Chemical Industry and Engineering Progress ›› 2019, Vol. 38 ›› Issue (01): 315-323.DOI: 10.16085/j.issn.1000-6613.2018-1106
• Industrial catalysis • Previous Articles Next Articles
Jie ZHU(),Wenhui LI,Bangjian LIU,Minchen MU,Xinwen GUO()
Received:
2018-05-29
Revised:
2018-10-12
Online:
2019-01-05
Published:
2019-01-05
Contact:
Xinwen GUO
通讯作者:
郭新闻
作者简介:
朱杰(1994—),男,博士研究生,研究方向为多孔材料。E-mail:<email>dut_zj@163.com</email>。|郭新闻,教授,博士生导师,研究方向为多孔材料、新催化反应及工艺。E-mail:<email>guoxw@dlut.edu.cn</email>。
基金资助:
CLC Number:
Jie ZHU, Wenhui LI, Bangjian LIU, Minchen MU, Xinwen GUO. Preparation of high-surface-area ZrO2 and its application in catalysis[J]. Chemical Industry and Engineering Progress, 2019, 38(01): 315-323.
朱杰, 李文慧, 刘邦荐, 慕旻辰, 郭新闻. 高比表面积二氧化锆的合成及其催化应用[J]. 化工进展, 2019, 38(01): 315-323.
Add to citation manager EndNote|Ris|BibTeX
URL: https://hgjz.cip.com.cn/EN/10.16085/j.issn.1000-6613.2018-1106
锆源 | 模板 | 比表面积 /m2·g-1 | 孔容 /cm3·g-1 | 孔径 /nm | 晶型 | 文献 |
---|---|---|---|---|---|---|
氧氯化锆 | F127 | 97 | 0.14 | 4.1 | 四方相 | [11] |
四氯化锆 | CTAB | 573 | 0.76 | 5.2 | 单斜相 | [12] |
氧氯化锆 | SDS | 113 | — | 5.0 | 单斜相 | [13] |
正丁醇锆 | F127 | 124 | 0.16 | 4.8 | 四方相 | [14] |
氧氯化锆 | SBA-15 | 248 | 0.30 | 3.0~4.0 | 四方相 | [15] |
氧氯化锆 | KIT-6 | 391 | 0.54 | 3.4 | 四方相 | [16] |
四氯化锆 | 多孔SiO2 | 293 | 0.60 | 7.3 | 四方相 | [17] |
UiO-66 | UiO-66 | 174 | 0.21 | 5.0~8.0 | 四方相 | [18] |
锆源 | 模板 | 比表面积 /m2·g-1 | 孔容 /cm3·g-1 | 孔径 /nm | 晶型 | 文献 |
---|---|---|---|---|---|---|
氧氯化锆 | F127 | 97 | 0.14 | 4.1 | 四方相 | [11] |
四氯化锆 | CTAB | 573 | 0.76 | 5.2 | 单斜相 | [12] |
氧氯化锆 | SDS | 113 | — | 5.0 | 单斜相 | [13] |
正丁醇锆 | F127 | 124 | 0.16 | 4.8 | 四方相 | [14] |
氧氯化锆 | SBA-15 | 248 | 0.30 | 3.0~4.0 | 四方相 | [15] |
氧氯化锆 | KIT-6 | 391 | 0.54 | 3.4 | 四方相 | [16] |
四氯化锆 | 多孔SiO2 | 293 | 0.60 | 7.3 | 四方相 | [17] |
UiO-66 | UiO-66 | 174 | 0.21 | 5.0~8.0 | 四方相 | [18] |
1 | KARWACKI C J , GANESH P , KENT P R C , et al . Structure-activity relationship of Au/ZrO2 catalyst on formation of hydroxyl groups and its influence on CO oxidation[J]. Journal of Materials Chemistry A, 2013, 1(19): 6051-6062. |
2 | LIU Y C , FANG K G , CHEN J G , et al . Effect of pore size on the performance of mesoporous zirconia-supported cobalt Fischer-Tropsch catalysts[J]. Green Chem., 2007, 9(6): 611-615. |
3 | LI W H , NIE X W , JIANG X , et al . ZrO2 support imparts superior activity and stability of Co catalysts for CO2 methanation[J]. Applied Catalysis B: Environmental, 2018, 220: 397-408. |
4 | ZHANG X P , ZHANG Q D , TSUBAKI N , et al . Carbon dioxide reforming of methane over Ni nanoparticles incorporated into mesoporous amorphous ZrO2 matrix[J]. Fuel, 2015, 147: 243-252. |
5 | OTROSHCHENKO T , SOKOLOV S , STOYANOVA M , et al . ZrO2-based alternatives to conventional propane dehydrogenation catalysts: active sites, design, and performance[J]. Angew. Chem. Int. Ed., 2015, 54(52): 15880-15883. |
6 | SHUKLA S , SEAL S . Mechanisms of room temperature metastable tetragonal phase stabilisation in zirconia[J]. International Materials Reviews, 2013, 50(1): 45-64. |
7 | GARVLE R C . Stabilization of the tetragonal structure in zirconia microcrystals[J]. The Journal of Physical Chemistry, 1978, 82: 218-224. |
8 | PARK J N , NOH J , CHANG J S , et al . Ethylbenzene to styrene in the presence of carbon dioxide over zirconia [J]. Catalysis Letters, 2000, 65: 75-78. |
9 | MA Z Y, YANG C , WEI W , et al . Catalytic performance of copper supported on zirconia polymorphs for CO hydrogenation[J]. Journal of Molecular Catalysis A: Chemical, 2005, 231(1/2): 75-81. |
10 | LIU Y D , GOEBL J , YIN Y D . Templated synthesis of nanostructured materials[J]. Chem. Soc. Rev., 2013, 42(7): 2610-2653. |
11 | YUAN Q , LI L L , LU S L , et al . Facile synthesis of Zr-based functional materials with highly ordered mesoporous structures[J]. The Journal of Physical Chemistry C, 2009, 113: 4117-4124. |
12 | TSONCHEVA T , IVANOVA L , PANEVA D , et al . Cobalt and iron oxide modified mesoporous zirconia: preparation, characterization and catalytic behaviour in methanol conversion[J]. Microporous and Mesoporous Materials, 2009, 120(3): 389-396. |
13 | CHANG Y L , WANG C , LIANG T X , et al . Sol-gel synthesis of mesoporous spherical zirconia[J]. RSC Advances, 2015, 5(127): 104629-104634. |
14 | DAS S K , BHUNIA M K , SINHA A K , et al . Self-assembled mesoporous zirconia and sulfated zirconia nanoparticles synthesized by triblock copolymer as template[J]. The Journal of Physical Chemistry C, 2009, 113: 8918-8923. |
15 | GONG L , SUN L B , SUN Y H , et al . Exploring in situ functionalization strategy in a hard template process: preparation of sodium-modified mesoporous tetragonal zirconia with superbasicity[J]. The Journal of Physical Chemistry C, 2011, 115(23): 11633-11640. |
16 | GU D , SCHMIDT W , PICHLER C M , et al . Surface-casting synthesis of mesoporous zirconia with a CMK-5-like structure and high surface area[J]. Angew. Chem. Int. Ed., 2017, 56(37): 11222-11225. |
17 | XIAO W M , YANG S Z , ZHANG P F , et al . Facile synthesis of highly porous metal oxides by mechanochemical nanocasting[J]. Chemistry of Materials, 2018, 30(9): 2924-2929. |
18 | YAN X L , LU N Y , FAN B B , et al . Synthesis of mesoporous and tetragonal zirconia with inherited morphology from metal-organic frameworks[J]. CrystEngComm, 2015, 17(33): 6426-6433. |
19 | YU Z C , LIU B X , ZHOU H F , et al . Mesoporous ZrO2 fibers with enhanced surface area and the application as recyclable absorbent[J]. Applied Surface Science, 2017, 399: 288-297. |
20 | YU G , ZHU L Y , ZHANG G L , et al . Preparation and characterization of the continuous titanium-doped ZrO2 mesoporous fibers with large surface area[J]. Journal of Porous Materials, 2013, 21(1): 105-112. |
21 | SONG Y H , LI X , SUN L L , et al . Metal/metal oxide nanostructures derived from metal-organic frameworks[J]. RSC Advances, 2015, 5(10): 7267-7279. |
22 | PING D , DONG X F , ZANG Y H , et al . Highly efficient MOF-templated Ni catalyst towards CO selective methanation in hydrogen-rich reformate gases[J]. International Journal of Hydrogen Energy, 2017, 42(23): 15551-15556. |
23 | LIPPI R , HOWARD S C , BARRON H , et al . Highly active catalyst for CO2 methanation derived from a metal organic framework template[J]. Journal of Materials Chemistry A, 2017, 5(25): 12990-12997. |
24 | D’SOUZA L , SUCHOPAR A , ZHU K , et al . Preparation of thermally stable high surface area mesoporous tetragonal ZrO2 and Pt/ZrO2: an active hydrogenation catalyst[J]. Microporous and Mesoporous Materials, 2006, 88(1/2/3): 22-30. |
25 | DESHMANE V G , ADEWUYI Y G . Synthesis of thermally stable, high surface area, nanocrystalline mesoporous tetragonal zirconium dioxide (ZrO2): effects of different process parameters[J]. Microporous and Mesoporous Materials, 2012, 148(1): 88-100. |
26 | 尹双凤,徐柏庆 . 碱液回流老化制备高比表面积二氧化锆[J]. 催化学报,2002,23(3): 214-218. |
YIN S F , XU B Q . Preparation of high surface area zirconia by reflux digestion in basic solutions[J]. Chinese Journal of Catalysis, 2002, 23(3): 214-218. | |
27 | WANG P Y , UENO K , TAKIGAWA H , et al . Versatility of one-pot, single-step synthetic approach for spherical porous (metal) oxide nanoparticles using supercritical alcohols[J]. The Journal of Supercritical Fluids, 2013, 78: 124-131. |
28 | 石国亮,于峰,王琰, 等 . 溶剂辅助超细二氧化锆纳米晶体的可控合成[J]. 化工进展,2016,35(8): 2518-2522. |
SHI G L , YU F , WANG Y , et al . Solvent-assisted controllable synthesis of ultrafine zirconia nanocrystals[J]. Chemical Industry and Engineering Progress, 2016, 35(8): 2518-2522. | |
29 | ZINK N , EMMERLING F , HÄGER T , et al . Low temperature synthesis of monodisperse nanoscaled ZrO2 with a large specific surface area[J]. Dalton Trans., 2013, 42(2): 432-440. |
30 | GU D , SCHUTH F . Synthesis of non-siliceous mesoporous oxides[J]. Chem. Soc. Rev., 2014, 43(1): 313-344. |
31 | CHEN H R , SHI J L , YU J , et al . Synthesis of titanium-doped ordered porous zirconium oxide with high-surface-area[J]. Microporous and Mesoporous Materials, 2000, 39: 171-176. |
32 | LIU S G , MA J, GUAN L X , et al . Mesoporous CaO-ZrO2 nano-oxides: a novel solid base with high activity and stability[J]. Microporous and Mesoporous Materials, 2009, 117: 466-471. |
33 | CIESLA U , FRÖBA M , STUCKY G , et al . Highly ordered porous zirconias from surfactant-controlled synthesis: zirconium oxide-sulfate and zirconium oxo phosphate[J]. Chem. Mater.,1999,11: 227-234. |
34 | CHEN S Y , JANG L Y , CHENG S . Synthesis of thermally stable zirconia-based mesoporous materials via a facile post-treatment[J].Phys J. Chem. B, 2660,110: 11761-11771. |
35 | LIU B , BAKER R T . Factors affecting the preparation of ordered mesoporous ZrO2 using the replica method[J]. Journal of Materials Chemistry, 2008, 18(43): 5200-5207. |
36 | LYU Y Y , YI S H , SHON J K , et al . Highly stable mesoporous metal oxides using nano-propping hybrid gemini surfactant[J]. J.Am. Chem. Soc., 2004, 126: 2310-2311. |
37 | CIESLA U , SCHACHT S , STUCKY G , et al . Formation of a porous zirconium oxo phosphate with a high surface area by a surfactant-assisted synthesis[J]. Angew. Chem. Int. Ed.,1996,35: 541-543. |
38 | AKUNE T , MORITA Y , SHIRAKAWA S , et al . ZrO2 nanocrystals as catalyst for synthesis of dimethylcarbonate from methanol and carbon dioxide: catalytic activity and elucidation of active sites[J]. Langmuir, 2018, 34(1): 23-29. |
39 | LAOSIRIPOJANA N , KIATKITTIPONG W , ASSABUMRUNGRAT S . Partial oxidation of palm fatty acids over Ce-ZrO2: roles of catalyst surface area, lattice oxygen capacity and mobility[J]. AIChE Journal, 2011, 57(10): 2861-2869. |
40 | SAKITANI K , NAKAMURA K I , IKENAGA N O , et al . Oxidative dehydrogenation of ethane over NiO-loaded high surface area ZrO2 catalysts[J]. Journal of the Japan Petroleum Institute, 2010,53(6): 327-335. |
41 | WANG Z Q , MA Y C, LIN J X . Ruthenium catalyst supported on high-surface-area basic ZrO2 for ammonia synthesis[J]. Journal of Molecular Catalysis A: Chemical, 2013, 378: 307-313. |
42 | CHEN H , WU Y L , QI S T , et al . Deoxygenation of octanoic acid catalyzed by hollow spherical Ni/ZrO2 [J]. Applied Catalysis A: General, 2017, 529: 79-90. |
43 | WANG H Q , CHEN H , NI B , et al . Mesoporous ZrO2 nanoframes for biomass upgrading[J]. ACS Appl. Mater. Interfaces., 2017, 9(32): 26897-26906. |
44 | AN K , ALAYOGLU S , MUSSELWHITE N , et al . Designed catalysts from Pt nanoparticles supported on macroporous oxides for selective isomerization of n-hexane[J].Am J. Chem. Soc., 2014, 136(19): 6830-6833. |
45 | YANG L P , LIN X J , ZHANG X , et al . General synthetic strategy for hollow hybrid microspheres through a progressive inward crystallization process[J].Am J. Chem. Soc., 2016, 138(18): 5916-5922. |
46 | JIN Z , WANG F , WANG F , et al . Metal nanocrystal-embedded hollow mesoporous TiO2 and ZrO2 microspheres prepared with polystyrene nanospheres as carriers and templates[J]. Advanced Functional Materials, 2013, 23(17): 2137-2144. |
47 | JOO J B , VU A , ZHANG Q , et al . A sulfated ZrO2 hollow nanostructure as an acid catalyst in the dehydration of fructose to 5-hydroxymethylfurfural[J]. ChemSusChem, 2013, 6(10): 2001-2008. |
48 | HUANG X Q , GUO C Y , ZUO J Q , et al . An assembly route to inorganic catalytic nanoreactors containing sub-10-nm gold nanoparticles with anti-aggregation properties[J]. Small, 2009, 5(3): 361-365. |
49 | SHUKLA A , SINGHA R K , SENGUPTA M , et al . Surfactant-induced preparation of highly dispersed Ni-nanoparticles supported on nanocrystalline ZrO2 for chemoselective reduction of nitroarenes[J]. Chemistry Select, 2018, 3(4): 1129-1141. |
[1] | ZHENG Qian, GUAN Xiushuai, JIN Shanbiao, ZHANG Changming, ZHANG Xiaochao. Photothermal catalysis synthesis of DMC from CO2 and methanol over Ce0.25Zr0.75O2 solid solution [J]. Chemical Industry and Engineering Progress, 2023, 42(S1): 319-327. |
[2] | WANG Zhengkun, LI Sifang. Green synthesis of gemini surfactant decyne diol [J]. Chemical Industry and Engineering Progress, 2023, 42(S1): 400-410. |
[3] | DENG Liping, SHI Haoyu, LIU Xiaolong, CHEN Yaoji, YAN Jingying. Non-noble metal modified vanadium titanium-based catalyst for NH3-SCR denitrification simultaneous control VOCs [J]. Chemical Industry and Engineering Progress, 2023, 42(S1): 542-548. |
[4] | GENG Yuanze, ZHOU Junhu, ZHANG Tianyou, ZHU Xiaoyu, YANG Weijuan. Homogeneous/heterogeneous coupled combustion of heptane in a partially packed bed burner [J]. Chemical Industry and Engineering Progress, 2023, 42(9): 4514-4521. |
[5] | GAO Yanjing. Analysis of international research trend of single-atom catalysis technology [J]. Chemical Industry and Engineering Progress, 2023, 42(9): 4667-4676. |
[6] | LI Dongze, ZHANG Xiang, TIAN Jian, HU Pan, YAO Jie, ZHU Lin, BU Changsheng, WANG Xinye. Research progress of NO x reduction by carbonaceous substances for denitration in cement kiln [J]. Chemical Industry and Engineering Progress, 2023, 42(9): 4882-4893. |
[7] | WANG Chen, BAI Haoliang, KANG Xue. Performance study of high power UV-LED heat dissipation and nano-TiO2 photocatalytic acid red 26 coupling system [J]. Chemical Industry and Engineering Progress, 2023, 42(9): 4905-4916. |
[8] | YANG Ying, HOU Haojie, HUANG Rui, CUI Yu, WANG Bing, LIU Jian, BAO Weiren, CHANG Liping, WANG Jiancheng, HAN Lina. Coal tar phenol-based carbon nanosphere prepared by Stöber method for adsorption of CO2 [J]. Chemical Industry and Engineering Progress, 2023, 42(9): 5011-5018. |
[9] | ZHANG Lihong, JIN Yaoru, CHENG Fangqin. Resource utilization of coal gasification slag [J]. Chemical Industry and Engineering Progress, 2023, 42(8): 4447-4457. |
[10] | HUANG Yufei, LI Ziyi, HUANG Yangqiang, JIN Bo, LUO Xiao, LIANG Zhiwu. Research progress on catalysts for photocatalytic CO2 and CH4 reforming [J]. Chemical Industry and Engineering Progress, 2023, 42(8): 4247-4263. |
[11] | YIN Xinyu, PI Pihui, WEN Xiufang, QIAN Yu. Application of special wettability materials for anti-hydrate-nucleation and anti-hydrate-adhesion in oil and gas pipelines [J]. Chemical Industry and Engineering Progress, 2023, 42(8): 4076-4092. |
[12] | WU Haibo, WANG Xilun, FANG Yanxiong, JI Hongbing. Progress of the development and application of 3D printing catalyst [J]. Chemical Industry and Engineering Progress, 2023, 42(8): 3956-3964. |
[13] | CHEN Sen, YIN Pengyuan, YANG Zhenglu, MO Yiming, CUI Xili, SUO Xian, XING Huabin. Advances in the intelligent synthesis of functional solid materials [J]. Chemical Industry and Engineering Progress, 2023, 42(7): 3340-3348. |
[14] | GUO Lixing, PANG Weiying, MA Keyao, YANG Jiahan, SUN Zehui, ZHANG Pan, FU Dong, ZHAO Kun. Hierarchically multilayered TiO2 with spatial pore-structure for efficient photocatalytic CO2 reduction [J]. Chemical Industry and Engineering Progress, 2023, 42(7): 3643-3651. |
[15] | XU Peiyao, CHEN Biaoqi, KANKALA Ranjith Kumar, WANG Shibin, CHEN Aizheng. Research progress of nanomaterials for synergistic ferroptosis anticancer therapy [J]. Chemical Industry and Engineering Progress, 2023, 42(7): 3684-3694. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||
京ICP备12046843号-2;京公网安备 11010102001994号 Copyright © Chemical Industry and Engineering Progress, All Rights Reserved. E-mail: hgjz@cip.com.cn Powered by Beijing Magtech Co. Ltd |