Chemical Industry and Engineering Progress ›› 2023, Vol. 42 ›› Issue (5): 2536-2545.DOI: 10.16085/j.issn.1000-6613.2022-1223
• Materials science and technology • Previous Articles Next Articles
WANG Xue(), XU Qiyong, ZHANG Chao()
Received:
2022-07-01
Revised:
2022-08-31
Online:
2023-06-02
Published:
2023-05-10
Contact:
ZHANG Chao
通讯作者:
张超
作者简介:
王雪(1998—),女,硕士研究生,研究方向为固废资源化。E-mail:xuewang_25@stu.pku.edu.cn。
基金资助:
CLC Number:
WANG Xue, XU Qiyong, ZHANG Chao. Hydrothermal carbonization of the lignocellulosic biomass and application of the hydro-char[J]. Chemical Industry and Engineering Progress, 2023, 42(5): 2536-2545.
王雪, 徐期勇, 张超. 木质纤维素类生物质水热炭化机理及水热炭应用进展[J]. 化工进展, 2023, 42(5): 2536-2545.
Add to citation manager EndNote|Ris|BibTeX
URL: https://hgjz.cip.com.cn/EN/10.16085/j.issn.1000-6613.2022-1223
类别 | 原料 | 纤维素质量分数/% | 半纤维素质量分数/% | 木质素质量分数/% | 应用 | 参考文献 |
---|---|---|---|---|---|---|
木材生物质 | 桉木 | 54 | 18 | 21 | CO2 捕集 | [ |
橡木 | 40.4 | 35.9 | 24 | 污水处理 | [ | |
松木 | 42~50 | 24~27 | 20 | 固体燃料 | [ | |
混合木屑 | 40~50 | 11~30 | 20~30 | 固体燃料 | [ | |
农林废弃物 | 黑麦秆 | 41.2 | 21.2 | 19 | 功能炭材料 | [ |
稻杆 | 29~35 | 23~26 | 17~19 | 功能炭材料 | [ | |
稻壳 | 28~36 | 12~30 | 15~20 | 固体燃料 | [ | |
燕麦壳 | 37 | 35 | 7 | 污水处理 | [ | |
玉米秸秆 | 33~42 | 32~36 | 6~16 | 污水处理 | [ | |
核桃壳 | 30 | 27 | 38 | 电极材料 | [ | |
毛竹 | 36 | 27 | 22 | 功能炭材料 | [ |
类别 | 原料 | 纤维素质量分数/% | 半纤维素质量分数/% | 木质素质量分数/% | 应用 | 参考文献 |
---|---|---|---|---|---|---|
木材生物质 | 桉木 | 54 | 18 | 21 | CO2 捕集 | [ |
橡木 | 40.4 | 35.9 | 24 | 污水处理 | [ | |
松木 | 42~50 | 24~27 | 20 | 固体燃料 | [ | |
混合木屑 | 40~50 | 11~30 | 20~30 | 固体燃料 | [ | |
农林废弃物 | 黑麦秆 | 41.2 | 21.2 | 19 | 功能炭材料 | [ |
稻杆 | 29~35 | 23~26 | 17~19 | 功能炭材料 | [ | |
稻壳 | 28~36 | 12~30 | 15~20 | 固体燃料 | [ | |
燕麦壳 | 37 | 35 | 7 | 污水处理 | [ | |
玉米秸秆 | 33~42 | 32~36 | 6~16 | 污水处理 | [ | |
核桃壳 | 30 | 27 | 38 | 电极材料 | [ | |
毛竹 | 36 | 27 | 22 | 功能炭材料 | [ |
水热温度/℃ | 水热时间 | 原料 | 水热炭结构特性 | 参考文献 |
---|---|---|---|---|
160~220 | 24h | 纤维素 | 在较低的水热温度(160℃)下,纤维结构较为完整。当水热温度为220℃时,开始形成不均匀球形颗粒 | [ |
210~230 | 9h | 棕纤维素 | 棕纤维素水热炭结构复杂,其表面呈球形 | [ |
240 | 22h | 木质素 | 当水热温度达到240℃时,硫酸盐木质素的结构开始降解,生成的炭表面有较小的颗粒附着 | [ |
160~240 | 24h | 麦秆 | 当水热温度超过240℃时,纤维结构开始破坏,微球状水热炭开始生成。但部分生物质原始宏观结构仍然保留 | [ |
200~260 | 10min | 杉木 | 当水热温度高于240℃时,水热炭颜色发生了明显的变化。木质素结构几乎未被破坏 | [ |
200~260 | 6h | 玉米秸秆 | 随着水热温度的增加,水热炭脱羧反应更剧烈,表面的炭微球数量增加,形状更均一 | [ |
180~300 | 0~3h | 毛竹 | 当水热温度为180℃时,水热炭表面粗糙,纤维结构有降解倾向;当温度达到260℃时,颗粒状炭含量增加 | [ |
200 | 6~48h | 木片 | 水热6h后,在无定形炭表面有球形炭生成,但炭球尺寸分布不均匀,直径在1~5μm | [ |
240 | 30min~24h | 水葫芦 | 随着保温时间的延长,水热炭更趋向于生成微球状,当保温时间达到24h时,水热炭表面形貌呈现海绵状结构 | [ |
水热温度/℃ | 水热时间 | 原料 | 水热炭结构特性 | 参考文献 |
---|---|---|---|---|
160~220 | 24h | 纤维素 | 在较低的水热温度(160℃)下,纤维结构较为完整。当水热温度为220℃时,开始形成不均匀球形颗粒 | [ |
210~230 | 9h | 棕纤维素 | 棕纤维素水热炭结构复杂,其表面呈球形 | [ |
240 | 22h | 木质素 | 当水热温度达到240℃时,硫酸盐木质素的结构开始降解,生成的炭表面有较小的颗粒附着 | [ |
160~240 | 24h | 麦秆 | 当水热温度超过240℃时,纤维结构开始破坏,微球状水热炭开始生成。但部分生物质原始宏观结构仍然保留 | [ |
200~260 | 10min | 杉木 | 当水热温度高于240℃时,水热炭颜色发生了明显的变化。木质素结构几乎未被破坏 | [ |
200~260 | 6h | 玉米秸秆 | 随着水热温度的增加,水热炭脱羧反应更剧烈,表面的炭微球数量增加,形状更均一 | [ |
180~300 | 0~3h | 毛竹 | 当水热温度为180℃时,水热炭表面粗糙,纤维结构有降解倾向;当温度达到260℃时,颗粒状炭含量增加 | [ |
200 | 6~48h | 木片 | 水热6h后,在无定形炭表面有球形炭生成,但炭球尺寸分布不均匀,直径在1~5μm | [ |
240 | 30min~24h | 水葫芦 | 随着保温时间的延长,水热炭更趋向于生成微球状,当保温时间达到24h时,水热炭表面形貌呈现海绵状结构 | [ |
改性方法 | 调控条件 | 实例 | 目的 | 参考文献 |
---|---|---|---|---|
化学试剂预处理 | 盐溶液浸渍 | 饱和KCl溶液浸渍 | 利用K+、Cl-等离子的刻蚀作用造孔,阻止碎片交联,形成骨架均一的片层结构 | [ |
水热添加剂 | 催化剂 | 硫酸 | 水热炭表面的微孔体积和比表面积均显著增加 | [ |
碳酸钾 | 微孔比表面积和表面含氧量增加 | |||
FeCl3盐溶液 | 铁在炭表面反应有助于形成炭颗粒,可作为吸附剂有效去除废水中的营养物质 | [ | ||
乳化剂 | 聚苯乙烯磺酸钠 | 制备尺寸小于100nm的炭微球 | [ | |
聚丙烯酸钠 | 提高水热炭的分散程度,形成均一稳定炭微球 | |||
水热后处理 | 活化剂活化 | KOH浸渍 | 制备的玉米秸秆炭材料吸附容量可达到30.15mg/g,可作为污水中重金属吸附剂 | [ |
热解活化 | 热解+KOH浸渍 | 低温水热条件下即可得到完整的微球状水热炭,其粒径分布在3~6μm | [ | |
蒸汽活化 | 蒸汽活化 磷酸浸渍 | 水热炭微孔结构、比表面积、吸附能力显著提升,可明显观察到微球状水热炭生成 | [ |
改性方法 | 调控条件 | 实例 | 目的 | 参考文献 |
---|---|---|---|---|
化学试剂预处理 | 盐溶液浸渍 | 饱和KCl溶液浸渍 | 利用K+、Cl-等离子的刻蚀作用造孔,阻止碎片交联,形成骨架均一的片层结构 | [ |
水热添加剂 | 催化剂 | 硫酸 | 水热炭表面的微孔体积和比表面积均显著增加 | [ |
碳酸钾 | 微孔比表面积和表面含氧量增加 | |||
FeCl3盐溶液 | 铁在炭表面反应有助于形成炭颗粒,可作为吸附剂有效去除废水中的营养物质 | [ | ||
乳化剂 | 聚苯乙烯磺酸钠 | 制备尺寸小于100nm的炭微球 | [ | |
聚丙烯酸钠 | 提高水热炭的分散程度,形成均一稳定炭微球 | |||
水热后处理 | 活化剂活化 | KOH浸渍 | 制备的玉米秸秆炭材料吸附容量可达到30.15mg/g,可作为污水中重金属吸附剂 | [ |
热解活化 | 热解+KOH浸渍 | 低温水热条件下即可得到完整的微球状水热炭,其粒径分布在3~6μm | [ | |
蒸汽活化 | 蒸汽活化 磷酸浸渍 | 水热炭微孔结构、比表面积、吸附能力显著提升,可明显观察到微球状水热炭生成 | [ |
1 | 鲍磊, 白永辉, 李凡. 生物质炭材料的制备及应用研究进展[J]. 化工新型材料, 2019, 47(7): 54-59. |
BAO Lei, BAI Yonghui, LI Fan. Research progress on preparation and application of biomass carbon material[J]. New Chemical Materials, 2019, 47(7): 54-59. | |
2 | WANG Yi, HU Yajie, HAO Xiang, et al. Hydrothermal synthesis and applications of advanced carbonaceous materials from biomass: A review[J]. Advanced Composites and Hybrid Materials, 2020, 3(3): 267-284. |
3 | 臧良震, 张彩虹. 中国林木生物质能源潜力测算及变化趋势[J]. 世界林业研究, 2019, 32(1): 75-79. |
ZANG Liangzhen, ZHANG Caihong. A study of the potential estimation and changing trends of woody biomass energy resources in China[J]. World Forestry Research, 2019, 32(1): 75-79. | |
4 | 董升飞, 黄星华, 杨晓奕. 纤维素类生物质水热法制备航油前驱物能耗分析[J]. 北京航空航天大学学报, 2022, 48:620-631. |
DONG Shengfei, HUANG Xinghua, YANG Xiaoyi. Energy consumption for production of jet fuel precursors from cellulosic biomass by hydrothermal method[J]. Journal of Beijing University of Aeronautics and Astronautics, 2022, 48:620-631. | |
5 | 刑路阳, 白鑫刚, 武大鹏. 林业废弃物衍生炭材料在重金属吸附中的应用进展[J]. 造纸装备及材料, 2020, 49(3): 50. |
XING Luyang, BAI Xingang, WU Dapeng. Application progress of carbon materials derived from forestry waste in heavy metal adsorption [J]. Papermaking Equipment & Materials, 2020, 49(3): 50. | |
6 | 杜锐, 覃爱苗, 韦春, 等. 生物质炭材料的制备及电化学应用研究进展[J]. 材料导报, 2014, 28(5): 93-97. |
DU Rui, QIN Aimiao, WEI Chun, et al. Research progress of preparation of biomass carbon and its electrochemical application[J]. Materials Review, 2014, 28(5): 93-97. | |
7 | 李保强, 刘钧, 李瑞阳, 等. 生物质炭的制备及其在能源与环境领域中的应用[J]. 生物质化学工程, 2012, 46(1): 34-38. |
LI Baoqiang, LIU Jun, LI Ruiyang, et al. Biochars preparation and its applications in energy and environment field[J]. Biomass Chemical Engineering, 2012, 46(1): 34-38. | |
8 | 宋赛鹰. 生物基炭微球的水热法制备及其电化学性能研究[D]. 北京: 北京化工大学, 2019. |
SONG Saiying. Hydrothermal synthesis and electrochemical properties of bio-based carbon microspheres for lithium-ion batteries[D]. Beijing: Beijing University of Chemical Technology, 2019. | |
9 | WANG Yiliang, ZHANG Mingchao, SHEN Xinyi, et al. Biomass-derived carbon materials: Controllable preparation and versatile applications[J]. Small, 2021, 17(40): e2008079. |
10 | BERGIUS F. Formation of anthracite[J]. Zeitschrift Fur Elektrochemie und Angewandte Physikalische Chemie, 1913, 19: 858-860. |
11 | 王超, 肖祥, 钟国彬, 等. 水热-炭化法制备菱角壳基硬炭及其储锂性能[J]. 储能科学与技术, 2020, 9(3): 818-825. |
WANG Chao, XIAO Xiang, ZHONG Guobin, et al. Water chestnut-based hard carbon prepared by hydrothermal-carbonization method as anode for lithium ion battery[J]. Energy Storage Science and Technology, 2020, 9(3): 818-825. | |
12 | WANG Tengfei, ZHAI Yunbo, ZHU Yun, et al. A review of the hydrothermal carbonization of biomass waste for hydrochar formation: Process conditions, fundamentals, and physicochemical properties[J]. Renewable and Sustainable Energy Reviews, 2018, 90: 223-247. |
13 | SEVILLA M, MACIÁ-AGULLÓ J A, FUERTES A B. Hydrothermal carbonization of biomass as a route for the sequestration of CO2: Chemical and structural properties of the carbonized products[J]. Biomass and Bioenergy, 2011, 35(7): 3152-3159. |
14 | TAKAYA C A, FLETCHER L A, SINGH S, et al. Phosphate and ammonium sorption capacity of biochar and hydrochar from different wastes[J]. Chemosphere, 2016, 145: 518-527. |
15 | WILK Małgorzata, MAGDZIARZ Aneta, JAYARAMAN Kandasamy, et al. Hydrothermal carbonization characteristics of sewage sludge and lignocellulosic biomass. A comparative study[J]. Biomass and Bioenergy, 2019, 120: 166-175. |
16 | GUO Shuqing, DONG Xiangyuan, WU Tingting, et al. Influence of reaction conditions and feedstock on hydrochar properties[J]. Energy Conversion and Management, 2016, 123: 95-103. |
17 | FALCO Camillo, BACCILE N, TITIRICI M M. Morphological and structural differences between glucose, cellulose and lignocellulosic biomass derived hydrothermal carbons[J]. Green Chemistry, 2011, 13(11): 3273. |
18 | LIU Yuxue, YAO Shuai, WANG Yuying, et al. Bio- and hydrochars from rice straw and pig manure: Inter-comparison[J]. Bioresource Technology, 2017, 235: 332-337. |
19 | KALDERIS D, KOTTI M S, MÉNDEZ A, et al. Characterization of hydrochars produced by hydrothermal carbonization of rice husk[J]. Solid Earth, 2014, 5(1): 477-483. |
20 | AGHABABAEI A, AZARGOHAR R, DALAI A K, et al. Effective adsorption of carbamazepine from water by adsorbents developed from flax shives and oat hulls: Key factors and characterization[J]. Industrial Crops and Products, 2021, 170: 113721. |
21 | JIANG Huier, DENG Fang, LUO Yiping, et al. Hydrothermal carbonization of corn straw in biogas slurry[J]. Journal of Cleaner Production, 2022, 353: 131682. |
22 | FANG Tao, YU Xiaofei, ZHANG Xia, et al. A comparative investigation on lithium storage performance of carbon microsphere originated from agriculture bio-waste materials: Sunflower stalk and walnut shell[J]. Waste and Biomass Valorization, 2020, 11(12): 6981-6992. |
23 | 严伟. 毛竹水热功能炭材料的制备、 表征与性能研究[D]. 杭州: 浙江大学, 2018. |
YAN Wei. Preparation, characterization and properties of functional hydrochar materials derived from moso bamboo[D]. Hangzhou: Zhejiang University, 2018. | |
24 | KUMAR Sandeep, KOTHARI Urvi, KONG Lingzhao, et al. Hydrothermal pretreatment of switchgrass and corn stover for production of ethanol and carbon microspheres[J]. Biomass and Bioenergy, 2011, 35(2): 956-968. |
25 | WANG Jianlong, WANG Shizong. Preparation, modification and environmental application of biochar: A review[J]. Journal of Cleaner Production, 2019, 227: 1002-1022. |
26 | ZHOU Nan, CHEN Honggang, XI Junting, et al. Biochars with excellent Pb(II) adsorption property produced from fresh and dehydrated banana peels via hydrothermal carbonization[J]. Bioresource Technology, 2017, 232: 204-210. |
27 | YANG Dapeng, LI Zibiao, LIU Minghuan, et al. Biomass-derived carbonaceous materials: Recent progress in synthetic approaches, advantages, and applications[J]. ACS Sustainable Chemistry & Engineering, 2019, 7(5): 4564-4585. |
28 | 韦思业. 不同生物质原料和制备温度对生物炭物理化学特征的影响[D]. 广州: 中国科学院广州地球化学研究所,中国科学院大学, 2017. |
WEI Siye. Influence of biomass feedstocks and pyrolysis temperatures on physical and chemical properties of biochar[D]. Guangzhou: Guanzhou Institute of Geochemistry, Chinese Academy of Sciences, 2017. | |
29 | LIU Fangyan, GUO Minghui. Comparison of the characteristics of hydrothermal carbons derived from holocellulose and crude biomass[J]. Journal of Materials Science, 2015, 50(4): 1624-1631. |
30 | KANG Shimin, LI Xianglan, FAN Juan, et al. Characterization of hydrochars produced by hydrothermal carbonization of lignin, cellulose, D-xylose, and wood meal[J]. Industrial & Engineering Chemistry Research, 2012, 51(26): 9023-9031. |
31 | LI Hui, WANG Siyuan, YUAN Xingzhong, et al. The effects of temperature and color value on hydrochars’ properties in hydrothermal carbonization[J]. Bioresource Technology, 2018, 249: 574-581. |
32 | 叶聪. 玉米秸秆水热炭制备及其与城市污泥混合燃烧特性研究[D]. 合肥: 合肥工业大学, 2020. |
YE Cong. Study on preparation of corn stalk hydrochar and its co-combustion characteristics with municipal sludge[D]. Hefei: Hefei University of Technology, 2020.. | |
33 | SIMSIR Hamza, ELTUGRAL Nurettin, KARAGOZ Selhan. Hydrothermal carbonization for the preparation of hydrochars from glucose, cellulose, chitin, chitosan and wood chips via low-temperature and their characterization[J]. Bioresource Technology, 2017, 246: 82-87. |
34 | GAO Ying, WANG Xianhua, WANG Jun, et al. Effect of residence time on chemical and structural properties of hydrochar obtained by hydrothermal carbonization of water hyacinth[J]. Energy, 2013, 58: 376-383. |
35 | 昝逸凡, 张彦飞, 赵新鹏, 等. 原生生物质水热炭化制备碳材料及其应用[J]. 辽宁石油化工大学学报, 2020, 40(4): 70-79. |
ZAN Yifan, ZHANG Yanfei, ZHAO Xinpeng, et al. Preparation and application of carbon materials from primary biomass by hydrothermal carbonization[J]. Journal of Liaoning Shihua University, 2020, 40(4): 70-79. | |
36 | BAG O, TEKIN K. Production and characterization of hydrothermal carbon from waste lignocellulosic biomass[J]. Journal of the Faculty of Engineering and Architecture of Gazi University, 2020, 35(2): 1063-1076. |
37 | SONG Mingxin, XIE Lijing, CHENG Jiayao, et al. Insights into the thermochemical evolution of maleic anhydride-initiated esterified starch to construct hard carbon microspheres for lithium-ion batteries[J]. Journal of Energy Chemistry, 2022, 66: 448-458. |
38 | WANG Tao, LIU Xiqing, MA Changchang, et al. A two step hydrothermal process to prepare carbon spheres from bamboo for construction of core-shell non-metallic photocatalysts[J]. New Journal of Chemistry, 2018, 42(8): 6515-6524. |
39 | PECCHI M, BARATIERI M, GOLDFARB J L, et al. Effect of solvent and feedstock selection on primary and secondary chars produced via hydrothermal carbonization of food wastes[J]. Bioresource Technology, 2022, 348: 126799. |
40 | NAKASON Kamonwat, PANYAPINYOPOL Bunyarit, KANOKKANTAPONG Vorapot, et al. Hydrothermal carbonization of unwanted biomass materials: Effect of process temperature and retention time on hydrochar and liquid fraction[J]. Journal of the Energy Institute, 2018, 91(5): 786-796. |
41 | 徐智, 郭朝晖, 韩自玉, 等. 芦竹水热炭的制备及重金属分离机制研究[J]. 环境工程, 2018, 36(8): 118-123. |
XU Zhi, GUO Zhaohui, HAN Ziyu, et al. Preparation of hydrothermal carbon and separation mechanism of heavy metals from giant reed[J]. Environmental Engineering, 2018, 36(8): 118-123. | |
42 | OVEREND R P, CHORNET E. Fractionation of lignocellulosics by steam-aqueous pretreatments[J]. Philosophical Transactions of the Royal Society of London. Series A, Mathematical and Physical Sciences, 1987, 321(1561): 523-536. |
43 | DÍAZ M J, CARA C, RUIZ E, et al. Hydrothermal pre-treatment of rapeseed straw[J]. Bioresource Technology, 2010, 101(7): 2428-2435. |
44 | CORREA C R, KRUSE A. Biobased functional carbon materials: Production, characterization, and applications—A review[J]. Materials, 2018, 11(9): E1568. |
45 | KAMBO H S, DUTTA A. Strength, storage, and combustion characteristics of densified lignocellulosic biomass produced via torrefaction and hydrothermal carbonization[J]. Applied Energy, 2014, 135: 182-191. |
46 | SEVILLA M, FUERTES A B. The production of carbon materials by hydrothermal carbonization of cellulose[J]. Carbon, 2009, 47(9): 2281-2289. |
47 | SEEHRA M S, AKKINENI L P, YALAMANCHI M, et al. Structural characteristics of nanoparticles produced by hydrothermal pretreatment of cellulose and their applications for electrochemical hydrogen generation[J]. International Journal of Hydrogen Energy, 2012, 37(12): 9514-9523. |
48 | TOOR S S, ROSENDAHL L, RUDOLF A. Hydrothermal liquefaction of biomass: A review of subcritical water technologies[J]. Energy, 2011, 36(5): 2328-2342. |
49 | SASAKI Mitsuru, FANG Zhen, FUKUSHIMA Yoshiko, et al. Dissolution and hydrolysis of cellulose in subcritical and supercritical water[J]. Industrial & Engineering Chemistry Research, 2000, 39(8): 2883-2890. |
50 | JIA Jiandong, WANG Ruikun, CHEN Hongwei, et al. Interaction mechanism between cellulose and hemicellulose during the hydrothermal carbonization of lignocellulosic biomass[J]. Energy Science & Engineering, 2022, 10(7): 2076-2087. |
51 | RYU J, SUH Y W, SUH D J, et al. Hydrothermal preparation of carbon microspheres from mono-saccharides and phenolic compounds[J]. Carbon, 2010, 48(7): 1990-1998. |
52 | ABDULLAH Rosnah, UEDA Kazuyoshi, SAKA Shiro. Hydrothermal decomposition of various crystalline celluloses as treated by semi-flow hot-compressed water[J]. Journal of Wood Science, 2014, 60(4): 278-286. |
53 | 李因亮. 改性木质素空心微球制备及成型机理初探[D]. 北京: 北京林业大学, 2017. |
LI Yinliang. Synthesis of modified lignin-based hollow microspheres and exploration of the forming mechanism[D]. Beijing: Beijing Forestry University, 2017. | |
54 | LIU Wujun, JIANG Hong, YU Hanqing. Thermochemical conversion of lignin to functional materials: A review and future directions[J]. Green Chemistry, 2015, 17(11): 4888-4907. |
55 | KRUSE Andrea, ZEVACO Thomas. Properties of hydrochar as function of feedstock, reaction conditions and post-treatment[J]. Energies, 2018, 11(3): 674. |
56 | MAO Haiyan, CHEN Xianwen, HUANG Runzhou, et al. Fast preparation of carbon spheres from enzymatic hydrolysis lignin: Effects of hydrothermal carbonization conditions[J]. Scientific Reports, 2018, 8: 9501. |
57 | DINJUS E, KRUSE A, TRÖGER N. Hydrothermal carbonization—1. Influence of lignin in lignocelluloses[J]. Chemical Engineering & Technology, 2011, 34(12): 2037-2043. |
58 | OUYANG Yi, SHI Huimin, FU Ruowen, et al. Highly monodisperse microporous polymeric and carbonaceous nanospheres with multifunctional properties[J]. Scientific Reports, 2013, 3: 1430. |
59 | SHAO Yi, XIA Qineng, DONG Lin, et al. Selective production of arenes via direct lignin upgrading over a niobium-based catalyst [J]. Nature Communications, 2017, 8: 16104. |
60 | 徐远俊. 矿物对生物质炭化过程的影响研究[D]. 长春: 吉林大学, 2018. |
XU Yuanjun. Study on the influence of mineral on biomass in carbonization process[D]. Changchun: Jilin University, 2018. | |
61 | YU Junqin, XIA Weidong, AREEPRASERT Chinnathan, et al. Catalytic effects of inherent AAEM on char gasification: A mechanism study using in situ Raman[J]. Energy, 2022, 238: 122074. |
62 | 刘慧文. 水热炭化法制备生物质基活性炭及其CH4/N2吸附分离性能研究[D]. 太原: 太原理工大学, 2021. |
LIU Huiwen. Preparation of biomass based activated carbons by hydrothermal carbonization and its adsorption and separation performance of CH4/N2 [D]. Taiyuan: Taiyuan University of Technology, 2021. | |
63 | WANG Cunjing, WU Dapeng, WANG Hongju, et al. Biomass derived nitrogen-doped hierarchical porous carbon sheets for supercapacitors with high performance[J]. Journal of Colloid and Interface Science, 2018, 523: 133-143. |
64 | LI Min, ZHANG Zhongsheng, LI Zhe, et al. Removal of nitrogen and phosphorus pollutants from water by FeCl3-impregnated biochar[J]. Ecological Engineering, 2020, 149: 105792. |
65 | 巩玉同. 生物质水热炭微球的可控合成表征及应用研究[D]. 杭州: 浙江大学, 2015. |
GONG Yutong. Synthsis, characterization and applications of carbon spheres based on hydrothermal carbonization process[D]. Hangzhou: Zhejiang University, 2015. | |
66 | KHUSHK S, ZHANG L, PIRZADA A M, et al. Cr( Ⅵ ) heavy metal adsorption from aqueous solution by KOH treated hydrochar derived from agricultural wastes[C]//5th International Conference on Energy, Environment and Sustainable Development (EESD-2018), AIP Conference Proceedings. Jamshoro, Pakistan. AIP Publishing, 2019: 02003. |
67 | WANG Yong, YANG Ru, LI Min, et al. Hydrothermal preparation of highly porous carbon spheres from hemp (Cannabis sativa L.) stem hemicellulose for use in energy-related applications[J]. Industrial Crops and Products, 2015, 65: 216-226. |
68 | SONG Mingyuan, ZHOU Yuhao, REN Xue, et al. Biowaste-based porous carbon for supercapacitor: The influence of preparation processes on structure and performance[J]. Journal of Colloid and Interface Science, 2019, 535: 276-286. |
69 | 徐增华. 生物质水热炭基多孔炭的制备及其电化学性能研究[D]. 杭州: 浙江大学, 2021. |
XU Zenghua. Preparation and electrochemical performances of hydrochar-based porous carbons derived from biomass[D]. Hangzhou: Zhejiang University, 2021. | |
70 | 付依迪, 曾丹林, 王荣, 等. 氮掺杂碳微球的制备及应用研究进展[J]. 化工新型材料, 2022, 50(6): 1-6. |
FU Yidi, ZENG Danlin, WANG Rong, et al. Progress on preparation and application of N-doped carbon microsphere[J]. New Chemical Materials, 2022, 50(6): 1-6. | |
71 | KıZıLDUMAN B K, TURHAN Y, DOĞAN M. Mesoporous carbon spheres produced by hydrothermal carbonization from rice husk: Optimization, characterization and hydrogen storage[J]. Advanced Powder Technology, 2021, 32(11): 4222-4234. |
72 | TITIRICI M M, ANTONIETTI M, BACCILE N. Hydrothermal carbon from biomass: A comparison of the local structure from poly- to monosaccharides and pentoses/hexoses[J]. Green Chemistry, 2008, 10(11): 1204. |
73 | WANG Jingyu, CHEN Wenhao, YANG Dongjie, et al. Monodispersed lignin colloidal spheres with tailorable sizes for bio-photonic materials[J]. Small, 2022, 18(30): e2203561. |
[1] | WANG Jingang, ZHANG Jianbo, TANG Xuejiao, LIU Jinpeng, JU Meiting. Research progress on modification of Cu-SSZ-13 catalyst for denitration of automobile exhaust gas [J]. Chemical Industry and Engineering Progress, 2023, 42(9): 4636-4648. |
[2] | WANG Xueting, GU Xia, XU Xianbao, ZHAO Lei, XUE Gang, LI Xiang. Effectiveness of hydrothermal pretreatment on valeric acid production during food waste fermentation [J]. Chemical Industry and Engineering Progress, 2023, 42(9): 4994-5002. |
[3] | WANG Shuaiqing, YANG Siwen, LI Na, SUN Zhanying, AN Haoran. Research progress on element doped biomass carbon materials for electrochemical energy storage [J]. Chemical Industry and Engineering Progress, 2023, 42(8): 4296-4306. |
[4] | WU Ya, ZHAO Dan, FANG Rongmiao, LI Jingyao, CHANG Nana, DU Chunbao, WANG Wenzhen, SHI Jun. Research progress on highly efficient demulsifiers for complex crude oil emulsions and their applications [J]. Chemical Industry and Engineering Progress, 2023, 42(8): 4398-4413. |
[5] | ZHENG Mengqi, WANG Chengye, WANG Yan, WANG Wei, YUAN Shoujun, HU Zhenhu, HE Chunhua, WANG Jie, MEI Hong. Application and prospect of algal-bacterial symbiosis technology in zero liquid discharge of industrial wastewater [J]. Chemical Industry and Engineering Progress, 2023, 42(8): 4424-4431. |
[6] | GUAN Hongling, YANG Hui, JING Hongquan, LIU Yuqiong, GU Shouyu, WANG Haobin, HOU Cuihong. Lignin-based controlled release materials and application in drug delivery and fertilizer controlled-release [J]. Chemical Industry and Engineering Progress, 2023, 42(7): 3695-3707. |
[7] | YU Dingyi, LI Yuanyuan, WANG Chenyu, JI Yongsheng. Preparation of lignin-based pH responsive hydrogel and its application in controlled drug release [J]. Chemical Industry and Engineering Progress, 2023, 42(6): 3138-3146. |
[8] | WU Fengzhen, LIU Zhiwei, XIE Wenjie, YOU Yating, LAI Rouqiong, CHEN Yandan, LIN Guanfeng, LU Beili. Preparation of biomass derived Fe/N co-doped porous carbon and its application for catalytic degradation of Rhodamine B via peroxymonosulfate activation [J]. Chemical Industry and Engineering Progress, 2023, 42(6): 3292-3301. |
[9] | WANG Zhiwei, GUO Shuaihua, WU Mengge, CHEN Yan, ZHAO Junting, LI Hui, LEI Tingzhou. Recent advances on catalytic co-pyrolysis of biomass and plastic [J]. Chemical Industry and Engineering Progress, 2023, 42(5): 2655-2665. |
[10] | LI Yunchuang, XIE Fangming, XI Yanan, WAN Xinyue, SUN Yuhu, ZHAO Yongfeng, LI Gen, LIU Honghai, GAO Xionghou, LIU Hongtao. Low-cost synthesis of hydrothermally stable mesoporous aluminosilicates [J]. Chemical Industry and Engineering Progress, 2023, 42(4): 1877-1884. |
[11] | LIU Jing, LIN Lin, ZHANG Jian, ZHAO Feng. Research progress in pore size regulation and electrochemical performance of biomass-based carbon materials [J]. Chemical Industry and Engineering Progress, 2023, 42(4): 1907-1916. |
[12] | WAN Maohua, ZHANG Xiaohong, AN Xingye, LONG Yinying, LIU Liqin, GUAN Min, CHENG Zhengbai, CAO Haibing, LIU Hongbin. Research progress on the applications of MXene in the fields of biomass based energy storage nanomaterials [J]. Chemical Industry and Engineering Progress, 2023, 42(4): 1944-1960. |
[13] | YANG Ziqiang, LI Fenghai, GUO Weijie, MA Mingjie, ZHAO Wei. Review on phosphorus migration and transformation during municipal sewage sludge heat treatment [J]. Chemical Industry and Engineering Progress, 2023, 42(4): 2081-2090. |
[14] | XING Xianjun, LUO Tian, BU Yuzheng, MA Peiyong. Preparation of biochar from walnut shells activated by H3PO4 and its application in Cr(Ⅵ) adsorption [J]. Chemical Industry and Engineering Progress, 2023, 42(3): 1527-1539. |
[15] | CHEN Chongming, ZENG Siming, LUO Xiaona, SONG Guosheng, HAN Zhongge, YU Jinxing, SUN Nannan. Preparation and performance of carbon supported potassium-based CO2 adsorbent derived from hyper-cross linked polymers [J]. Chemical Industry and Engineering Progress, 2023, 42(3): 1540-1550. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||
京ICP备12046843号-2;京公网安备 11010102001994号 Copyright © Chemical Industry and Engineering Progress, All Rights Reserved. E-mail: hgjz@cip.com.cn Powered by Beijing Magtech Co. Ltd |