Chemical Industry and Engineering Progress ›› 2023, Vol. 42 ›› Issue (3): 1595-1605.DOI: 10.16085/j.issn.1000-6613.2022-0962
• Resources and environmental engineering • Previous Articles Next Articles
MENG Xiaoshan(), TANG Zijian, CHEN Lin, HUHE Taoli, ZHOU Zhengzhong()
Received:
2022-05-24
Revised:
2022-11-03
Online:
2023-04-10
Published:
2023-03-15
Contact:
ZHOU Zhengzhong
通讯作者:
周政忠
作者简介:
孟晓山(1988—),男,博士,讲师,研究方向为生物质生化转化。E-mail:xhsmeng@cczu.edu.cn。
基金资助:
CLC Number:
MENG Xiaoshan, TANG Zijian, CHEN Lin, HUHE Taoli, ZHOU Zhengzhong. Research progress of the early warning and regulation techniques for excessive acidification in the anaerobic digestion system[J]. Chemical Industry and Engineering Progress, 2023, 42(3): 1595-1605.
孟晓山, 汤子健, 陈琳, 呼和涛力, 周政忠. 厌氧消化系统酸化预警及调控技术研究进展[J]. 化工进展, 2023, 42(3): 1595-1605.
Add to citation manager EndNote|Ris|BibTeX
URL: https://hgjz.cip.com.cn/EN/10.16085/j.issn.1000-6613.2022-0962
底物 | 运行模式 | 有机负荷 | 温度/℃ | 挥发性脂肪酸浓度/mg·L-1 | 抑制效应 | 参考文献 |
---|---|---|---|---|---|---|
餐厨垃圾 | 半连续 | 0.63kg/(m3·d) | 36 | 4083 | 沼气产率由93L/d降低至14L/d | [ |
餐厨垃圾 | 连续式 | 8.0kg/(m3·d) | 35~38 | 4486.3 | 挥发性脂肪酸浓度由1991.6mg/L提升至4486.3mg/L | [ |
餐厨垃圾 | 半连续 | — | 37 | 12000 | 挥发性悬浮固体的去除效率仅为19% | [ |
餐厨垃圾 | 半连续 | 7.5kg/(m3·d) | 36±1 | 6126 | 容积产气率由6.4m3/(m3·d)下降至3.75m3/(m3·d);甲烷体积分数由63.68%降低到46.75%;挥发性脂肪酸浓度由2700mg/L提升至6126mg/L | [ |
屠宰废水 | — | 1.0g/(L·d) | 26±2 | 12500 | 化学需氧量去除率较53.6%减少66.23% | [ |
鸡粪 | 连续式 | 6.0g/(L·d) | 35±2 | 20925 | 挥发性脂肪酸浓度较1500mg/L提升92.83%;容积产气量由1.3L/(L·d)减少到停止产气 | [ |
鸡粪 | 连续式 | 6.0g/(L·d) | 55 | 25593 | 甲烷体积分数由59.7%降低到20.1%;挥发性脂肪酸浓度由8607mg/L提升至25593mg/L | [ |
猪粪 | — | 9.0g/(L·d) | 37±1 | 5216 | 挥发性脂肪酸浓度由200mg/L提升至5216mg/L;沼气产率由2.93L/(L·d)降低至1.99L/(L·d) | [ |
杂交狼尾草 | 半连续 | 4.0g/(L·d) | 37±1 | 9083 | 挥发性脂肪酸浓度由593mg/L提升至9083mg/L;pH由7.25降低至5.0 | [ |
稻草 | 半连续 | 2.0g/(L·d) | 37 | 3470±355 | 挥发性脂肪酸浓度由(1250±312)mg/L升高至(3470±355)mg/L;沼气产量由(303±11.5)mL/(g·d)降低至(42.0±7.8)mL/(g·d) | [ |
蔬菜废物 | 连续式 | 1.5g/(L·d) | 35 | — | 池容产气率由0.18L/(L·d)降低至0.12L/(L·d)直至产气停止 | [ |
底物 | 运行模式 | 有机负荷 | 温度/℃ | 挥发性脂肪酸浓度/mg·L-1 | 抑制效应 | 参考文献 |
---|---|---|---|---|---|---|
餐厨垃圾 | 半连续 | 0.63kg/(m3·d) | 36 | 4083 | 沼气产率由93L/d降低至14L/d | [ |
餐厨垃圾 | 连续式 | 8.0kg/(m3·d) | 35~38 | 4486.3 | 挥发性脂肪酸浓度由1991.6mg/L提升至4486.3mg/L | [ |
餐厨垃圾 | 半连续 | — | 37 | 12000 | 挥发性悬浮固体的去除效率仅为19% | [ |
餐厨垃圾 | 半连续 | 7.5kg/(m3·d) | 36±1 | 6126 | 容积产气率由6.4m3/(m3·d)下降至3.75m3/(m3·d);甲烷体积分数由63.68%降低到46.75%;挥发性脂肪酸浓度由2700mg/L提升至6126mg/L | [ |
屠宰废水 | — | 1.0g/(L·d) | 26±2 | 12500 | 化学需氧量去除率较53.6%减少66.23% | [ |
鸡粪 | 连续式 | 6.0g/(L·d) | 35±2 | 20925 | 挥发性脂肪酸浓度较1500mg/L提升92.83%;容积产气量由1.3L/(L·d)减少到停止产气 | [ |
鸡粪 | 连续式 | 6.0g/(L·d) | 55 | 25593 | 甲烷体积分数由59.7%降低到20.1%;挥发性脂肪酸浓度由8607mg/L提升至25593mg/L | [ |
猪粪 | — | 9.0g/(L·d) | 37±1 | 5216 | 挥发性脂肪酸浓度由200mg/L提升至5216mg/L;沼气产率由2.93L/(L·d)降低至1.99L/(L·d) | [ |
杂交狼尾草 | 半连续 | 4.0g/(L·d) | 37±1 | 9083 | 挥发性脂肪酸浓度由593mg/L提升至9083mg/L;pH由7.25降低至5.0 | [ |
稻草 | 半连续 | 2.0g/(L·d) | 37 | 3470±355 | 挥发性脂肪酸浓度由(1250±312)mg/L升高至(3470±355)mg/L;沼气产量由(303±11.5)mL/(g·d)降低至(42.0±7.8)mL/(g·d) | [ |
蔬菜废物 | 连续式 | 1.5g/(L·d) | 35 | — | 池容产气率由0.18L/(L·d)降低至0.12L/(L·d)直至产气停止 | [ |
1 | LI Qian, LI Hao, WANG Gaojun, et al. Effects of loading rate and temperature on anaerobic co-digestion of food waste and waste activated sludge in a high frequency feeding system, looking in particular at stability and efficiency[J]. Bioresource Technology, 2017, 237: 231-239. |
2 | AMIN F R, KHALID H, EL-MASHAD H M, et al. Functions of bacteria and Archaea participating in the bioconversion of organic waste for methane production[J]. Science of the Total Environment, 2021, 763: 143007. |
3 | PRAMANIK S K, SUJA F B, ZAIN S M, et al. The anaerobic digestion process of biogas production from food waste: prospects and constraints[J]. Bioresource Technology Reports, 2019, 8: 100310. |
4 | WU Di, LI Lei, PENG Yun, et al. State indicators of anaerobic digestion: a critical review on process monitoring and diagnosis[J]. Renewable and Sustainable Energy Reviews, 2021, 148: 111260. |
5 | 赵维鑫, 黄志勇, 黄津辉, 等. 厌氧消化酸抑制研究进展[J]. 微生物学通报, 2020, 47(10): 3442-3450. |
ZHAO Weixin, HUANG Zhiyong, HUANG Jinhui, et al. Research progress in acid inhibition in anaerobic digestion[J]. Microbiology China, 2020, 47(10): 3442-3450. | |
6 | 贾传兴, 彭绪亚, 黄媛媛, 等. 有机垃圾厌氧消化系统失稳预警指标的研究进展[J]. 中国给水排水, 2011, 27(24): 30-35. |
JIA Chuanxing, PENG Xuya, HUANG Yuanyuan, et al. Research progress in early-warning indicators for imbalance of anaerobic digestion system of organic wastes[J]. China Water & Wastewater, 2011, 27(24): 30-35. | |
7 | BORTH P L B, PERIN J K H, TORRECILHAS A R, et al. Pilot-scale anaerobic co-digestion of food and garden waste: methane potential, performance and microbial analysis[J]. Biomass and Bioenergy, 2022, 157: 106331. |
8 | 彭绪亚, 洪俊华, 贾传兴, 等. 磷酸酯酶活性对餐厨垃圾单相厌氧消化抑制的预警作用[J]. 中国环境科学, 2012, 32(3): 541-546. |
PENG Xuya, HONG Junhua, JIA Chuanxing, et al. Role of phosphatase activity as an early warning indicator of inhibition in a single-phase anaerobic digester treating food waste[J]. China Environmental Science, 2012, 32(3): 541-546. | |
9 | JIANG Zhihao, YU Qilin, SUN Cheng, et al. Additional electric field alleviates acidity suppression in anaerobic digestion of kitchen wastes via enriching electro-active methanogens in cathodic biofilms[J]. Water Research, 2022, 212: 118118. |
10 | 何清明, 李蕾, 彭绪亚, 等. 餐厨垃圾单相厌氧酸化系统恢复参数[J]. 环境工程学报, 2015, 9(3): 1427-1432. |
HE Qingming, LI Lei, PENG Xuya, et al. Parameters for recovery of an anaerobic digestion process from food waste[J]. Chinese Journal of Environmental Engineering, 2015, 9(3): 1427-1432. | |
11 | WANG Shunli, HAWKINS G L, KIEPPER B H, et al. Treatment of slaughterhouse blood waste using pilot scale two-stage anaerobic digesters for biogas production[J]. Renewable Energy, 2018, 126: 552-562. |
12 | AO Tianjie, CHEN Lin, ZHOU Pan, et al. The role of oxidation-reduction potential as an early warning indicator, and a microbial instability mechanism in a pilot-scale anaerobic mesophilic digestion of chicken manure[J]. Renewable Energy, 2021, 179: 223-232. |
13 | AO Tianjie, CHEN Lin, CHEN Yichao, et al. The screening of early warning indicators and microbial community of chicken manure thermophilic digestion at high organic loading rate[J]. Energy, 2021, 224: 120201. |
14 | SUN Hao, NI Ping, ANGELIDAKI I, et al. Exploring stability indicators for efficient monitoring of anaerobic digestion of pig manure under perturbations[J]. Waste Management, 2019, 91: 139-146. |
15 | XIAO Fan, LI Ying, SUN Yongming. Novel thermodynamic early warning method for anaerobic digestion failure of energy crops[J]. Bioresource Technology, 2020, 310: 123440. |
16 | ZEALAND A M, ROSKILLY A P, GRAHAM D W. Effect of feeding frequency and organic loading rate on biomethane production in the anaerobic digestion of rice straw[J]. Applied Energy, 2017, 207: 156-165. |
17 | 陈琳, 李东, 文昊深, 等. 蔬菜废弃物中温厌氧发酵酸化失稳预警指标筛选[J]. 农业工程学报, 2017, 33(1): 225-230. |
CHEN Lin, LI Dong, WEN Haoshen, et al. Screening of early warning indicators of instability in anaerobic digestion of vegetable waste under mesophilic condition[J]. Transactions of the Chinese Society of Agricultural Engineering, 2017, 33(1): 225-230. | |
18 | CAZAUDEHORE G, GUYONEAUD R, LALLEMENT A, et al. Biochemical methane potential and active microbial communities during anaerobic digestion of biodegradable plastics at different inoculum-substrate ratios[J]. Journal of Environmental Management, 2022, 324: 116369. |
19 | XU Ying, LU Yiqing, ZHENG Linke, et al. Perspective on enhancing the anaerobic digestion of waste activated sludge[J]. Journal of Hazardous Materials, 2020, 389: 121847. |
20 | MENG Xiaoshan, YU Dawei, WEI Yuansong, et al. Endogenous ternary pH buffer system with ammonia-carbonates-VFAs in high solid anaerobic digestion of swine manure: an alternative for alleviating ammonia inhibition?[J]. Process Biochemistry, 2018, 69: 144-152. |
21 | WU Di, PENG Xuya, LI Lei, et al. Commercial biogas plants: review on operational parameters and guide for performance optimization[J]. Fuel, 2021, 303: 121282. |
22 | 刘慧敏, 王进, 张勋, 等. 基于针铁矿强化乙酸产甲烷过程的ADM1模型修正与模拟研究[J]. 环境科学研究, 2020, 33(2): 455-464. |
LIU Huimin, WANG Jin, ZHANG Xun, et al. Modification and simulation of ADM1 model based on methanogenesis of acetate enhanced by goethite[J]. Research of Environmental Sciences, 2020, 33(2): 455-464. | |
23 | SHI Xuchuan, LIN Jia, ZUO Jiane, et al. Effects of free ammonia on volatile fatty acid accumulation and process performance in the anaerobic digestion of two typical bio-wastes[J]. Journal of Environmental Sciences, 2017, 55: 49-57. |
24 | ZHANG Hong, YUAN Wenduo, DONG Qin, et al. Integrated multi-omics analyses reveal the key microbial phylotypes affecting anaerobic digestion performance under ammonia stress[J]. Water Research, 2022, 213: 118152. |
25 | LI Dong, CHEN Lin, LIU Xiaofeng, et al. Instability mechanisms and early warning indicators for mesophilic anaerobic digestion of vegetable waste[J]. Bioresource Technology, 2017, 245: 90-97. |
26 | LENG Xiaoyun, USMAN M, SALAMA E S, et al. Development of an innovative MFC-biosensor for real-time monitoring of anaerobic digestion for biogas production: controlled substrate feeding strategy[J]. Journal of Environmental Chemical Engineering, 2021, 9(6): 106703. |
27 | WU Di, LI Lei, ZHAO Xiaofei, et al. Anaerobic digestion: a review on process monitoring[J]. Renewable and Sustainable Energy Reviews, 2019, 103: 1-12. |
28 | VALENÇA R B, SANTOS L A D, FIRMO A L B, et al. Influence of sodium bicarbonate (NaHCO3) on the methane generation potential of organic food waste[J]. Journal of Cleaner Production, 2021, 317: 128390. |
29 | WEI Wei, SHI Xingdong, WU Lan, et al. Calcium peroxide pre-treatment improved the anaerobic digestion of primary sludge and its co-digestion with waste activated sludge[J]. Science of The Total Environment, 2022, 828: 154404. |
30 | FENG Kai, WANG Qiao, LI Huan, et al. Microbial mechanism of enhancing methane production from anaerobic digestion of food waste via phase separation and pH control[J]. Journal of Environmental Management, 2021, 288: 112460. |
31 | XUE Shengrong, WANG Yanbo, Xingang LYU, et al. Interactive effects of carbohydrate, lipid, protein composition and carbon/nitrogen ratio on biogas production of different food wastes[J]. Bioresource Technology, 2020, 312: 123566. |
32 | ALAVI-BORAZJANI S A, CAPELA I, TARELHO L A C. Over-acidification control strategies for enhanced biogas production from anaerobic digestion: a review[J]. Biomass and Bioenergy, 2020, 143: 105833. |
33 | LIN Yucheng, Fan LYU, SHAO Liming, et al. Influence of bicarbonate buffer on the methanogenetic pathway during thermophilic anaerobic digestion[J]. Bioresource Technology, 2013, 137: 245-253. |
34 | GUO Zhaodi, USMAN M, ALSAREII S A, et al. Synergistic ammonia and fatty acids inhibition of microbial communities during slaughterhouse waste digestion for biogas production[J]. Bioresource Technology, 2021, 337: 125383. |
35 | 王子月, 张长平, 孟晓山, 等. 猪粪与酒糟混合厌氧发酵的产甲烷和三元pH缓冲体系特征[J]. 环境工程学报, 2018, 12(8): 2379-2387. |
WANG Ziyue, ZHANG Changping, MENG Xiaoshan, et al. Characteristics of methane production and ternary pH buffer system in anaerobic co-digestion of swine manure and distiller’s grains[J]. Chinese Journal of Environmental Engineering, 2018, 12(8): 2379-2387. | |
36 | YU Dawei, MENG Xiaoshan, LIU Jibao, et al. Formation and characteristics of a ternary pH buffer system for in situ biogas upgrading in two-phase anaerobic membrane bioreactor treating starch wastewater[J]. Bioresource Technology, 2018, 269: 57-66. |
37 | TIAN Hailin, FOTIDIS I A, MANCINI E, et al. Acclimation to extremely high ammonia levels in continuous biomethanation process and the associated microbial community dynamics[J]. Bioresource Technology, 2018, 247: 616-623. |
38 | ZHAO Weixin, YANG Haizhou, HE Shufei, et al. A review of biochar in anaerobic digestion to improve biogas production: performances, mechanisms and economic assessments[J]. Bioresource Technology, 2021, 341: 125797. |
39 | ZHAO Danyang, YAN Binghua, LIU Chao, et al. Mitigation of acidogenic product inhibition and elevated mass transfer by biochar during anaerobic digestion of food waste[J]. Bioresource Technology, 2021, 338: 125531. |
40 | CAI Yafan, ZHU Mingming, MENG Xingyao, et al. The role of biochar on alleviating ammonia toxicity in anaerobic digestion of nitrogen-rich wastes: a review[J]. Bioresource Technology, 2022, 351: 126924. |
41 | LAUZURIQUE Y, MONTALVO S, SALAZAR R, et al. Fly ash from coal combustion as improver of anaerobic digestion: a review[J]. Journal of Environmental Chemical Engineering, 2021, 9(6): 106422. |
42 | 石笑羽, 王宁, 陈钦冬, 等. 生物炭加速餐厨垃圾厌氧消化的机理[J]. 环境工程学报, 2018, 12(11): 3204-3212. |
SHI Xiaoyu, WANG Ning, CHEN Qindong, et al. Mechanisms for enhancement of biogas generation from food waste anaerobic digestion with biochar supplement[J]. Chinese Journal of Environmental Engineering, 2018, 12(11): 3204-3212. | |
43 | CUI Yuxuan, MAO Feijian, ZHANG Jingxin, et al. Biochar enhanced high-solid mesophilic anaerobic digestion of food waste: cell viability and methanogenic pathways[J]. Chemosphere, 2021, 272: 129863. |
44 | 周慧敏, 姜珺秋, 王琨, 等. 有机负荷和进料频率对高含固厨余垃圾厌氧消化系统性能的影响[J]. 环境科学学报, 2020, 40(10): 3639-3650. |
ZHOU Huimin, JIANG Junqiu, WANG Kun, et al. Effects of organic loading rate and feeding frequency on high solid food waste anaerobic digestion system[J]. Acta Scientiae Circumstantiae, 2020, 40(10): 3639-3650. | |
45 | SVENSSON K, PARUCH L, GABY J C, et al. Feeding frequency influences process performance and microbial community composition in anaerobic digesters treating steam exploded food waste[J]. Bioresource Technology, 2018, 269: 276-284. |
46 | ZHU Xianpu, YELLEZUOME D, LIU Ronghou, et al. Effects of co-digestion of food waste, corn straw and chicken manure in two-stage anaerobic digestion on trace element bioavailability and microbial community composition[J]. Bioresource Technology, 2022, 346: 126625. |
47 | WENJING Tian, QIN Jiang, LIU Junyan, et al. Effects of pine sawdust and shrimp shell biochar on anaerobic digestion under different acidification conditions[J]. Journal of Environmental Chemical Engineering, 2022, 10(1): 106581. |
48 | JIANG Qiong, XIN Yuan, JIANG Yanbo, et al. Improving the efficiency of anaerobic digestion of Molasses alcohol wastewater using Cassava alcohol wastewater as a mixed feedstock[J]. Bioresource Technology, 2022, 344: 126179. |
49 | PASTERIS A M, HEIERMANN M, THEUERL S, et al. Multi-advantageous sorghum as feedstock for biogas production: a comparison between single-stage and two-stage anaerobic digestion systems[J]. Journal of Cleaner Production, 2022, 358: 131985. |
50 | SHEN Fei, YUAN Hairong, PANG Yunzhi, et al. Performances of anaerobic co-digestion of fruit & vegetable waste (FVW) and food waste (FW): single-phase vs. two-phase[J]. Bioresource Technology, 2013, 144: 80-85. |
51 | KURADE M B, SAHA S, KIM Jung Rae, et al. Microbial community acclimatization for enhancement in the methane productivity of anaerobic co-digestion of fats, oil, and grease[J]. Bioresource Technology, 2020, 296: 122294. |
52 | LU Fuzhi, JIANG Qiong, QIAN Feng, et al. Semi-continuous feeding combined with traditional domestication improved anaerobic performance during treatment of cassava stillage[J]. Bioresource Technology, 2019, 291: 121807. |
53 | 刘新媛, 胡文甲, 欧阳帆, 等. 消化污泥序批式驯化中产气性能和微生物多样性变化[J]. 环境工程, 2021, 39(3): 136-141, 188. |
LIU Xinyuan, HU Wenjia, OUYANG Fan, et al. Biogas production and microbial community succession during sequencing batch acclimatization of digested sludge[J]. Environmental Engineering, 2021, 39(3): 136-141, 188. | |
54 | LI Junrou, CHEN Ting, YIN Jun, et al. Effect of nano-magnetite on the propionic acid degradation in anaerobic digestion system with acclimated sludge[J]. Bioresource Technology, 2021, 334: 125143. |
55 | LU Jiaxin, JIA Zhijie, WANG Pan, et al. Restoration of acidified dry anaerobic digestion of food waste: bioaugmentation of butyric acid-resistant microbes[J]. Journal of Environmental Chemical Engineering, 2022, 10(1): 106935. |
56 | LI Ying, WANG Changrui, XU Xinrui, et al. Bioaugmentation with a propionate-degrading methanogenic culture to improve methane production from chicken manure[J]. Bioresource Technology, 2022, 346: 126607. |
57 | VENKITESHWARAN K, MILFERSTEDT K, HAMELIN J, et al. Anaerobic digester bioaugmentation influences quasi steady state performance and microbial community[J]. Water Research, 2016, 104: 128-136. |
58 | SONG Yunpeng, LIU Jibao, CHEN Meixue, et al. Application of mixture design to optimize organic composition of carbohydrate, protein, and lipid on dry anaerobic digestion of OFMSW: aiming stability and efficiency[J]. Biochemical Engineering Journal, 2021, 172: 108037. |
59 | BI Shaojie, QIAO Wei, XIONG Linpeng, et al. Improved high solid anaerobic digestion of chicken manure by moderate in situ ammonia stripping and its relation to metabolic pathway[J]. Renewable Energy, 2020, 146: 2380-2389. |
60 | YU Dawei, WANG Tuo, LIANG Yushuai, et al. Delivery and effects of proton pump inhibitor on anaerobic digestion of food and kitchen waste under ammonia stress[J]. Journal of Hazardous Materials, 2021, 416: 126211. |
61 | SHI Chuan, WANG Kaijun, ZHENG Mingyue, et al. The efficiencies and capacities of carbon conversion in fruit and vegetable waste two-phase anaerobic digestion: ethanol-path vs. butyrate-path[J]. Waste Management, 2021, 126: 737-746. |
62 | YANG Si, XUE Weiqi, LIU Pingbo, et al. Revealing the methanogenic pathways for anaerobic digestion of key components in food waste: performance, microbial community, and implications[J]. Bioresource Technology, 2022, 347: 126340. |
63 | ZHANG Mingyuan, MA Yunqian, JI Dandan, et al. Synergetic promotion of direct interspecies electron transfer for syntrophic metabolism of propionate and butyrate with graphite felt in anaerobic digestion[J]. Bioresource Technology, 2019, 287: 121373. |
64 | LI Lei, LIU Haoyu, CHEN Yongdong, et al. Effect of magnet-Fe3O4 composite structure on methane production during anaerobic sludge digestion: establishment of direct interspecies electron transfer[J]. Renewable Energy, 2022, 188: 52-60. |
65 | ZHAO Zhiqiang, ZHANG Yaobin, LI Yang, et al. Potentially shifting from interspecies hydrogen transfer to direct interspecies electron transfer for syntrophic metabolism to resist acidic impact with conductive carbon cloth[J]. Chemical Engineering Journal, 2017, 313: 10-18. |
66 | ZHAO Zhiqiang, SUN Cheng, LI Yang, et al. Upgrading current method of anaerobic co-digestion of waste activated sludge for high-efficiency methanogenesis: establishing direct interspecies electron transfer via ethanol-type fermentation[J]. Renewable Energy, 2020, 148: 523-533. |
67 | LI Yajie, QIAN Jingli, WANG Mengyan, et al. Enhanced performance of anaerobic two-phase reactor treating coal gasification wastewater with the assistance of zero valent iron under co-digestion conditions[J]. Chemical Engineering Journal, 2022, 430: 131996. |
68 | MENG Xiaoshan, SUI Qianwen, LIU Jibao, et al. Relieving ammonia inhibition by zero-valent iron (ZVI) dosing to enhance methanogenesis in the high solid anaerobic digestion of swine manure[J]. Waste Management, 2020, 118: 452-462. |
69 | KONG Xin, WEI Yonghong, XU Shuang, et al. Inhibiting excessive acidification using zero-valent iron in anaerobic digestion of food waste at high organic load rates[J]. Bioresource Technology, 2016, 211: 65-71. |
70 | ZHANG Huiwen, LI Wenqing, ZHOU Chen, et al. Comparison of cobalt ferrate-based nanoparticles for promoting biomethane evolution from lactic acid anaerobic digestion[J]. Bioresource Technology, 2022, 347: 126689. |
71 | LIU Chao, CHEN Yinguang, HUANG Haining, et al. Improved anaerobic digestion under ammonia stress by regulating microbiome and enzyme to enhance VFAs bioconversion: the new role of glutathione[J]. Chemical Engineering Journal, 2022, 433: 134562. |
[1] | XI Yonglan, WANG Chengcheng, YE Xiaomei, LIU Yang, JIA Zhaoyan, CAO Chunhui, HAN Ting, ZHANG Yingpeng, TIAN Yu. Research progress on the application of micro/nano bubbles in anaerobic digestion [J]. Chemical Industry and Engineering Progress, 2023, 42(8): 4414-4423. |
[2] | LIU Yang, YE Xiaomei, MIAO Xiao, WANG Chengcheng, JIA Zhaoyan, CAO Chunhui, XI Yonglan. Pilot-scale process research on dry digestion of rural organic household waste under ammonia stress [J]. Chemical Industry and Engineering Progress, 2023, 42(7): 3847-3854. |
[3] | ZHUANG Jie, XUE Jinhui, ZHAO Bincheng, ZHANG Wenyi. Organic binding mechanism of heavy metals and humus during anaerobic digestion of pig manure [J]. Chemical Industry and Engineering Progress, 2023, 42(6): 3281-3291. |
[4] | ZHU Jiaxin, ZHU Wenzhe, XU Jun, XIE Jing, WANG Wenbiao, XIE Li. Enhancement of anaerobic digestion under antibiotics stress via conductive materials application: A review [J]. Chemical Industry and Engineering Progress, 2023, 42(2): 1008-1019. |
[5] | LIU Yali, ZHANG Hongwei, KANG Xiaorong. Effect and mechanisms of microplastics on anaerobic digestion of sludge [J]. Chemical Industry and Engineering Progress, 2022, 41(9): 5037-5046. |
[6] | SHAO Mingshuai, ZHANG Chao, WU Huanan, WANG Ning, CHEN Qindong, XU Qiyong. Treatment process and energy analysis of hydrothermal treatment coupled with anaerobic digestion on food waste digestate management [J]. Chemical Industry and Engineering Progress, 2022, 41(5): 2733-2742. |
[7] | ZHENG Xiaomei, LIN Rujing, ZHOU Wenjing, XU Ling, ZHANG Hongning, ZHANG Xinying, XIE Li. Review on cathode materials for CO2 methanation assisted by microbial electrolytic cell [J]. Chemical Industry and Engineering Progress, 2022, 41(5): 2476-2486. |
[8] | RUAN Min, SUN Yutong, HUANG Zhongliang, LI Hui, ZHANG Xuan, WU Xikai, ZHAO Cheng, YAO Shirong, ZHANG Shuanbao, ZHANG Wei, HUANG Jing. Energy economy evaluation of sludge pretreatment-anaerobic digestion system [J]. Chemical Industry and Engineering Progress, 2022, 41(3): 1503-1516. |
[9] | YAN Xueqian, PEI Xiangjun, DU Jie, MI Xiaohui, BAI Linqin, MA Rui, ZHANG Mingkuan, QIAN Jin. Preparation, characterization and application of Bi2O2CO3/Fe3O4 magnetic composite material in environmental treatment [J]. Chemical Industry and Engineering Progress, 2021, 40(6): 3515-3525. |
[10] | Tingting WANG, Zhiqiang ZHAO, Yaobin ZHANG. Enhancement of anaerobic digestion of oily sludge by alkali pretreatment coupled with zero-valent iron [J]. Chemical Industry and Engineering Progress, 2021, 40(1): 534-541. |
[11] | Lianpei ZOU, Lin SONG, Xiaowei LI, Yulan WAN, Man LI, Jianyong LIU, Chuang OUYANG, Hui XI, Guangren QIAN, Xiaohu DAI. Research progress of the inhibition of components of food waste on anaerobic digestion [J]. Chemical Industry and Engineering Progress, 2020, 39(S2): 362-371. |
[12] | Guozhi FU, Wenyang GUO, Zonghu MA, Wei LIU, Bokai LI, Ziyan SUN, Zhenxin WANG, Yeqing LI. Analysis of gas generation performance and key microorganisms of high solid anaerobic digestion of straw mixed with pig manure [J]. Chemical Industry and Engineering Progress, 2020, 39(8): 3386-3394. |
[13] | Sisi CHEN,Dianhai YANG,Weihai PANG,Bin DONG,Xiaohu DAI. Main influencing factors and mechanisms of anaerobic transformation of excess sludge in China [J]. Chemical Industry and Engineering Progress, 2020, 39(4): 1511-1520. |
[14] | Bo XU, Yongzhi CHI, Hongli ZHANG, Jianhai ZHAO, Yanmei DING, Yifan ZHANG, Yuyou LI. Enhanced treatment of anaerobic digestion reject water by magnetic flocculation technology [J]. Chemical Industry and Engineering Progress, 2020, 39(11): 4693-4701. |
[15] | Taotao TANG,Jiang LI,Zhao YANG,Fuliang XIANG,Yuehu WANG,Yancheng LI. Research progress in on microbial community structure of anaerobic digestion of sludge [J]. Chemical Industry and Engineering Progress, 2020, 39(1): 320-328. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||
京ICP备12046843号-2;京公网安备 11010102001994号 Copyright © Chemical Industry and Engineering Progress, All Rights Reserved. E-mail: hgjz@cip.com.cn Powered by Beijing Magtech Co. Ltd |