Chemical Industry and Engineering Progress ›› 2023, Vol. 42 ›› Issue (5): 2516-2535.DOI: 10.16085/j.issn.1000-6613.2022-1299
• Materials science and technology • Previous Articles Next Articles
MAO Menglei(), MENG Lingding, GAO Rui, MENG Zihui, LIU Wenfang()
Received:
2022-07-11
Revised:
2022-08-31
Online:
2023-06-02
Published:
2023-05-10
Contact:
LIU Wenfang
通讯作者:
刘文芳
作者简介:
毛梦雷(1997—),女,硕士研究生,研究方向为功能材料与催化。E-mail:3464744667@qq.com。
CLC Number:
MAO Menglei, MENG Lingding, GAO Rui, MENG Zihui, LIU Wenfang. Research progress on enzyme immobilization on porous framework materials[J]. Chemical Industry and Engineering Progress, 2023, 42(5): 2516-2535.
毛梦雷, 孟令玎, 高蕊, 孟子晖, 刘文芳. 多孔框架材料固定化酶研究进展[J]. 化工进展, 2023, 42(5): 2516-2535.
Add to citation manager EndNote|Ris|BibTeX
URL: https://hgjz.cip.com.cn/EN/10.16085/j.issn.1000-6613.2022-1299
方法 | 酶 | 载体 | 应用 | 固定化效率或 负载量 | 重复利用性 | 稳定性 | 文献 |
---|---|---|---|---|---|---|---|
共沉积法 | 水解酶 | ||||||
脂肪酶 | Fe-BTC | 水解p-NPA | 87% | — | — | [ | |
NH2-MIL-53(Al) | 水解p-NPA | 99%(NaOH),86%(TEA), 95%(NH4OH) | — | — | [ | ||
ZIF-8 | 水解外消旋萘 普生甲酯 | 240mg/g | 重复利用6次后,固定化酶可保持初始活性的83% | 在4℃下储存5周后,固定化酶可保留初始活性的73%。在60℃时,固定化酶为35℃时活性的84%,而游离酶几乎完全失活 | [ | ||
AmpC | 降解头孢菌素 | 97% | 重复利用6次后,固定化酶可保持初始活性的约90% | 在80℃时,固定化酶为25℃时活性的87%,而游离酶仅保留16.9%的活性。在二甲基甲酰胺、甲醇、乙腈溶剂中处理1h后,固定化酶的活性均约为初始活性的90%,而游离酶仅为初始活性的50%。在pH为5和10的体系中,固定化酶的活性均可保留在水溶液中活性的94%以上,而游离酶分别降至49.15%和66.2% | [ | ||
胰蛋白酶 | 分解蛋白质 | 176mg/g | 重复利用5次后,固定化酶可以保持初始活性的80%以上 | — | [ | ||
GOx/HRP | 氧化荧光红 染料 | 40/25.8mg/g | — | 在室温下储存3周后,固定化酶的催化活性基本不变 | [ | ||
GOx/HRP/GLB1 | 氧化荧光红 染料 | 25.6/30.5/18.8mg/g | — | 在室温下储存3周后,固定化酶的催化活性基本不变 | [ | ||
ADH/LDH | 还原丙酮酸 | 23.8/17.9mg/g | — | 在室温下储存3周后,固定化酶体系的催化活性仅保留初始活性的30%~40% | [ | ||
细胞色素c | 检测H2O2、 过氧化丁酮、 叔丁基过氧化氢 | 82.3% | — | — | [ | ||
漆酶 | Fe-BTC | 氧化ABTS | 99% | — | — | [ | |
裂合酶 | |||||||
PAL | ZIF-8 | 苯丙氨酸脱氨 | 94.07% | 重复使用10次后,固定化酶能保持初始酶活的20%左右 | 在室温下储存19天后,固定化酶可保持70%的初始活性;pH=5条件下,固定化酶能保持50%~60%的酶活,游离酶基本丧失活性;pH=11条件下,固定化酶的保留活性为83.96%,游离酶62.47% | [ | |
仿生矿化法 | 水解酶 | ||||||
CRL | Fe@ZIF-8 | 水解对硝基苯基棕榈酸酯 | 7.2mg/g | 重复使用5次后,固定化酶保留了初始活性的80% | 在4℃下储存5周后,固定化酶的保留活性为68%。在酸性(pH=4)条件下,固定化酶仍能保持pH=8时活性的40%以上 | [ | |
QLM | Bio@MOF | 葵花籽油与甲醇合成生物柴油 | 15.9% | — | 在室温下储存4周后,固定化酶保留了初始活性的32%;90℃时,固定化酶的活性为65℃时酶活性的66.3%,而游离酶的活性仅为60℃时酶活性的11.7% | [ | |
Ur | ZIF-90 | 尿素水解 | — | 重复利用5次后,固定化酶的催化活性为初始值的97.7% | 在35℃、pH=7.4条件下,储存35天后其催化活性为初始值的96.1% | [ | |
仿生矿化法 | 合成酶 | ||||||
NHase1229 | ZIF-67 | 3-氰吡啶水合 | — | 重复利用6次后,固定化酶活性无明显 下降 | 在70℃时,固定化酶的活性为50℃时酶活性的40%,而游离酶已完全失活 | [ | |
孔道扩散法 | 氧化还原酶 | ||||||
HRP/GOx | ZIF-8 | 氧化葡萄糖 | 122/141mg/g | — | 在95℃时,固定化双酶活性可保持初始值的27.5%,而游离酶基本无活性。在pH=2和pH=9的条件下孵育1h后,固定化双酶体系分别保持了初始活性的50%和65.6%,游离酶活性低于20% | [ | |
HRPCPO | Fe-MOF | 降解废水中的有机毒素、异丙脲或2,4-二氯苯酚 | — | 重复利用10次后,固定化酶可保留初始活性的94.1% | 在70℃下,固定化CPO和HRP的保留活性分别为84.6%和94% | [ | |
细胞色素c | NU-1000 | 氧化邻苯三酚 | 13% | 重复利用3次后,固定化酶活性基本保持不变 | 在丙酮中,固定化酶活性基本不变;在己烷、四氢呋喃和甲醇中,活性略微降低;在二氧六烷中,保留活性为79% | [ | |
MP8 | MIL-101(Cr) | 氧化ABTS | — | 在5次催化循环后,固定化酶可保持初始活性的66%。 | 在4℃下储存4周后,固定化酶和游离酶的保留活性分别为87%和85% | [ | |
水解酶 | |||||||
CalA | ZIF-67 | 硝基醛醇反应 | 26.5% | 重复使用5次后,催化产率仍高于80% | — | [ | |
转移酶 | |||||||
ANL | ZIF-8 | 大豆油制备生物柴油 | — | 重复利用5次后,固定化酶保持了初始活性的68% | 在100℃下,固定化酶保持了40℃时活性的67%,而游离酶的残余活性仅为20% | [ | |
表面吸附法 | 氧化还原酶 | ||||||
GOx | MOF-545(Fe) | 检测葡萄糖 | 296mg/g | 在5次循环后,固定化酶仍保持初始活性的71% | 在室温下保存7天后,固定化酶的保留活性为92%,而游离酶的保留活性为40%。在65℃时,固定化酶活性为初始值的62.3%,而游离酶仅保持了11.9%。在四氢呋喃、乙腈和二甲基亚砜中处理1h后,固定化酶的保留活性分布为87.5%、75.6%和70%,而游离酶为43.8%、54.3%和38.3% | [ | |
PCN-222(Fe) | 氧化葡萄糖和ABTS | 10.45%,0.1mg/g | 在6次循环后,固定化酶体系的催化效率为初始值的95.5% | 在65℃时,固定化酶体系催化ABTS的转化率约为初始值的80%;pH<2条件下,固定化酶体系仍保持初始催化转化率的40% | [ | ||
CA | ZIF-8 | CO2水合 | >95% | 9次循环利用后,固定化酶活性约为初始值的85%。 | 在60℃时,固定化酶保留活性为40%,而游离酶几乎无活性。浸入2%的SDS溶液30min后,固定化酶的保留活性约为93%,而游离酶仅为2% | [ | |
共价连接法 | 氧化还原酶 | ||||||
GOx | MIL-88B-(Fe) | 葡萄糖传感器 | — | 循环利用5次后,固定化酶活性基本不变 | 60天后,生物传感器性能约为初始性能的90% | [ | |
MIL-101 | 葡萄糖传感器 | — | 循环利用5次后,固定化酶活性可保留初始活性的85% | 30天后,固定化酶的保留活性为90% | [ | ||
HRP | MIL-88B(Fe) | 降解BPA | — | 循环利用4次后,固定化酶的残余活性仍高于80% | 在4℃下储存30天后,固定化酶的保留活性为70%以上,而游离酶只有26.2%;经过60℃热处理后,固定化酶仍能保持70.2%的活性,而游离酶只有55.9% | [ | |
水解酶 | |||||||
Rha | Fe3O4@PDA@MOF | 水解芦丁 | — | 循环利用30次后,固定化酶体系的转化率仍为最初的55%。 | — | [ | |
脂肪酶 | MPAME对映体水解 | — | 循环利用4 次后,固定化酶的催化活性基本不变 | 在60℃时,固定化酶体系的产率仍高于70%,而游离酶体系由59.04%降至46.99% | [ | ||
转移酶 | |||||||
DAT | 合成D-氨基酸 | 95% | — | 在80℃时,固定化酶可保持40℃时活性的65%,而游离酶仅保持了10%的活性 | [ |
方法 | 酶 | 载体 | 应用 | 固定化效率或 负载量 | 重复利用性 | 稳定性 | 文献 |
---|---|---|---|---|---|---|---|
共沉积法 | 水解酶 | ||||||
脂肪酶 | Fe-BTC | 水解p-NPA | 87% | — | — | [ | |
NH2-MIL-53(Al) | 水解p-NPA | 99%(NaOH),86%(TEA), 95%(NH4OH) | — | — | [ | ||
ZIF-8 | 水解外消旋萘 普生甲酯 | 240mg/g | 重复利用6次后,固定化酶可保持初始活性的83% | 在4℃下储存5周后,固定化酶可保留初始活性的73%。在60℃时,固定化酶为35℃时活性的84%,而游离酶几乎完全失活 | [ | ||
AmpC | 降解头孢菌素 | 97% | 重复利用6次后,固定化酶可保持初始活性的约90% | 在80℃时,固定化酶为25℃时活性的87%,而游离酶仅保留16.9%的活性。在二甲基甲酰胺、甲醇、乙腈溶剂中处理1h后,固定化酶的活性均约为初始活性的90%,而游离酶仅为初始活性的50%。在pH为5和10的体系中,固定化酶的活性均可保留在水溶液中活性的94%以上,而游离酶分别降至49.15%和66.2% | [ | ||
胰蛋白酶 | 分解蛋白质 | 176mg/g | 重复利用5次后,固定化酶可以保持初始活性的80%以上 | — | [ | ||
GOx/HRP | 氧化荧光红 染料 | 40/25.8mg/g | — | 在室温下储存3周后,固定化酶的催化活性基本不变 | [ | ||
GOx/HRP/GLB1 | 氧化荧光红 染料 | 25.6/30.5/18.8mg/g | — | 在室温下储存3周后,固定化酶的催化活性基本不变 | [ | ||
ADH/LDH | 还原丙酮酸 | 23.8/17.9mg/g | — | 在室温下储存3周后,固定化酶体系的催化活性仅保留初始活性的30%~40% | [ | ||
细胞色素c | 检测H2O2、 过氧化丁酮、 叔丁基过氧化氢 | 82.3% | — | — | [ | ||
漆酶 | Fe-BTC | 氧化ABTS | 99% | — | — | [ | |
裂合酶 | |||||||
PAL | ZIF-8 | 苯丙氨酸脱氨 | 94.07% | 重复使用10次后,固定化酶能保持初始酶活的20%左右 | 在室温下储存19天后,固定化酶可保持70%的初始活性;pH=5条件下,固定化酶能保持50%~60%的酶活,游离酶基本丧失活性;pH=11条件下,固定化酶的保留活性为83.96%,游离酶62.47% | [ | |
仿生矿化法 | 水解酶 | ||||||
CRL | Fe@ZIF-8 | 水解对硝基苯基棕榈酸酯 | 7.2mg/g | 重复使用5次后,固定化酶保留了初始活性的80% | 在4℃下储存5周后,固定化酶的保留活性为68%。在酸性(pH=4)条件下,固定化酶仍能保持pH=8时活性的40%以上 | [ | |
QLM | Bio@MOF | 葵花籽油与甲醇合成生物柴油 | 15.9% | — | 在室温下储存4周后,固定化酶保留了初始活性的32%;90℃时,固定化酶的活性为65℃时酶活性的66.3%,而游离酶的活性仅为60℃时酶活性的11.7% | [ | |
Ur | ZIF-90 | 尿素水解 | — | 重复利用5次后,固定化酶的催化活性为初始值的97.7% | 在35℃、pH=7.4条件下,储存35天后其催化活性为初始值的96.1% | [ | |
仿生矿化法 | 合成酶 | ||||||
NHase1229 | ZIF-67 | 3-氰吡啶水合 | — | 重复利用6次后,固定化酶活性无明显 下降 | 在70℃时,固定化酶的活性为50℃时酶活性的40%,而游离酶已完全失活 | [ | |
孔道扩散法 | 氧化还原酶 | ||||||
HRP/GOx | ZIF-8 | 氧化葡萄糖 | 122/141mg/g | — | 在95℃时,固定化双酶活性可保持初始值的27.5%,而游离酶基本无活性。在pH=2和pH=9的条件下孵育1h后,固定化双酶体系分别保持了初始活性的50%和65.6%,游离酶活性低于20% | [ | |
HRPCPO | Fe-MOF | 降解废水中的有机毒素、异丙脲或2,4-二氯苯酚 | — | 重复利用10次后,固定化酶可保留初始活性的94.1% | 在70℃下,固定化CPO和HRP的保留活性分别为84.6%和94% | [ | |
细胞色素c | NU-1000 | 氧化邻苯三酚 | 13% | 重复利用3次后,固定化酶活性基本保持不变 | 在丙酮中,固定化酶活性基本不变;在己烷、四氢呋喃和甲醇中,活性略微降低;在二氧六烷中,保留活性为79% | [ | |
MP8 | MIL-101(Cr) | 氧化ABTS | — | 在5次催化循环后,固定化酶可保持初始活性的66%。 | 在4℃下储存4周后,固定化酶和游离酶的保留活性分别为87%和85% | [ | |
水解酶 | |||||||
CalA | ZIF-67 | 硝基醛醇反应 | 26.5% | 重复使用5次后,催化产率仍高于80% | — | [ | |
转移酶 | |||||||
ANL | ZIF-8 | 大豆油制备生物柴油 | — | 重复利用5次后,固定化酶保持了初始活性的68% | 在100℃下,固定化酶保持了40℃时活性的67%,而游离酶的残余活性仅为20% | [ | |
表面吸附法 | 氧化还原酶 | ||||||
GOx | MOF-545(Fe) | 检测葡萄糖 | 296mg/g | 在5次循环后,固定化酶仍保持初始活性的71% | 在室温下保存7天后,固定化酶的保留活性为92%,而游离酶的保留活性为40%。在65℃时,固定化酶活性为初始值的62.3%,而游离酶仅保持了11.9%。在四氢呋喃、乙腈和二甲基亚砜中处理1h后,固定化酶的保留活性分布为87.5%、75.6%和70%,而游离酶为43.8%、54.3%和38.3% | [ | |
PCN-222(Fe) | 氧化葡萄糖和ABTS | 10.45%,0.1mg/g | 在6次循环后,固定化酶体系的催化效率为初始值的95.5% | 在65℃时,固定化酶体系催化ABTS的转化率约为初始值的80%;pH<2条件下,固定化酶体系仍保持初始催化转化率的40% | [ | ||
CA | ZIF-8 | CO2水合 | >95% | 9次循环利用后,固定化酶活性约为初始值的85%。 | 在60℃时,固定化酶保留活性为40%,而游离酶几乎无活性。浸入2%的SDS溶液30min后,固定化酶的保留活性约为93%,而游离酶仅为2% | [ | |
共价连接法 | 氧化还原酶 | ||||||
GOx | MIL-88B-(Fe) | 葡萄糖传感器 | — | 循环利用5次后,固定化酶活性基本不变 | 60天后,生物传感器性能约为初始性能的90% | [ | |
MIL-101 | 葡萄糖传感器 | — | 循环利用5次后,固定化酶活性可保留初始活性的85% | 30天后,固定化酶的保留活性为90% | [ | ||
HRP | MIL-88B(Fe) | 降解BPA | — | 循环利用4次后,固定化酶的残余活性仍高于80% | 在4℃下储存30天后,固定化酶的保留活性为70%以上,而游离酶只有26.2%;经过60℃热处理后,固定化酶仍能保持70.2%的活性,而游离酶只有55.9% | [ | |
水解酶 | |||||||
Rha | Fe3O4@PDA@MOF | 水解芦丁 | — | 循环利用30次后,固定化酶体系的转化率仍为最初的55%。 | — | [ | |
脂肪酶 | MPAME对映体水解 | — | 循环利用4 次后,固定化酶的催化活性基本不变 | 在60℃时,固定化酶体系的产率仍高于70%,而游离酶体系由59.04%降至46.99% | [ | ||
转移酶 | |||||||
DAT | 合成D-氨基酸 | 95% | — | 在80℃时,固定化酶可保持40℃时活性的65%,而游离酶仅保持了10%的活性 | [ |
方法 | 酶 | 载体 | 应用 | 负载量 | 重复利用性 | 稳定性 | 文献 |
---|---|---|---|---|---|---|---|
孔道扩散法 | 水解酶 | ||||||
脂肪酶 | COF-ETTA-EDDA | 酯交换反应,制备外消旋1-苯乙醇 | 780mg/g | 循环利用5次后,固定化酶的催化活性略微下降 | — | [ | |
COF-OMe | 制备外消旋1-苯乙醇 | 890mg/g | — | 在120℃下暴露24h后,固定化酶和游离酶的保留活性分别约为75%和2%;在苯甲腈中处理1h后,固定化酶的保留活性约为37%,游离酶几乎完全失活 | [ | ||
COF-V,COF-OH,COF-ONa,POP-OMe,POP-V | 780mg/g,750mg/g,590mg/g,580mg/g,500mg/g | ||||||
溶菌酶 | TPB-DMTP-COF | 溶菌病微球菌细胞 分解 | 710mg/g | — | 在80℃和100℃时以及在甲醇中处理3h后,固定化酶活性基本不变,游离酶的保留活性为15%、14%和50% | [ | |
氧化还原酶 | |||||||
MP-11/GOx | COF-ETTA-TPAL | 葡萄糖传感器 | 0.78mg/g | — | 在4℃下储存15天后,传感器性能为初始值的96.2% | [ | |
表面吸附法 | 氧化还原酶 | ||||||
HRP/GOx | TpBD | 检测葡萄糖 | 42mg/g | 循环利用6次后,固定化酶保持了的初始活性的84% | 在4℃下储存8天后,固定化酶活性为初始值的78.4% | [ | |
水解酶 | |||||||
胰蛋白酶 | DhaTab | 水解N-苯甲酰-L-精氨酸4-硝基苯胺 | 0.0155mmol/g | — | — | [ | |
RML | Fe3O4@COF-OMe | 麻风树油制备生物 柴油 | — | 循环利用10次后,固定化酶保持了初始活性的90%以上 | 在60℃时,固定化酶体系的产率约为60%,而游离酶体系约为20% | [ | |
共价连接法 | 水解酶 | ||||||
溶菌酶 | COF1 | 水解壳聚糖 | 22mmol/g | 循环利用5次后,固定化酶保持了初始活性的90%以上 | 经加热、超声和多种溶剂处理后,固定化酶保持了初始活性的85%以上,游离酶几乎全部失活 | [ | |
氧化还原酶 | |||||||
GOx | COFHD | 葡萄糖传感器 | — | — | 在4℃下储存100天后,固定化酶的活性为初始值的85% | [ | |
包埋法 | 氧化还原酶 | ||||||
CAT | COF-42-B | 分解H2O2 | 1660mg/g | 循环利用10次后,固定化酶活性基本不变 | 在pH=4、丙酮、蛋白酶和60℃条件下,固定化酶活性分别为初始值的85%、95%、约100%和88%,而游离酶仅为35%、25%、25%和20% | [ |
方法 | 酶 | 载体 | 应用 | 负载量 | 重复利用性 | 稳定性 | 文献 |
---|---|---|---|---|---|---|---|
孔道扩散法 | 水解酶 | ||||||
脂肪酶 | COF-ETTA-EDDA | 酯交换反应,制备外消旋1-苯乙醇 | 780mg/g | 循环利用5次后,固定化酶的催化活性略微下降 | — | [ | |
COF-OMe | 制备外消旋1-苯乙醇 | 890mg/g | — | 在120℃下暴露24h后,固定化酶和游离酶的保留活性分别约为75%和2%;在苯甲腈中处理1h后,固定化酶的保留活性约为37%,游离酶几乎完全失活 | [ | ||
COF-V,COF-OH,COF-ONa,POP-OMe,POP-V | 780mg/g,750mg/g,590mg/g,580mg/g,500mg/g | ||||||
溶菌酶 | TPB-DMTP-COF | 溶菌病微球菌细胞 分解 | 710mg/g | — | 在80℃和100℃时以及在甲醇中处理3h后,固定化酶活性基本不变,游离酶的保留活性为15%、14%和50% | [ | |
氧化还原酶 | |||||||
MP-11/GOx | COF-ETTA-TPAL | 葡萄糖传感器 | 0.78mg/g | — | 在4℃下储存15天后,传感器性能为初始值的96.2% | [ | |
表面吸附法 | 氧化还原酶 | ||||||
HRP/GOx | TpBD | 检测葡萄糖 | 42mg/g | 循环利用6次后,固定化酶保持了的初始活性的84% | 在4℃下储存8天后,固定化酶活性为初始值的78.4% | [ | |
水解酶 | |||||||
胰蛋白酶 | DhaTab | 水解N-苯甲酰-L-精氨酸4-硝基苯胺 | 0.0155mmol/g | — | — | [ | |
RML | Fe3O4@COF-OMe | 麻风树油制备生物 柴油 | — | 循环利用10次后,固定化酶保持了初始活性的90%以上 | 在60℃时,固定化酶体系的产率约为60%,而游离酶体系约为20% | [ | |
共价连接法 | 水解酶 | ||||||
溶菌酶 | COF1 | 水解壳聚糖 | 22mmol/g | 循环利用5次后,固定化酶保持了初始活性的90%以上 | 经加热、超声和多种溶剂处理后,固定化酶保持了初始活性的85%以上,游离酶几乎全部失活 | [ | |
氧化还原酶 | |||||||
GOx | COFHD | 葡萄糖传感器 | — | — | 在4℃下储存100天后,固定化酶的活性为初始值的85% | [ | |
包埋法 | 氧化还原酶 | ||||||
CAT | COF-42-B | 分解H2O2 | 1660mg/g | 循环利用10次后,固定化酶活性基本不变 | 在pH=4、丙酮、蛋白酶和60℃条件下,固定化酶活性分别为初始值的85%、95%、约100%和88%,而游离酶仅为35%、25%、25%和20% | [ |
61 | ZHONG Xue, XIA Huan, HUANG Wenquan, et al. Biomimetic metal-organic frameworks mediated hybrid multi-enzyme mimic for tandem catalysis[J]. Chemical Engineering Journal, 2020, 381: 122758. |
62 | TAN Wenlong, WEI Ting, HUO Jia, et al. Electrostatic interaction-induced formation of enzyme-on-MOF as chemo-biocatalyst for cascade reaction with unexpectedly acid-stable catalytic performance[J]. ACS Applied Materials & Interfaces, 2019, 11(40): 36782-36788. |
63 | WANG Deqing, ZHENG Pu, CHEN Pengcheng, et al. Immobilization of alpha-L-rhamnosidase on a magnetic metal-organic framework to effectively improve its reusability in the hydrolysis of rutin[J]. Bioresource Technology, 2021, 323: 124611. |
64 | 蔡文婷, 许嘉鑫, 杜克斯, 等. MIL-88B(Fe)固定辣根过氧化物酶去除双酚A[J]. 环境工程学报, 2021, 15(7): 2295-2304. |
CAI Wenting, XU Jiaxin, DU Kesi, et al. Degradation of bisphenol A using horseradish peroxidase immobilized on MIL-88B(Fe)[J]. Chinese Journal of Environmental Engineering, 2021, 15(7): 2295-2304. | |
65 | XU Weiqing, JIAO Lei, YAN Hongye, et al. Glucose oxidase-integrated metal-organic framework hybrids as biomimetic cascade nanozymes for ultrasensitive glucose biosensing[J]. ACS Applied Materials & Interfaces, 2019, 11(25): 22096-22101. |
66 | JING Wenjie, KONG Fanbo, TIAN Sijia, et al. Glucose oxidase decorated fluorescent metal-organic frameworks as biomimetic cascade nanozymes for glucose detection through the inner filter effect[J]. The Analyst, 2021, 146(13): 4188-4194. |
67 | WANG Bin, ZHOU Jin, ZHANG Xiangyang, et al. Covalently immobilize crude d-amino acid transaminase onto UiO-66-NH2 surface for d-Ala biosynthesis[J]. International Journal of Biological Macromolecules, 2021, 175: 451-458. |
68 | CHEN Jing, SUN Bizhu, SUN Chenrui, et al. Immobilization of lipase AYS on UiO-66-NH2 metal-organic framework nanoparticles as a recyclable biocatalyst for ester hydrolysis and kinetic resolution[J]. Separation and Purification Technology, 2020, 251: 117398. |
69 | DÍAZ DE GREÑU Borja, TORRES Juan, Javier GARCÍA-GONZÁLEZ, et al. Microwave-assisted synthesis of covalent organic frameworks: a review[J]. ChemSusChem, 2021, 14(1): 208-233. |
70 | GUAN Xinyu, CHEN Fengqian, FANG Qianrong, et al. Design and applications of three dimensional covalent organic frameworks[J]. Chemical Society Reviews, 2020, 49(5): 1357-1384. |
71 | SONG Yanpei, SUN Qi, AGUILA Briana, et al. Opportunities of covalent organic frameworks for advanced applications[J]. Advanced Science, 2018, 6(2): 1801410. |
72 | SUN Qi, AGUILA Briana, LAN Pui Ching, et al. Tuning pore heterogeneity in covalent organic frameworks for enhanced enzyme accessibility and resistance against denaturants[J]. Advanced Materials, 2019, 31(19): e1900008. |
73 | GAN Jiansong, BAGHERI Ahmad Reza, ARAMESH Nahal, et al. Covalent organic frameworks as emerging host platforms for enzyme immobilization and robust biocatalysis—A review[J]. International Journal of Biological Macromolecules, 2021, 167: 502-515. |
74 | GUAN Qun, WANG Guangbo, ZHOU Lele, et al. Nanoscale covalent organic frameworks as theranostic platforms for oncotherapy: Synthesis, functionalization, and applications[J]. Nanoscale Advances, 2020, 2(9): 3656-3733. |
75 | VVARDHAN Harsh, NAFADY Ayman, AL-ENIZI Abdullah M, et al. Pore surface engineering of covalent organic frameworks: Structural diversity and applications[J]. Nanoscale, 2019, 11(45): 21679-21708. |
76 | WANG Li, LIANG Huihui, XU Mengli, et al. Ratiometric electrochemical biosensing based on double-enzymes loaded on two-dimensional dual-pore COFETTA-TPAL[J]. Sensors and Actuators B: Chemical, 2019, 298: 126859. |
77 | CHEN Haixin, JIN Chaonan, CHEN Xuepeng, et al. Covalent organic frameworks as crystalline sponges for enzyme extraction and production from natural biosystems[J]. Chemical Engineering Journal, 2022, 444: 136624. |
78 | YANG Xiaolian, TAN Zheng, SUN Hanjun, et al. Fabrication of a hierarchical nanoreactor based on COFs for cascade enzyme catalysis[J]. Chemical Communications, 2022, 58(24): 3933-3936. |
79 | KANDAMBETH Sharath, VENKATESH V, SHINDE Digambar B, et al. Self-templated chemically stable hollow spherical covalent organic framework[J]. Nature Communications, 2015, 6(1): 6786. |
80 | WANG Minghui, PAN Yanhong, WU Shuai, et al. Detection of colorectal cancer-derived exosomes based on covalent organic frameworks[J]. Biosensors & Bioelectronics, 2020, 169: 112638. |
81 | ZHOU Ziwen, CAI Chunxian, XING Xiu, et al. Magnetic COFs as satisfied support for lipase immobilization and recovery to effectively achieve the production of biodiesel by maintenance of enzyme activity[J]. Biotechnology for Biofuels, 2021, 14(1): 1-12. |
82 | ZHANG Sainan, ZHENG Yunlong, AN Hongde, et al. Covalent organic frameworks with chirality enriched by biomolecules for efficient chiral separation[J]. Angewandte Chemie International Edition, 2018, 57(51): 16754-16759. |
83 | YUE Jieyu, DING Xiuli, WANG Ling, et al. Correction: Novel enzyme-functionalized covalent organic frameworks for the colorimetric sensing of glucose in body fluids and drinks[J]. Materials Chemistry Frontiers, 2021, 5(24): 8398. |
1 | LIANG Weibin, WIED Peter, CARRARO Francesco, et al. Metal-organic framework-based enzyme biocomposites[J]. Chemical Reviews, 2021, 121(3): 1077-1129. |
2 | DU Yingjie, JIA Xiaotong, ZHONG Le, et al. Metal-organic frameworks with different dimensionalities: An ideal host platform for enzyme@MOF composites[J]. Coordination Chemistry Reviews, 2021, 454: 214327. |
3 | LIANG Shan, WU Xiaoling, XIONG Jun, et al. Metal-organic frameworks as novel matrices for efficient enzyme immobilization: An update review[J]. Coordination Chemistry Reviews, 2020, 406: 213149. |
4 | HAO Yun, DENG Suimin, WANG Ruoxin, et al. Development of dual-enhancer biocatalyst with photothermal property for the degradation of cephalosporin[J]. Journal of Hazardous Materials, 2022, 429: 128294. |
5 | YANG Xiaoyu, CHEN Lihua, LI Yu, et al. Hierarchically porous materials: Synthesis strategies and structure design[J]. Chemical Society Reviews, 2017, 46(2): 481-558. |
6 | WU Liang, LI Yu, FU Zhengyi, et al. Hierarchically structured porous materials: Synthesis strategies and applications in energy storage[J]. National Science Review, 2020, 7(11): 1667-1701. |
7 | SUN Minghui, HUANG Shaozhuan, CHEN Lihua, et al. Applications of hierarchically structured porous materials from energy storage and conversion, catalysis, photocatalysis, adsorption, separation, and sensing to biomedicine[J]. Chemical Society Reviews, 2016, 45(12): 3479-3563. |
8 | 王斓懿, 于学华, 赵震. 无机多孔材料的合成及其在环境催化领域的应用[J]. 物理化学学报, 2017, 33(12): 2359-2376. |
WANG Lanyi, YU Xuehua, ZHAO Zhen. Synthesis of inorganic porous materials and their applications in the field of environmental catalysis[J]. Acta Physico-Chimica Sinica, 2017, 33(12): 2359-2376. | |
9 | 杨文艳. 基于乙烯基POSS的有机-无机杂化多孔聚合物的设计合成及其应用[D]. 济南: 山东大学, 2015. |
YANG Wenyan. Design, synthesis and application of the organic-inorganic hybrid porous polymer based on POSS[D]. Jinan: Shandong University, 2015. | |
10 | 周瑕. 湿化学法制备Sr2TiO4和锰基有机-无机杂化材料及其介电性能研究[D]. 杭州: 浙江大学, 2020. |
ZHOU Xia. Preparation of Sr2TiO4 and Mn-based organic-inorganic hybrid materials by wet chemical method and investigation of the dielectric properties[D]. Hangzhou: Zhejiang University, 2020. | |
11 | 杜昕. 功能化有机微孔聚合物的合成、表征及其催化性能研究[D]. 兰州: 兰州大学, 2010. |
DU Xin. Synthesis, characterization and catalytic performance of functionalized organic microporous polymer[D]. Lanzhou: Lanzhou University, 2010. | |
12 | ZHANG Shuaihua, YANG Qian, WANG Chun, et al. Porous organic frameworks: Advanced materials in analytical chemistry[J]. Advanced Science, 2018, 5(12): 1801116. |
13 | FENG Xiao, DING Xuesong, JIANG Donglin. Covalent organic frameworks[J]. Chemical Society Reviews, 2012, 41(18): 6010-6022. |
14 | 侯晨, 陈文强, 付琳慧,等. 共价有机框架材料在固定化酶及模拟酶领域的应用[J]. 化学进展, 2020, 32(7): 895-905. |
HOU Chen, CHEN Wenqiang, FU Linhui, et al. Covalent organic frameworks(COFs) materials in enzyme immobilization and mimic enzymes[J]. Progress in Chemistry, 2020, 32(7): 895-905. | |
15 | Asunción MOLINA M, Victoria GASCÓN-PÉREZ, Manuel SÁNCHEZ-SÁNCHEZ, et al. Sustainable one-pot immobilization of enzymes in/on metal-organic framework materials[J]. Catalysts, 2021, 11(8): 1002. |
16 | NADAR Shamraja S, VAIDYA Leena, RATHOD Virendra K. Enzyme embedded metal organic framework (enzyme-MOF): De novo approaches for immobilization[J]. International Journal of Biological Macromolecules, 2020, 149: 861-876. |
17 | HUANG Siming, KOU Xiaoxue, SHEN Jun, et al. “Armor-plating” enzymes with metal-organic frameworks (MOFs)[J]. Angewandte Chemie International Edition, 2020, 59(23): 8786-8798. |
18 | SUN Qi, FU Chung-Wei, AGUILA Briana, et al. Pore environment control and enhanced performance of enzymes infiltrated in covalent organic frameworks[J]. Journal of the American Chemical Society, 2018, 140(3): 984-992. |
19 | WANG Cui’e, LIAO Kaiming. Recent advances in emerging metal-and covalent-organic frameworks for enzyme encapsulation[J]. ACS Applied Materials & Interfaces, 2021, 13(48): 56752-56776. |
84 | XU Shujuan, WANG Yuying, LI Wang, et al. Covalent organic framework incorporated chiral polymer monoliths for capillary electrochromatography[J]. Journal of Chromatography A, 2019, 1602: 481-488. |
85 | LI Mingmin, QIAO Shan, ZHENG Yunlong, et al. Fabricating covalent organic framework capsules with commodious microenvironment for enzymes[J]. Journal of the American Chemical Society, 2020, 142(14): 6675-6681. |
20 | HOWARTH Ashlee J, LIU Yangyang, LI Peng, et al. Chemical, thermal and mechanical stabilities of metal-organic frameworks[J]. Nature Reviews Materials, 2016, 1(3): 1-15. |
21 | FURUKAWA Hiroyasu, CORDOVA Kyle E, Michael O'KEEFFE, et al. The chemistry and applications of metal-organic frameworks[J]. Science, 2013, 341(6149): 1230444. |
22 | 陆顺. 金属有机框架化合物(MOF)的制备、表征与电化学性质研究[D]. 重庆: 西南大学, 2017. |
LU Shun. Preparation, characterization and electrochemical properties of metal organic framework (MOF)[D]. Chongqing: Southwest University, 2017. | |
23 | YUAN Shuai, FENG Liang, WANG Kecheng, et al. Stable metal-organic frameworks: Design, synthesis, and applications[J]. Advanced Materials, 2018, 30(37): e1704303. |
24 | FALCARO Paolo, RICCO Raffaele, DOHERTY Cara M, et al. MOF positioning technology and device fabrication[J]. Chemical Society Reviews, 2014, 43(16): 5513-5560. |
25 | ZHOU Kui, ZHANG Chen, XIONG Ziyu, et al. Template-directed growth of hierarchical MOF hybrid arrays for tactile sensor[J]. Advanced Functional Materials, 2020, 30(38): 2001296. |
26 | FARHA Omar K, ERYAZICI Ibrahim, JEONG Nak Cheon, et al. Metal-organic framework materials with ultrahigh surface areas: Is the sky the limit?[J]. Journal of the American Chemical Society, 2012, 134(36): 15016-15021. |
27 | EDDAOUDI M, KIM Jaheon, ROSI N, et al. Systematic design of pore size and functionality in isoreticular MOFs and their application in methane storage[J]. Science, 2002, 295(5554): 469-472. |
28 | PRESTIPINO C, REGLI L, VITILLO J G, et al. Local structure of framework Cu( Ⅱ ) in HKUST-1 metallorganic framework: Spectroscopic characterization upon activation and interaction with adsorbates[J]. Chemistry of Materials, 2006, 18(5): 1337-1346. |
29 | CHUI Stephen S, Samuel M LO, CHARMANT Jonathan P, et al. A chemically functionalizable nanoporous material[J]. Science, 1999, 283(5405): 1148-1150. |
30 | PARK Kyo Sung, NI Zheng, CÔTÉ Adrien P, et al. Exceptional chemical and thermal stability of zeolitic imidazolate frameworks[J]. Proceedings of the National Academy of Sciences of the United States of America, 2006, 103(27): 10186-10191. |
31 | LOISEAU Thierry, SERRE Christian, HUGUENARD Clarisse, et al. A rationale for the large breathing of the porous aluminum terephthalate (MIL-53) upon hydration[J]. Chemistry: A European Journal, 2004, 10(6): 1373-1382. |
32 | LLEWELLYN Philip L, BOURRELLY Sandrine, SERRE Christian, et al. High uptakes of CO2 and CH4 in mesoporous metal-organic frameworks MIL-100 and MIL-101[J]. Langmuir, 2008, 24(14): 7245-7250. |
33 | MA Shengqian, ZHOU Hongcai. A metal-organic framework with entatic metal centers exhibiting high gas adsorption affinity[J]. Journal of the American Chemical Society, 2006, 128(36): 11734-11735. |
34 | WANG Xisen, MA Shengqian, FORSTER Paul M, et al. Enhancing H2 uptake by “close-packing” alignment of open copper sites in metal-organic frameworks[J]. Angewandte Chemie International Edition, 2008, 47(38): 7263-7266. |
35 | MA Shengqian, WANG Xisen, COLLIER Christopher D, et al. Ultramicroporous metal-organic framework based on 9,10-anthracenedicarboxylate for selective gas adsorption[J]. Inorganic Chemistry, 2007, 46(21): 8499-8501. |
36 | BOSCH Mathieu, YUAN Shuai, RUTLEDGE William, et al. Stepwise synthesis of metal-organic frameworks[J]. Accounts of Chemical Research, 2017, 50(4): 857-865. |
37 | CAVKA Jasmina Hafizovic, Søren JAKOBSEN, OLSBYE Unni, et al. A new zirconium inorganic building brick forming metal organic frameworks with exceptional stability[J]. Journal of the American Chemical Society, 2008, 130(42): 13850-13851. |
38 | COHEN Seth M. The postsynthetic renaissance in porous solids[J]. Journal of the American Chemical Society, 2017, 139(8): 2855-2863. |
39 | DENNY Michael S, COHEN Seth M. In situ modification of metal-organic frameworks in mixed-matrix membranes[J]. Angewandte Chemie International Edition, 2015, 54(31): 9029-9032. |
40 | WANG Zhenqiang, COHEN Seth M. Postsynthetic modification of metal-organic frameworks[J]. Chemical Society Reviews, 2009, 38(5): 1315-1329. |
41 | COHEN Seth M. Postsynthetic methods for the functionalization of metal-organic frameworks[J]. Chemical Reviews, 2012, 112(2): 970-1000. |
42 | YIN Zheng, WAN Shuang, YANG Jian, et al. Recent advances in post-synthetic modification of metal-organic frameworks: New types and tandem reactions[J]. Coordination Chemistry Reviews, 2019, 378: 500-512. |
43 | Victoria GASCÓN, JIMÉNEZ Mayra B, BLANCO Rosa M, et al. Semi-crystalline Fe-BTC MOF material as an efficient support for enzyme immobilization[J]. Catalysis Today, 2018, 304: 119-126. |
44 | Victoria GASCÓN-PÉREZ, JIMÉNEZ Mayra Belen, MOLINA Asunción, et al. Efficient one-step immobilization of CaLB lipase over MOF support NH2-MIL-53(Al)[J]. Catalysts, 2020, 10(8): 918. |
45 | OZYILMAZ Elif, ASCIOGLU Sebahat, YILMAZ Mustafa. Calix[4]arene tetracarboxylic acid-treated lipase immobilized onto metal-organic framework: Biocatalyst for ester hydrolysis and kinetic resolution[J]. International Journal of Biological Macromolecules, 2021, 175: 79-86. |
46 | ZHONG Chao, LEI Zhixian, HUANG Huan, et al. One-pot synthesis of trypsin-based magnetic metal-organic frameworks for highly efficient proteolysis[J]. Journal of Materials Chemistry B, 2020, 8(21): 4642-4647. |
47 | CHEN Weihai, Margarita VÁZQUEZ-GONZÁLEZ, ZOABI Amani, et al. Biocatalytic cascades driven by enzymes encapsulated in metal-organic framework nanoparticles[J]. Nature Catalysis, 2018, 1(9): 689-695. |
48 | Fengjiao LYU, ZHANG Yifei, ZARE Richard N, et al. One-pot synthesis of protein-embedded metal-organic frameworks with enhanced biological activities[J]. Nano Letters, 2014, 14(10): 5761-5765. |
49 | 孙宝婷, 邱萌霞, 王子辰, 等. 半胱氨酸辅助的酶@ZIF-8固定化酶制备及其特性研究[J]. 生物技术通报, 2021, 37(8): 221-232. |
SUN Baoting, QIU Mengxia, WANG Zichen, et al. Preparation of @ZIF-8 immobilized enzyme by using cysteine as auxiliary reagent and its characterization[J]. Biotechnology Bulletin, 2021, 37(8): 221-232. | |
50 | PEI Xiaolin, WU Yifeng, WANG Jiapao, et al. Biomimetic mineralization of nitrile hydratase into a mesoporous cobalt-based metal-organic framework for efficient biocatalysis[J]. Nanoscale, 2020, 12(2): 967-972. |
51 | OZYILMAZ Elif, Sami BILTEKIN M, CAGLAR Ozge, et al. Design of MOF-based nanobiocatalyst with super-catalytic properties with iron mineralization approach[J]. Materials Letters, 2021, 305: 130768. |
52 | LI Qing, CHEN Yingxuan, BAI Shaowei, et al. Immobilized lipase in bio-based metal-organic frameworks constructed by biomimetic mineralization: A sustainable biocatalyst for biodiesel synthesis[J]. Colloids and Surfaces B: Biointerfaces, 2020, 188: 110812. |
53 | CHENG Yujun, CHEN Tao, FU Donglei, et al. A molecularly imprinted nanoreactor based on biomimetic mineralization of bi-enzymes for specific detection of urea and its analogues[J]. Sensors and Actuators B: Chemical, 2022, 350: 130909. |
54 | SHA Fanrui, CHEN Yijing, DROUT Riki J, et al. Stabilization of an enzyme cytochrome c in a metal-organic framework against denaturing organic solvents[J]. iScience, 2021, 24(6): 102641. |
55 | GKANIATSOU Effrosyni, SICARD Clémence, RICOUX Rémy, et al. Enzyme encapsulation in mesoporous metal-organic frameworks for selective biodegradation of harmful dye molecules[J]. Angewandte Chemie International Edition, 2018, 57(49): 16141-16146. |
56 | GAO Xia, ZHAI Quanguo, HU Mancheng, et al. Hierarchically porous magnetic Fe3O4/Fe-MOF used as an effective platform for enzyme immobilization: A kinetic and thermodynamic study of structure-activity[J]. Catalysis Science & Technology, 2021, 11(7): 2446-2455. |
57 | CHENG Kaipeng, SVEC Frantisek, Yongqin LYU, et al. Hierarchical micro- and mesoporous Zn-based metal-organic frameworks templated by hydrogels: Their use for enzyme immobilization and catalysis of Knoevenagel reaction[J]. Small, 2019, 15(49): e1906245. |
58 | HU Yingli, ZHOU Hao, DAI Lingmei, et al. Lipase immobilization on macroporous ZIF-8 for enhanced enzymatic biodiesel production[J]. ACS Omega, 2021, 6(3): 2143-2148. |
59 | DUTTA Soumen, KUMARI Nitee, DUBBU Sateesh, et al. Highly mesoporous metal-organic frameworks as synergistic multimodal catalytic platforms for divergent cascade reactions[J]. Angewandte Chemie International Edition, 2020, 59(9): 3416-3422. |
60 | REN Sizhu, FENG Yuxiao, WEN Huan, et al. Immobilized carbonic anhydrase on mesoporous cruciate flower-like metal organic framework for promoting CO2 sequestration[J]. International Journal of Biological Macromolecules, 2018, 117: 189-198. |
[1] | ZHANG Lihong, JIN Yaoru, CHENG Fangqin. Resource utilization of coal gasification slag [J]. Chemical Industry and Engineering Progress, 2023, 42(8): 4447-4457. |
[2] | CHEN Sen, YIN Pengyuan, YANG Zhenglu, MO Yiming, CUI Xili, SUO Xian, XING Huabin. Advances in the intelligent synthesis of functional solid materials [J]. Chemical Industry and Engineering Progress, 2023, 42(7): 3340-3348. |
[3] | ZHANG Yaodan, SUN Ruoxi, CHEN Pengcheng. Advances of multi-enzyme co-immobilization carrier based on cascade reactions [J]. Chemical Industry and Engineering Progress, 2023, 42(6): 3167-3176. |
[4] | KONG Xiangru, ZHANG Xiaoyang, SUN Pengxiang, CUI Lin, DONG Yong. Research progress of solid porous materials for direct CO2 capture from air [J]. Chemical Industry and Engineering Progress, 2023, 42(3): 1471-1483. |
[5] | JIN Xin, LI Yushan, XIE Qingqing, WANG Mengyu, XIA Xingfan, YANG Chaohe. Progress on solketal synthesis catalyzed by porous materials [J]. Chemical Industry and Engineering Progress, 2023, 42(2): 731-743. |
[6] | ZHANG Yan, WANG Wei, XIE Rui, JU Xiaojie, LIU Zhuang, CHU Liangyin. Controllable fabrication of polymeric microparticles loaded with enzyme@ZIF-8 [J]. Chemical Industry and Engineering Progress, 2022, 41(4): 2022-2028. |
[7] | MAO Menglei, SUN Danyang, MENG Zihui, LIU Wenfang. Enzyme immobilization on graphene oxide and transition metal carbon/nitrogen compounds [J]. Chemical Industry and Engineering Progress, 2022, 41(4): 1941-1955. |
[8] | MENG Zihao, LI Qingyun, LIU Youyan, LIN Dongliang, TANG Aixing. MOF-immobilized lipase-catalyzed epoxidation of limonene in a single-phase system [J]. Chemical Industry and Engineering Progress, 2022, 41(12): 6540-6548. |
[9] | WANG Wenxia, LIU Xiaofeng, CHEN Xi, XU Yanhong, MENG Zhenbang, ZHENG Junxia, AN Taicheng. Research advances of synthesis and applications of porous g-C3N4-based photocatalyst [J]. Chemical Industry and Engineering Progress, 2022, 41(1): 300-309. |
[10] | Yonghou XIAO, Kerun ZHU, Xiaoying DONG, Gaohong HE. Research progress on porous materials for desulfurization of fuel by selective adsorption [J]. Chemical Industry and Engineering Progress, 2020, 39(6): 2241-2250. |
[11] | Jie ZHU, Wenhui LI, Bangjian LIU, Minchen MU, Xinwen GUO. Preparation of high-surface-area ZrO2 and its application in catalysis [J]. Chemical Industry and Engineering Progress, 2019, 38(01): 315-323. |
[12] | HE Meizhi, YANG Luwei, ZHANG Zhentao. Research progress of organic-inorganic composite phase change materials [J]. Chemical Industry and Engineering Progress, 2018, 37(12): 4709-4718. |
[13] | LIN Yuanqing, LI Xialan, ZHANG Guangya. Recent research progress of enzyme self-immobilization methods [J]. Chemical Industry and Engineering Progress, 2018, 37(12): 4523-4532. |
[14] | WU Bingfeng, YANG Lina, LI Jian, BAI Jin. Application of biomass templates in the preparation of mesoporous materials [J]. Chemical Industry and Engineering Progress, 2018, 37(07): 2686-2693. |
[15] | MA Zhi, LI Yingqian, DING Tong, DONG Junjie, QIN Yongning. Research progress of halloysite nanotubes in biomedical science application [J]. Chemical Industry and Engineering Progress, 2017, 36(08): 3032-3039. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||
京ICP备12046843号-2;京公网安备 11010102001994号 Copyright © Chemical Industry and Engineering Progress, All Rights Reserved. E-mail: hgjz@cip.com.cn Powered by Beijing Magtech Co. Ltd |