | 0.1mol/L NaOH | 1.04 | [ |
催化技术 | 特点 | 不足 |
---|---|---|
光催化 | 需要光照,利用太阳能,经济环保,产品收率高,催化剂可重复使用且高度稳定,反应条件温和,耗能少 | 电子转移机理复杂,产物选择性差,反应完成时催化剂难以从产物中分离催化剂,需要牺牲供体 |
电催化 | 涉及偏置电压,主要在室温下进行反应 | 催化剂寿命短,需要电能,成本高 |
光电催化 | 需要照明,涉及偏置电压,不需要牺牲试剂,成本效益高 | 催化剂的复合设计 |
催化技术 | 特点 | 不足 |
---|---|---|
光催化 | 需要光照,利用太阳能,经济环保,产品收率高,催化剂可重复使用且高度稳定,反应条件温和,耗能少 | 电子转移机理复杂,产物选择性差,反应完成时催化剂难以从产物中分离催化剂,需要牺牲供体 |
电催化 | 涉及偏置电压,主要在室温下进行反应 | 催化剂寿命短,需要电能,成本高 |
光电催化 | 需要照明,涉及偏置电压,不需要牺牲试剂,成本效益高 | 催化剂的复合设计 |
催化 | 还原效率 | 光电流密度 /mA·cm-2 | 反应条件 | 参考文献 |
---|---|---|---|---|
C-ZnZIF700 | 90.17μmol·g-1·h-1 CH3OH | — | 0.1mol/L KHCO3, 2V(vs. Ag/AgCl) | [ |
Cu/Cu2O-Cu (BDC-NH2) | 674μmol·L-1 CH3OH | 2.5 | 300W氙气孤光灯,0.1mol/L Na2SO4,+0.1V | [ |
Cu3(BTC)2/Cu2O | 还原为CO的效率为95% | — | 300W氙灯,0.1mol/L六氟磷酸四丁基铵 | [ |
MOF转化为In2O3-x@C | 还原为HCOOH的效率为97% | — | 1mol/L KOH,-1.0V(vs. RHE) | [ |
Bi2S3/ZIF-8 | 还原为甲酸盐的效率为74.2% | 16.1 | 300W 氙灯,0.7V(vs. RHE) | [ |
NH2-UiO-66 @MIL-101 | 267.90μmol·h-1·g-1 CO和18.63μmol·h-1·g-1 CH4 | 1.23 | 300W氙灯 | [ |
催化 | 还原效率 | 光电流密度 /mA·cm-2 | 反应条件 | 参考文献 |
---|---|---|---|---|
C-ZnZIF700 | 90.17μmol·g-1·h-1 CH3OH | — | 0.1mol/L KHCO3, 2V(vs. Ag/AgCl) | [ |
Cu/Cu2O-Cu (BDC-NH2) | 674μmol·L-1 CH3OH | 2.5 | 300W氙气孤光灯,0.1mol/L Na2SO4,+0.1V | [ |
Cu3(BTC)2/Cu2O | 还原为CO的效率为95% | — | 300W氙灯,0.1mol/L六氟磷酸四丁基铵 | [ |
MOF转化为In2O3-x@C | 还原为HCOOH的效率为97% | — | 1mol/L KOH,-1.0V(vs. RHE) | [ |
Bi2S3/ZIF-8 | 还原为甲酸盐的效率为74.2% | 16.1 | 300W 氙灯,0.7V(vs. RHE) | [ |
NH2-UiO-66 @MIL-101 | 267.90μmol·h-1·g-1 CO和18.63μmol·h-1·g-1 CH4 | 1.23 | 300W氙灯 | [ |
催化剂 | 有机污染物 | 光源 | 降解效率 | 参考文献 |
---|---|---|---|---|
Ti-Zr MOF | 乙酰氨基酚 | 模拟太阳光 | 在90min内达到90% | [ |
Co-MIL-53-NH-BT | 双酚A | 可见光(500W 氙灯) | 在120min内达到99.9% | [ |
Bi5O7I/UiO-66-NH2 | 环丙沙星 | 白光 | 在120min内达到96.1% | [ |
MOF-5/LTH | 亚甲基蓝 | 紫外光(150W 氙灯) | 在125min内达到98.1% | [ |
UiO-66@TiO2 | 二甲基硫醚 | UV灯 | 在80min内达到99% | [ |
NH2-La MOFs/Black TNTs | 2,4-二氯苯酚 | 可见光(300W 氙灯) | 在180min内达到99% | [ |
催化剂 | 有机污染物 | 光源 | 降解效率 | 参考文献 |
---|---|---|---|---|
Ti-Zr MOF | 乙酰氨基酚 | 模拟太阳光 | 在90min内达到90% | [ |
Co-MIL-53-NH-BT | 双酚A | 可见光(500W 氙灯) | 在120min内达到99.9% | [ |
Bi5O7I/UiO-66-NH2 | 环丙沙星 | 白光 | 在120min内达到96.1% | [ |
MOF-5/LTH | 亚甲基蓝 | 紫外光(150W 氙灯) | 在125min内达到98.1% | [ |
UiO-66@TiO2 | 二甲基硫醚 | UV灯 | 在80min内达到99% | [ |
NH2-La MOFs/Black TNTs | 2,4-二氯苯酚 | 可见光(300W 氙灯) | 在180min内达到99% | [ |
66 | KIM Manuela Leticia, BARRERA Deicy, KIMURA Mutsumi, et al. Effect of the ethanol/BTC ratio on the methane uptake of mechanochemically synthesized MOF-199[J]. Chemistry: an Asian Journal, 2021, 16(9): 1086-1091. |
67 | Nasiri AZAD F, GHAEDI M, DASHTIAN K, et al. Ultrasonically assisted hydrothermal synthesis of activated carbon-HKUST-1-MOF hybrid for efficient simultaneous ultrasound-assisted removal of ternary organic dyes and antibacterial investigation: Taguchi optimization[J]. Ultrasonics Sonochemistry, 2016, 31: 383-393. |
68 | CHO Hye-Young, KIM Jun, KIM Se-Na, et al. High yield 1-L scale synthesis of ZIF-8 via a sonochemical route[J]. Microporous and Mesoporous Materials, 2013, 169: 180-184. |
69 | AGUIAR Laís W, OTTO Guilherme P, KUPFER Vicente L, et al. Simple, fast, and low-cost synthesis of MIL-100 and MIL-88B in a modified domestic microwave oven[J]. Materials Letters, 2020, 276: 128127. |
70 | David TILLEY S. Recent advances and emerging trends in photo-electrochemical solar energy conversion[J]. Advanced Energy Materials, 2019, 9(2): 1802877. |
71 | 史潇凡, 朱剑, 白田宇, 等. 金属-有机框架材料在光电催化水分解领域的研究进展[J]. 高等学校化学学报, 2022, 43(1): 126-138. |
SHI Xiaofan, ZHU Jian, BAI Tianyu, et al. Research status and progress of MOFs with application in photoelectrochemical water-splitting[J]. Chemical Journal of Chinese Universities, 2022, 43(1): 126-138. | |
72 | YUAN Yongjun, CHEN Daqin, YU Zhentao, et al. Cadmium sulfide-based nanomaterials for photocatalytic hydrogen production[J]. Journal of Materials Chemistry A, 2018, 6(25): 11606-11630. |
73 | FUJISHIMA Akira, HONDA Kenichi. Electrochemical photolysis of water at a semiconductor electrode[J]. Nature, 1972, 238(5358): 37-38. |
74 | BIBI Rehana, HUANG Hailu, KALULU Mulenga, et al. Synthesis of amino-functionalized Ti-MOF derived yolk-shell and hollow heterostructures for enhanced photocatalytic hydrogen production under visible light[J]. ACS Sustainable Chemistry & Engineering, 2019, 7(5): 4868-4877. |
75 | ZUO Quan, LIU Tingting, CHEN Chuanshuang, et al. Ultrathin metal-organic framework nanosheets with ultrahigh loading of single Pt atoms for efficient visible-light-driven photocatalytic H2 evolution[J]. Angewandte Chemie International Edition, 2019, 58(30): 10198-10203. |
76 | PAILLE Grégoire, Maria GOMEZ-MINGOT, Catherine ROCH-MARCHAL, et al. Thin films of fully noble metal-free POM@MOF for photocatalytic water oxidation[J]. ACS Applied Materials & Interfaces, 2019, 11(51): 47837-47845. |
77 | LI Fei, WANG Dengke, XING Qiuju, et al. Design and syntheses of MOF/COF hybrid materials via postsynthetic covalent modification: An efficient strategy to boost the visible-light-driven photocatalytic performance[J]. Applied Catalysis B: Environmental, 2019, 243: 621-628. |
78 | NATARAJAN Kaushik, GUPTA Anoop K, ANSARI Shagufi Naz, et al. Mixed-ligand-architected 2D Co( Ⅱ )-MOF expressing a novel topology for an efficient photoanode for water oxidation using visible light[J]. ACS Applied Materials & Interfaces, 2019, 11(14): 13295-13303. |
79 | GONG Yunnan, OUYANG Ting, HE Chunting, et al. Photoinduced water oxidation by an organic ligand incorporated into the framework of a stable metal-organic framework[J]. Chemical Science, 2016, 7(2): 1070-1075. |
80 | Alejandro GALÁN-GONZÁLEZ, SIVAN Aswathi K, Javier HERNÁNDEZ-FERRER, et al. Cobalt-doped ZnO nanorods coated with nanoscale metal-organic framework shells for water-splitting photoanodes[J]. ACS Applied Nano Materials, 2020, 3(8): 7781-7788. |
81 | VADDIPALLI Srinivasa Rao, SANIVARAPU Suresh Reddy, VENGATESAN Singaram, et al. Heterostructured Au NPs/CdS/LaBTC MOFs photoanode for efficient photoelectrochemical water splitting: Stability enhancement via CdSe QDs to 2D-CdS nanosheets transformation[J]. ACS Applied Materials & Interfaces, 2016, 8(35): 23049-23059. |
82 | ZHANG Liping, CUI Ping, YANG Hongbin, et al. Metal-organic frameworks as promising photosensitizers for photoelectrochemical water splitting[J]. Advanced Science, 2016, 3(1): 1500243. |
83 | ZHOU Shiqian, CHEN Kaiyi, HUANG Jingwei, et al. Preparation of heterometallic CoNi-MOFs-modified BiVO4: A steady photoanode for improved performance in photoelectrochemical water splitting[J]. Applied Catalysis B: Environmental, 2020, 266: 118513. |
84 | WANG Xuewei, SUN Wenming, TIAN Yang, et al. Conjugated π electrons of MOFs drive charge separation at heterostructures interface for enhanced photoelectrochemical water oxidation[J]. Small, 2021, 17(14): 2100367. |
85 | FIAZ Muhammad, HUSSAIN Dilshad, ATHAR Muhammad. Synthesis of transition metal oxide incorporated MOF-5 and NH2-MOF-5 as efficient photoanode for oxygen evolution reaction[J]. Ionics, 2021, 27(2): 759-770. |
86 | DONG Yiwen, LIU Haijun, WANG Xiao, et al. Manganese doping regulated the built-in electric field of FeBTC for enhanced photoelectrocatalytic hydrolysis[J]. Applied Catalysis B: Environmental, 2023, 328: 122464. |
87 | JI Chengyu, XU Jiamin, JIANG Qianfan, et al. Significantly boosted photoelectrochemical water splitting performance by plasmonic enhanced[email protected]composite photoelectrodes[J]. Materials Today Advances, 2023, 18: 100361. |
88 | LI Chufan, GUO Ruitang, WU Tong, et al. Progress and perspectives on 1D nanostructured catalysts applied in photo(electro)catalytic reduction of CO2 [J]. Nanoscale, 2022, 14(43): 16033-16064. |
89 | IRIKURA Kallyni, PERINI João Angelo Lima, FLOR Jader Barbosa Silva, et al. Direct synthesis of Ru3(BTC)2 metal-organic framework on a Ti/TiO2NT platform for improved performance in the photoelectroreduction of CO2 [J]. Journal of CO2 Utilization, 2021, 43: 101364. |
1 | 郭瑞梅, 白金泉, 张恒, 等. 金属-有机骨架材料在催化氧化反应中的应用[J]. 化学进展, 2016, 28(S2): 232-243. |
GUO Ruimei, BAI Jinquan, ZHANG Heng, et al. Metal-organic frameworks for catalytic oxidation[J]. Progress in Chemistry, 2016, 28(S2): 232-243. | |
2 | CARDOSO J C, STULP S, DE BRITO J F, et al. MOFs based on ZIF-8 deposited on TiO2 nanotubes increase the surface adsorption of CO2 and its photoelectrocatalytic reduction to alcohols in aqueous media[J]. Applied Catalysis B: Environmental, 2018, 225: 563-573. |
3 | HOSKINS Bernard F, ROBSON Richard. Infinite polymeric frameworks consisting of three dimensionally linked rod-like segments[J]. Journal of the American Chemical Society, 1989, 111(15): 5962-5964. |
4 | YAGHI O M, LI Guangming, LI Hailian. Selective binding and removal of guests in a microporous metal-organic framework[J]. Nature, 1995, 378(6558): 703-706. |
5 | DOU Shuo, LI Xiaogang, WANG Xin. Rational design of metal-organic frameworks towards efficient electrocatalysis[J]. ACS Materials Letters, 2020, 2(9): 1251-1267. |
6 | AMARAJOTHI Dhakshinamoorthy, LI Zhaohui, HERMENEGILDO Garcia. Catalysis and photocatalysis by metal organic frameworks[J]. Chemical Society Reviews, 2018, 47(22): 8134-8172. |
7 | GAO Junkuo, HUANG Qing, WU Yuhang, et al. Metal-organic frameworks for photo/electrocatalysis[J]. Advanced Energy and Sustainability Research, 2021, 2(8): 2100033. |
8 | LI Jiantang, BHATT Prashant M, LI Jiyang, et al. Recent progress on microfine design of metal-organic frameworks: Structure regulation and gas sorption and separation[J]. Advanced Materials, 2020, 32(44): 2002563. |
9 | FENG Yuyan, WANG Yixian, YING Yibin. Structural design of metal-organic frameworks with tunable colorimetric responses for visual sensing applications[J]. Coordination Chemistry Reviews, 2021, 446: 214102. |
10 | LAWSON Harrison D, Patrick WALTON S, CHAN Christina. Metal-organic frameworks for drug delivery: A design perspective[J]. ACS Applied Materials & Interfaces, 2021, 13(6): 7004-7020. |
11 | LI Xiaomin, WANG Yameng, MU Yongbiao, et al. Superprotonic conductivity of a functionalized metal-organic framework at ambient conditions[J]. ACS Applied Materials & Interfaces, 2022, 14(7): 9264-9271. |
90 | TANG Bo, XIAO Fangxing. An overview of solar-driven photoelectrochemical CO2 conversion to chemical fuels[J]. ACS Catalysis, 2022, 12(15): 9023-9057. |
91 | ZHAO Jian, XUE Song, JAMES Barber, et al. An overview of Cu-based heterogeneous electrocatalysts for CO2 reduction[J]. Journal of Materials Chemistry A, 2020, 8(9): 4700-4734. |
92 | LI Chufan, GUO Ruitang, ZHANG Zhenrui, et al. Converting CO2 into value-added products by Cu2O-based catalysts: From photocatalysis, electrocatalysis to photoelectrocatalysis[J]. Small, 2023, 19(19): 2207875. |
93 | MU Qiaoqiao, ZHU Wei, LI Xian, et al. Electrostatic charge transfer for boosting the photocatalytic CO2 reduction on metal centers of 2D MOF/rGO heterostructure[J]. Applied Catalysis B: Environmental, 2020, 262: 118144. |
94 | CARDOSO J C, STULP S, DE SOUZA M K R, et al. The effective role of ascorbic acid in the photoelectrocatalytic reduction of CO2 preconcentrated on TiO2 nanotubes modified by ZIF-8[J]. Journal of Electroanalytical Chemistry, 2020, 856: 113384. |
95 | SHEN Kui, CHEN Xiaodong, CHEN Junying, et al. ChemInform abstract: Development of MOF-derived carbon-based nanomaterials for efficient catalysis[J]. ChemInform, 2016, 47(43): 5887-5903. |
96 | REN Qian, WANG Hui, LU Xuefeng, et al. Recent progress on MOF-derived heteroatom-doped carbon-based electrocatalysts for oxygen reduction reaction[J]. Advanced Science, 2018, 5(3): 1700515. |
97 | DENG Xi, LI Rui, WU Sikai, et al. Metal-organic framework coating enhances the performance of Cu2O in photoelectrochemical CO2 reduction[J]. Journal of the American Chemical Society, 2019, 141(27): 10924-10929. |
98 | SILVA Beatriz Costa E, IRIKURA Kallyni, FLOR Jader Barbosa Silva, et al. Electrochemical preparation of Cu/Cu2O-Cu(BDC) metal-organic framework electrodes for photoelectrocatalytic reduction of CO2 [J]. Journal of CO2 Utilization, 2020, 42: 101299. |
99 | MAINA James W, Cristina POZO-GONZALO, SCHÜTZ Jürg A, et al. Tuning CO2 conversion product selectivity of metal organic frameworks derived hybrid carbon photoelectrocatalytic reactors[J]. Carbon, 2019, 148: 80-90. |
100 | SILVA Beatriz Costa E, IRIKURA Kallyni, FREM Regina Célia Galvão, et al. Effect of Cu(BDC-NH2) MOF deposited on Cu/Cu2O electrode and its better performance in photoelectrocatalytic reduction of CO2 [J]. Journal of Electroanalytical Chemistry, 2021, 880: 114856. |
101 | ZHAO Zhenlong, BIAN Ji, ZHAO Lina, et al. Construction of 2D Zn-MOF/BiVO4 S-scheme heterojunction for efficient photocatalytic CO2 conversion under visible light irradiation[J]. Chinese Journal of Catalysis, 2022, 43(5): 1331-1340. |
12 | WANG Sibo, HOU Yidong, LIN Sen, et al. Water oxidation electrocatalysis by a zeolitic imidazolate framework[J]. Nanoscale, 2014, 6(17): 9930-9934. |
13 | KUNG Chung-Wei, HAN Pochun, CHUANG Cheng-Hsun, et al. Electronically conductive metal-organic framework-based materials[J]. APL Materials, 2019, 7(11): 110902. |
14 | HAN Mengyi, ZHAO Zhiyong, ZHANG Xiaowei, et al. Phosphorus-doped directly interconnected networks of amorphous Metal-organic framework nanowires for efficient methanol oxidation[J]. Journal of Colloid and Interface Science, 2023, 641: 675-684. |
15 | LIU Yizhe, LI Xintong, SUN Qidi, et al. Freestanding 2D NiFe metal-organic framework nanosheets: Facilitating proton transfer via organic ligands for efficient oxygen evolution reaction[J]. Small, 2022, 18(26): 2201076. |
16 | LI Lifang, PENG Hui, KANG Yumao, et al. Rare-earth metal-organic framework-derived La2O3/Ni x P y nanoparticles embedded in nitrogen-doped porous carbon as efficient electrocatalysts for the oxygen evolution reaction[J]. ACS Applied Nano Materials, 2023, 6(6): 4349-4359. |
17 | MA Lin, HUANG Chen, YAO Yunyou, et al. Self-assembled MOF microspheres with hierarchical porous structure for efficient uranium adsorption[J]. Separation and Purification Technology, 2023, 314: 123526. |
18 | QIU Tianjie, LIANG Zibin, GUO Wenhan, et al. Metal-organic framework-based materials for energy conversion and storage[J]. ACS Energy Letters, 2020, 5(2): 520-532. |
19 | LI Hailian, EDDAOUDI Mohamed, GROY Thomas L, et al. Establishing microporosity in open metal-organic frameworks: Gas sorption isotherms for Zn(BDC) (BDC=1,4-benzenedicarboxylate)[J]. Journal of the American Chemical Society, 1998, 120(33): 8571-8572. |
20 | LI Hailian, EDDAOUDI Mohamed, O'KEEFFE M, et al. Design and synthesis of an exceptionally stable and highly porous metal-organic framework[J]. Nature, 1999, 402(6759): 276-279. |
21 | CHUI S S, LO S M, CHARMANT J P, et al. A chemically functionalizable nanoporous material[J]. Science, 1999, 283(5405): 1148-1150. |
22 | BORDIGA S, LAMBERTI C, RICCHIARDI G, et al. Electronic and vibrational properties of a MOF-5 metal-organic framework: ZnO quantum dot behaviour[J]. Chemical Communications, 2004(20): 2300-2301. |
23 | FUJITA Makoto, KWON Yoon Jung, WASHIZU Satoru, et al. Preparation, clathration ability, and catalysis of a two-dimensional square network material composed of cadmium(Ⅱ) and 4,4'-bipyridine[J]. Journal of the American Chemical Society, 1994, 116(3): 1151-1152. |
24 | ALVARO Mercedes, CARBONELL Esther, FERRER Belén, et al. Semiconductor behavior of a metal-organic framework (MOF)[J]. Chemistry: a European Journal, 2007, 13(18): 5106-5112. |
102 | GULATI Shikha, VIJAYAN Sneha, KUMAR Sanjay, et al. Recent advances in the application of metal-organic frameworks (MOFs)-based nanocatalysts for direct conversion of carbon dioxide(CO2) to value-added chemicals[J]. Coordination Chemistry Reviews, 2023, 474: 214853. |
103 | QIU Chen, QIAN Kun, YU Jun, et al. MOF-transformed In2O3- x @C nanocorn electrocatalyst for efficient CO2 reduction to HCOOH[J]. Nano-Micro Letters, 2022, 14(1): 167. |
104 | KONG Nan, DU Huiling, LI Zhuo, et al. Nano heterojunction of double MOFs for improved CO2 photocatalytic reduction performance[J]. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2023, 663: 131005. |
105 | WU Hao, TAN Huiling, Cui Ying TOE, et al. Photocatalytic and photoelectrochemical systems: Similarities and differences[J]. Advanced Materials, 2020, 32(18): 1904717. |
106 | BRILLAS Enric. Recent development of electrochemical advanced oxidation of herbicides. A review on its application to wastewater treatment and soil remediation[J]. Journal of Cleaner Production, 2021, 290: 125841. |
107 | ZHANG Lu, SHI Qin, GUO Yuye, et al. Interface optimization by impedance spectroscopy and photoelectrocatalytic degradation of clofibric acid[J]. Electrochimica Acta, 2019, 300: 242-252. |
108 | YAO Tingting, AN Xiurui, HAN Hongxian, et al. Photoelectrocatalytic materials for solar water splitting[J]. Advanced Energy Materials, 2018, 8(21): 1800210. |
109 | ZHANG Xinyu, YU Wenchao, GUO Yajie, et al. Recent advances in photoelectrocatalytic advanced oxidation processes: From mechanism understanding to catalyst design and actual applications[J]. Chemical Engineering Journal, 2023, 455: 140801. |
110 | MO Fan, ZHOU Qixing, WANG Qi, et al. The applications of MOFs related materials in photo/electrochemical decontamination: An updated review[J]. Chemical Engineering Journal, 2022, 450: 138326. |
111 | MAHMOODI Niyaz Mohammad, ABDI Jafar, OVEISI Mina, et al. Metal-organic framework (MIL-100 (Fe)): Synthesis, detailed photocatalytic dye degradation ability in colored textile wastewater and recycling[J]. Materials Research Bulletin, 2018, 100: 357-366. |
112 | MAHMOODI Niyaz Mohammad, ABDI Jafar, TAGHIZADEH Mohsen, et al. Activated carbon/metal-organic framework nanocomposite: Preparation and photocatalytic dye degradation mathematical modeling from wastewater by least squares support vector machine[J]. Journal of Environmental Management, 2019, 233: 660-672. |
113 | EL-FAWAL Esraa M, YOUNIS Sherif A, ZAKI T. Designing AgFeO2-graphene/Cu2(BTC)3 MOF heterojunction photocatalysts for enhanced treatment of pharmaceutical wastewater under sunlight[J]. Journal of Photochemistry and Photobiology A: Chemistry, 2020, 401: 112746. |
25 | YU Zhentao, LIAO Zuolei, JIANG Yusheng, et al. Construction of a microporous inorganic-organic hybrid compound with uranyl units[J]. Chemical Communications, 2004(16): 1814-1815. |
26 | MAHATA Partha, MADRAS Giridhar, NATARAJAN Srinivasan. Novel photocatalysts for the decomposition of organic dyes based on metal-organic framework compounds[J]. The Journal of Physical Chemistry B, 2006, 110(28): 13759-13768. |
27 | LIU Bo, HIROSHI Shioyama, TOMOKI Akita, et al. Metal-organic framework as a template for porous carbon synthesis[J]. Journal of the American Chemical Society, 2008, 130(16): 5390-5391. |
28 | KATAOKA Yusuke, SATO Konomi, MIYAZAKI Yuhei, et al. Photocatalytic hydrogen production from water using porous material[Ru2(p-BDC)2] n [J]. Energy & Environmental Science, 2009, 2(4): 397-400. |
29 | NOHRA Brigitte, MOLL Hani EL, RODRIGUEZ ALBELO L Marleny, et al. Polyoxometalate-based metal organic frameworks (POMOFs): Structural trends, energetics, and high electrocatalytic efficiency for hydrogen evolution reaction[J]. Journal of the American Chemical Society, 2011, 133(34): 13363-13374. |
30 | MA Tianyi, DAI Sheng, MIETEK Jaroniec, et al. Metal-organic framework derived hybrid Co3O4-carbon porous nanowire arrays as reversible oxygen evolution electrodes[J]. Journal of the American Chemical Society, 2014, 136(39): 13925-13931. |
31 | ZHANG Yan, HUANG Jingwei, DING Yong. Porous Co3O4/CuO hollow polyhedral nanocages derived from metal-organic frameworks with heterojunctions as efficient photocatalytic water oxidation catalysts[J]. Applied Catalysis B: Environmental, 2016, 198: 447-456. |
32 | WANG Cheng, XIE Zhigang, DEKRAFFT Kathryn E, et al. Doping metal-organic frameworks for water oxidation, carbon dioxide reduction, and organic photocatalysis[J]. Journal of the American Chemical Society, 2011, 133(34): 13445-13454. |
33 | LI Dandan, XU Haiqun, JIAO Long, et al. Metal-organic frameworks for catalysis: State of the art, challenges, and opportunities[J]. EnergyChem, 2019, 1(1): 100005. |
34 | MARK Kalaj, BENTZ Kyle C, SERGIO Ayala, et al. MOF-polymer hybrid materials: From simple composites to tailored architectures[J]. Chemical Reviews, 2020, 120(16): 8267-8302. |
35 | ZHANG Xi, WANG Jing, DONG Xingxing, et al. Functionalized metal-organic frameworks for photocatalytic degradation of organic pollutants in environment[J]. Chemosphere, 2020, 242: 125144. |
36 | JIANG Danni, XU Piao, WANG Han, et al. Strategies to improve metal organic frameworks photocatalyst’s performance for degradation of organic pollutants[J]. Coordination Chemistry Reviews, 2018, 376: 449-466. |
37 | RICE Allison M, MARTIN Corey R, GALITSKIY Vladimir A, et al. Photophysics modulation in photoswitchable metal-organic frameworks[J]. Chemical Reviews, 2020, 120(16): 8790-8813. |
38 | DI NUNZIO Maria Rosaria, Elena CABALLERO-MANCEBO, COHEN Boiko, et al. Photodynamical behaviour of MOFs and related composites: Relevance to emerging photon-based science and applications[J]. Journal of Photochemistry and Photobiology C: Photochemistry Reviews, 2020, 44: 100355. |
39 | ZHAO Xiaoxue, LI Jinze, LI Xin, et al. Design of metal-organic frameworks(MOFs)-based photocatalyst for solar fuel production and photo-degradation of pollutants[J]. Chinese Journal of Catalysis, 2021, 42(6): 872-903. |
40 | SWETHA S, JANANI B, Sudheer KHAN S. A critical review on the development of metal-organic frameworks for boosting photocatalysis in the fields of energy and environment[J]. Journal of Cleaner Production, 2022, 333: 130164. |
41 | HU Chen, XIAO Juanding, MAO Xiaodong, et al. Toughening mechanisms of epoxy resin using aminated metal-organic framework as additive[J]. Materials Letters, 2019, 240: 113-116. |
42 | ANNAMALAI Jayshree, MURUGAN Preethika, GANAPATHY Dhanraj, et al. Synthesis of various dimensional metal organic frameworks (MOFs) and their hybrid composites for emerging applications—A review[J]. Chemosphere, 2022, 298: 134184. |
43 | YU Yanping, PAN Mengmeng, JIANG Ming, et al. Facile synthesis of self-assembled three-dimensional flower-like Cu-MOF and its pyrolytic derivative Cu-N-C450 for diverse applications[J]. Journal of Environmental Chemical Engineering, 2023, 11(2): 109400. |
44 | MEEK Scott T, GREATHOUSE Jeffery A, ALLENDORF Mark D. Metal-organic frameworks: A rapidly growing class of versatile nanoporous materials[J]. Advanced Materials, 2011, 23(2): 249-267. |
45 | BARTON Heather F, DAVIS Alexandra K, LEE Dennis T, et al. Solvothermal synthesis of MIL-96 and UiO-66-NH2 on atomic layer deposited metal oxide coatings on fiber mats[J]. Journal of Visualized Experiments, 2018(136): 57734. |
46 | MARTINEZ JOARISTI Alberto, Jana JUAN-ALCAÑIZ, Pablo SERRA-CRESPO, et al. Electrochemical synthesis of some archetypical Zn2+, Cu2+, and Al3+ metal organic frameworks[J]. Crystal Growth & Design, 2012, 12(7): 3489-3498. |
47 | KHAZALPOUR Sadegh, SAFARIFARD Vahid, MORSALI Ali, et al. Electrochemical synthesis of pillared layer mixed ligand metal-organic framework: DMOF-1-Zn[J]. RSC Advances, 2015, 5(46): 36547-36551. |
48 | DE LIMA NETO Otávio José, DE OLIVEIRA FRÓS Allana Christina, Bráulio Silva Barros, et al. Rapid and efficient electrochemical synthesis of a zinc-based nano-MOF for Ibuprofen adsorption[J]. New Journal of Chemistry, 2019, 43(14): 5518-5524. |
49 | Hanan AL-KUTUBI, DIKHTIARENKO Alla, ZAFARANI Hamid Reza, et al. Facile formation of ZIF-8 thin films on ZnO nanorods[J]. CrystEngComm, 2015, 17(29): 5360-5364. |
50 | PICHON Anne, Ana LAZUEN-GARAY, JAMES Stuart L. Solvent-free synthesis of a microporous metal-organic framework[J]. CrystEngComm, 2006, 8(3): 211-214. |
51 | Tomislav FRIŠČIĆ, László FÁBIÁN. Mechanochemical conversion of a metal oxide into coordination polymers and porous frameworks using liquid-assisted grinding (LAG)[J]. CrystEngComm, 2009, 11(5): 743-745. |
52 | WU Hao, ZHAI Qingxi, DING Fan, et al. Amorphous FeNiCu-MOFs as highly efficient electrocatalysts for the oxygen evolution reaction in an alkaline medium[J]. Dalton Transactions, 2022, 51(37): 14306-14316. |
53 | VAITSIS Christos, SOURKOUNI Georgia, ARGIRUSIS Christos. Metal organic frameworks(MOFs) and ultrasound: A review[J]. Ultrasonics Sonochemistry, 2019, 52: 106-119. |
54 | TOMPSETT Geoffrey A, CONNER William Curtis, Sigfrid YNGVESSON K. Microwave synthesis of nanoporous materials[J]. ChemPhysChem, 2006, 7(2): 296-319. |
55 | LEE Yuri, Kim JUN, Ahn WHA-SEUNG. Synthesis of metal-organic frameworks: A mini review[J]. Korean Journal of Chemical Engineering, 2013, 30(9): 1667-1680. |
56 | MUELLER U, SCHUBERT M, TEICH F, et al. Metal-organic frameworks—Prospective industrial applications[J]. ChemInform, 2006, 16(7): 626-636. |
57 | HE Huacheng, HASHEMI Lida, HU Maolin, et al. The role of the counter-ion in metal-organic frameworks’ chemistry and applications[J]. Coordination Chemistry Reviews, 2018, 376: 319-347. |
58 | LIN Guo, ZENG Biao, LI Jing, et al. A systematic review of metal organic frameworks materials for heavy metal removal: Synthesis, applications and mechanism[J]. Chemical Engineering Journal, 2023, 460: 141710. |
59 | YOON Ji Won, KIM Do Hong, KIM Jae-Hyeok, et al. NH2-MIL-125(Ti)/TiO2 nanorod heterojunction photoanodes for efficient photoelectrochemical water splitting[J]. Applied Catalysis B: Environmental, 2019, 244: 511-518. |
60 | HAN Hyungkyu, KARLICKY Frantisek, PITCHAIMUTHU Sudhagar, et al. Highly ordered N-doped carbon dots photosensitizer on metal-organic framework-decorated ZnO nanotubes for improved photoelectrochemical water splitting[J]. Small, 2019, 15(40): 1902771. |
114 | QIN Yiming, YANG Shuai, YOU Xinyu, et al. Carbon nitride coupled with Fe-based MOFs as an efficient photoelectrocatalyst for boosted degradation of ciprofloxacin: Mechanism, pathway and fate[J]. Separation and Purification Technology, 2022, 296: 121325. |
115 | NIU Baoling, WANG Zhiming, WU Jianwei, et al. Photoelectrocatalytic selective removal of group-targeting thiol-containing heterocyclic pollutants[J]. Journal of Hazardous Materials, 2023, 452: 131307. |
116 | YU Wenkai, XU Mai, LIANG Xian, et al. Fabrication of Ce MOFs/Black-TNTs and CCM/Black-TNTs as high-efficiency photoelectrode for wastewater treatment and hydrogen production[J]. Separation and Purification Technology, 2022, 303: 122155. |
117 | YU Wenkai, XU Mai, LIANG Xian, et al. Construction of a novel Cu1.8S/NH2-La MOFs decorated Black-TNTs photoanode electrode for high-efficiently photoelectrocatalytic degradation of 2,4-dichlorophenol[J]. Chemosphere, 2023, 313: 137591. |
118 | GÓMEZ-AVILÉS A, PEÑAS-GARZÓN M, BEDIA J, et al. Mixed Ti-Zr metal-organic-frameworks for the photodegradation of acetaminophen under solar irradiation[J]. Applied Catalysis B: Environmental, 2019, 253: 253-262. |
119 | LV Shiwen, LIU Jingmin, ZHAO Ning, et al. Benzothiadiazole functionalized Co-doped MIL-53-NH2 with electron deficient units for enhanced photocatalytic degradation of bisphenol A and ofloxacin under visible light[J]. Journal of Hazardous Materials, 2020, 387: 122011. |
120 | ZHAO Chen, LI Yang, CHU Hongyu, et al. Construction of direct Z-scheme Bi5O7I/UiO-66-NH2 heterojunction photocatalysts for enhanced degradation of ciprofloxacin: Mechanism insight, pathway analysis and toxicity evaluation[J]. Journal of Hazardous Materials, 2021, 419: 126466. |
121 | BHUVANESWARI K, PALANISAMY G, PAZHANIVEL T, et al. In-situ development of metal organic frameworks assisted ZnMgAl layered triple hydroxide 2D/2D hybrid as an efficient photocatalyst for organic dye degradation[J]. Chemosphere, 2021, 270: 128616. |
122 | MAN Zun, MENG Yang, LIN Xiaochang, et al. Assembling UiO-66@TiO2 nanocomposites for efficient photocatalytic degradation of dimethyl sulfide[J]. Chemical Engineering Journal, 2022, 431: 133952. |
61 | WU Wenbo, DECKER Gerald E, WEAVER Anna E, et al. Facile and rapid room-temperature electrosynthesis and controlled surface growth of Fe-MIL-101 and Fe-MIL-101-NH2 [J]. ACS Central Science, 2021, 7(8): 1427-1433. |
62 | VEHRENBERG Jan, Mikko VEPSÄLÄINEN, MACEDO David S, et al. Steady-state electrochemical synthesis of HKUST-1 with polarity reversal[J]. Microporous and Mesoporous Materials, 2020, 303: 110218. |
63 | ZHANG Ya, LI Ning, XU Ying, et al. An ultra-sensitive electrochemical aptasensor based on Co-MOF/ZIF-8 nano-thin-film by the in situ electrochemical synthesis for simultaneous detection of multiple biomarkers of breast cancer[J]. Microchemical Journal, 2023, 187: 108316. |
64 | Jethro BEAMISH-COOK, SHANKLAND Kenneth, MURRAY Claire A, et al. Insights into the mechanochemical synthesis of MOF-74[J]. Crystal Growth & Design, 2021, 21(5): 3047-3055. |
65 | Daofei LYU, CHEN Yongwei, LI Yujie, et al. Efficient mechanochemical synthesis of MOF-5 for linear alkanes adsorption[J]. Journal of Chemical & Engineering Data, 2017, 62(7): 2030-2036. |
[1] | XIE Luyao, CHEN Songzhe, WANG Laijun, ZHANG Ping. Platinum-based catalysts for SO2 depolarized electrolysis [J]. Chemical Industry and Engineering Progress, 2023, 42(S1): 299-309. |
[2] | ZHANG Yajuan, XU Hui, HU Bei, SHI Xingwei. Preparation of NiCoP/rGO/NF electrocatalyst by eletroless plating for efficient hydrogen evolution reaction [J]. Chemical Industry and Engineering Progress, 2023, 42(8): 4275-4282. |
[3] | GUO Lixing, PANG Weiying, MA Keyao, YANG Jiahan, SUN Zehui, ZHANG Pan, FU Dong, ZHAO Kun. Hierarchically multilayered TiO2 with spatial pore-structure for efficient photocatalytic CO2 reduction [J]. Chemical Industry and Engineering Progress, 2023, 42(7): 3643-3651. |
[4] | WANG Yunqing, YANG Guorui, YAN Wei. Transition metal phosphide modification and its applications in electrochemical hydrogen evolution reaction [J]. Chemical Industry and Engineering Progress, 2023, 42(7): 3532-3549. |
[5] | JIANG Bolong, CUI Yanyan, SHI Shunjie, CHANG Jiacheng, JIANG Nan, TAN Weiqiang. Synthesis of transition metal Co3O4/ZnO-ZIF oxygen reduction catalyst by Co/Zn-ZIF template method and its electricity generation performance [J]. Chemical Industry and Engineering Progress, 2023, 42(6): 3066-3076. |
[6] | FU Shurong, WANG Lina, WANG Dongwei, LIU Rui, ZHANG Xiaohui, MA Zhanwei. Oxygen evolution cocatalyst enhancing the photoanode performances for photoelectrochemical water splitting [J]. Chemical Industry and Engineering Progress, 2023, 42(5): 2353-2370. |
[7] | MAO Menglei, MENG Lingding, GAO Rui, MENG Zihui, LIU Wenfang. Research progress on enzyme immobilization on porous framework materials [J]. Chemical Industry and Engineering Progress, 2023, 42(5): 2516-2535. |
[8] | CHANG Xiaoqing, PENG Donglai, LI Dongyang, ZHANG Yanwu, WANG Jing, ZHANG Yatao. Recent progress on mixed matrix membrane for efficient C3H6/C3H8 separation [J]. Chemical Industry and Engineering Progress, 2023, 42(4): 1961-1973. |
[9] | GUO Pengju, HE Xiaobo, YIN Fengxiang. Research progress in MOF-based catalysts for electrocatalytic nitrogen reduction to ammonia [J]. Chemical Industry and Engineering Progress, 2023, 42(4): 1797-1810. |
[10] | SUN Hui, MENG Xianghai, WEI Jinghai, ZHOU Hongjun, XU Chunming. New scene for ammonia synthesis by green hydrogen [J]. Chemical Industry and Engineering Progress, 2023, 42(2): 1098-1102. |
[11] | XIAO Zhourong, LI Guozhu, WANG Li, ZHANG Xiangwen, GU Jianmin, WANG Desong. Research progress of the catalysts for hydrogen production via liquid hydrocarbon fuels steam reforming [J]. Chemical Industry and Engineering Progress, 2022, 41(S1): 97-107. |
[12] | HU Bing, XU Lijun, HE Shan, SU Xin, WANG Jiwei. Researching progress of hydrogen production by PEM water electrolysis under the goal of carbon peak and carbon neutrality [J]. Chemical Industry and Engineering Progress, 2022, 41(9): 4595-4604. |
[13] | FANG Longlong, ZHENG Wenji, NING Mengjia, ZHANG Mingyang, YANG Yuqing, DAI Yan, HE Gaohong. Enhanced CO2 separation of mixed matrix membranes by functionalized Zr-MOF [J]. Chemical Industry and Engineering Progress, 2022, 41(9): 4954-4962. |
[14] | YAN Peng, CHENG Yi. Numerical simulation of membrane reactor of methane steam reforming for distributed hydrogen production [J]. Chemical Industry and Engineering Progress, 2022, 41(7): 3446-3454. |
[15] | TANG Chaochun, WANG Shunteng, HUANG Congxin, FENG Wentao, RUAN Yixuan, SHI Chunjing. Research progress on adsorption of heavy metal ions in water by mesoporous metal organic framework materials [J]. Chemical Industry and Engineering Progress, 2022, 41(6): 3263-3278. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||
京ICP备12046843号-2;京公网安备 11010102001994号 Copyright © Chemical Industry and Engineering Progress, All Rights Reserved. E-mail: hgjz@cip.com.cn Powered by Beijing Magtech Co. Ltd |