Chemical Industry and Engineering Progress ›› 2023, Vol. 42 ›› Issue (3): 1606-1617.DOI: 10.16085/j.issn.1000-6613.2022-0994
• Resources and environmental engineering • Previous Articles Next Articles
ZHAO Xingcheng(), JIA Fangxu(), JIANG Weiyu, CHEN Jiayi, LIU Chenyu, YAO Hong
Received:
2022-05-27
Revised:
2022-07-11
Online:
2023-04-10
Published:
2023-03-15
Contact:
JIA Fangxu
赵星程(), 贾方旭(), 蒋伟彧, 陈佳熠, 刘晨雨, 姚宏
通讯作者:
贾方旭
作者简介:
赵星程(1992—),男,博士研究生,研究方向为厌氧氨氧化污水脱氮处理。E-mail:20115052@bjtu.edu.cn。
基金资助:
CLC Number:
ZHAO Xingcheng, JIA Fangxu, JIANG Weiyu, CHEN Jiayi, LIU Chenyu, YAO Hong. Redox mediators-mediated anaerobic ammonium oxidation process for biological nitrogen removal: a review[J]. Chemical Industry and Engineering Progress, 2023, 42(3): 1606-1617.
赵星程, 贾方旭, 蒋伟彧, 陈佳熠, 刘晨雨, 姚宏. 氧化还原介体介导厌氧氨氧化生物脱氮的研究进展[J]. 化工进展, 2023, 42(3): 1606-1617.
Add to citation manager EndNote|Ris|BibTeX
URL: https://hgjz.cip.com.cn/EN/10.16085/j.issn.1000-6613.2022-0994
RMs 类型 | 反应器类型/ 有效体积 | 温度 /°C | pH | 运行 时间 | 添加量 /mg·L-1 | 进水浓度/mg·L-1 | 氮去除效果 | 参考 文献 | |
---|---|---|---|---|---|---|---|---|---|
NH | NO | ||||||||
FA | 血清瓶/100mL | 37±0.2 | 7.8±0.1 | 120h | 308.24 | 50 | 50 | NRR①提高7.6% | [ |
UASB②/7L | 32±1 | — | 70d | 50 | 150 | 150 | NRR提高12.7% | [ | |
UASB/2.5L | 35±1 | 7.5±0.1 | 54d | 25.2~80.3 | 150~210 | 150~220 | NRR=1.7kg/(m3·d) | [ | |
ABR③/1L | 15 | 7.8±0.2 | 77d | 15.4~30.8 | 75~115 | 100~132 | NRR提高39.2% | [ | |
HA | SBR④/3.75L | 30 | 7.5~8.0 | 43d | 50~200 | 2300 | 2300 | 随HA浓度增加,NRE由58%降低至39.45% | [ |
SNAP⑤/12L | 32~33 | 7.5~7.8 | 92d | 120~1637 | 200~700 | — | HA=576mg/L时,NRE=96% | [ | |
SBBR⑥/7L | 33±2 | — | 54d | 50~200 | 600 | — | HA=50mg/L时,NRE提升了0.6% | [ |
RMs 类型 | 反应器类型/ 有效体积 | 温度 /°C | pH | 运行 时间 | 添加量 /mg·L-1 | 进水浓度/mg·L-1 | 氮去除效果 | 参考 文献 | |
---|---|---|---|---|---|---|---|---|---|
NH | NO | ||||||||
FA | 血清瓶/100mL | 37±0.2 | 7.8±0.1 | 120h | 308.24 | 50 | 50 | NRR①提高7.6% | [ |
UASB②/7L | 32±1 | — | 70d | 50 | 150 | 150 | NRR提高12.7% | [ | |
UASB/2.5L | 35±1 | 7.5±0.1 | 54d | 25.2~80.3 | 150~210 | 150~220 | NRR=1.7kg/(m3·d) | [ | |
ABR③/1L | 15 | 7.8±0.2 | 77d | 15.4~30.8 | 75~115 | 100~132 | NRR提高39.2% | [ | |
HA | SBR④/3.75L | 30 | 7.5~8.0 | 43d | 50~200 | 2300 | 2300 | 随HA浓度增加,NRE由58%降低至39.45% | [ |
SNAP⑤/12L | 32~33 | 7.5~7.8 | 92d | 120~1637 | 200~700 | — | HA=576mg/L时,NRE=96% | [ | |
SBBR⑥/7L | 33±2 | — | 54d | 50~200 | 600 | — | HA=50mg/L时,NRE提升了0.6% | [ |
生物炭制备 温度/℃ | 反应器类型/ 有效体积 | 温度 /℃ | pH | 运行 时间 | 最佳添加量 /g·L-1 | 进水浓度/mg·L-1 | 氮去除效果 | 参考 文献 | |
---|---|---|---|---|---|---|---|---|---|
NH | NO | ||||||||
300 | UASB/1L | 35±1 | — | 160d | 0.01 | 70~210 | 70~210 | 提高10.7% | [ |
500 | 提高7.1% | ||||||||
800 | 下降4.9% | ||||||||
300 | 血清瓶/120mL | 32±1 | 约7.5 | 60h | 0.01 | 70 | 200 | 提高64.5% | [ |
500 | 提高63.6% | ||||||||
800 | 提高43.9% | ||||||||
300 | UASB/1L | 35±1 | 7.2~7.8 | 80d | 10 | 100 | 100 | 粒径10~30μm,NRE提高21.6% | [ |
粒径10~30μm,NRE提高21.1% | |||||||||
粒径10~30μm,NRE提高9.2% | |||||||||
300 | 血清瓶/100mL | 35 | — | 72h | 10 | 100 | 100 | 提高11.6% | [ |
400 | 血清瓶/100mL | 35±1 | 7.5±0.1 | 40d | 10 | TN=(220±10)~(300±15) | 提高11.6% | [ | |
400 | SBR/1L | 35±1 | — | 106d | 10 | 350±20 | 420±20 | C/N=0.5时,NRE下降3.1% | [ |
C/N=0.7时,NRE提高0.4% | |||||||||
300 | 血清瓶/120mL | 35±1 | 7.5 | 56d | 10 | 70 | 100 | 粒径1~5μm,NRE提高17.5% | [ |
粒径500~1000μm,NRE提高34.6% |
生物炭制备 温度/℃ | 反应器类型/ 有效体积 | 温度 /℃ | pH | 运行 时间 | 最佳添加量 /g·L-1 | 进水浓度/mg·L-1 | 氮去除效果 | 参考 文献 | |
---|---|---|---|---|---|---|---|---|---|
NH | NO | ||||||||
300 | UASB/1L | 35±1 | — | 160d | 0.01 | 70~210 | 70~210 | 提高10.7% | [ |
500 | 提高7.1% | ||||||||
800 | 下降4.9% | ||||||||
300 | 血清瓶/120mL | 32±1 | 约7.5 | 60h | 0.01 | 70 | 200 | 提高64.5% | [ |
500 | 提高63.6% | ||||||||
800 | 提高43.9% | ||||||||
300 | UASB/1L | 35±1 | 7.2~7.8 | 80d | 10 | 100 | 100 | 粒径10~30μm,NRE提高21.6% | [ |
粒径10~30μm,NRE提高21.1% | |||||||||
粒径10~30μm,NRE提高9.2% | |||||||||
300 | 血清瓶/100mL | 35 | — | 72h | 10 | 100 | 100 | 提高11.6% | [ |
400 | 血清瓶/100mL | 35±1 | 7.5±0.1 | 40d | 10 | TN=(220±10)~(300±15) | 提高11.6% | [ | |
400 | SBR/1L | 35±1 | — | 106d | 10 | 350±20 | 420±20 | C/N=0.5时,NRE下降3.1% | [ |
C/N=0.7时,NRE提高0.4% | |||||||||
300 | 血清瓶/120mL | 35±1 | 7.5 | 56d | 10 | 70 | 100 | 粒径1~5μm,NRE提高17.5% | [ |
粒径500~1000μm,NRE提高34.6% |
RMs 类型 | 反应器类型/ 有效体积 | 温度/℃ | pH | 运行 时间 | 添加量 /mg·L-1 | 进水浓度/mg·L-1 | 氮去除效果 | 参考 文献 | |
---|---|---|---|---|---|---|---|---|---|
NH | NO | ||||||||
GN | 血清瓶/75mL | 35±2 | 7.5±0.1 | 45h | 10 | 100 | 100 | 46.0% | [ |
GO | 血清瓶/100mL | 35 | — | 42h | 100 | 120 | 150 | — | [ |
GO | 血清瓶/100mL | 35±1 | 7.5 | 4h | 100 | 50 | 50 | 17.2% | [ |
GO | USFCWs①/1.5L | 37±1 | 7~8 | 61d | 1或10 | 50 | 66 | — | [ |
rGO | SBR/0.3L | 35±1 | 7.0±0.2 | 220d | 100 | 50 | 65 | 27.4% | [ |
rGO | SBR/0.5L | 35±1 | 7.0±0.2 | 200d | 100 | 120 | 150 | 13.7% | [ |
rGO | 血清瓶/100mL | 13 | 7.3±0.2 | 2~8h | 15 | 25 | 30 | — | [ |
rGO | SBR/5L | 10~30 | 7.6±0.3 | 316h | 15 | TN=124~269 | 温度大于15°C时,NRR可提升17% | [ | |
rGO | SBR/1L | 15或23 | 7.5±0.4 | 26d | — | — | NRR与对照组相似 | [ | |
GO/rGO | 血清瓶/100mL | 35 | 7.5±0.2 | 36h/18d | 25~150 | 100 | 132 | GO比RGO对Anammox具有更好的促进效果 | [ |
RMs 类型 | 反应器类型/ 有效体积 | 温度/℃ | pH | 运行 时间 | 添加量 /mg·L-1 | 进水浓度/mg·L-1 | 氮去除效果 | 参考 文献 | |
---|---|---|---|---|---|---|---|---|---|
NH | NO | ||||||||
GN | 血清瓶/75mL | 35±2 | 7.5±0.1 | 45h | 10 | 100 | 100 | 46.0% | [ |
GO | 血清瓶/100mL | 35 | — | 42h | 100 | 120 | 150 | — | [ |
GO | 血清瓶/100mL | 35±1 | 7.5 | 4h | 100 | 50 | 50 | 17.2% | [ |
GO | USFCWs①/1.5L | 37±1 | 7~8 | 61d | 1或10 | 50 | 66 | — | [ |
rGO | SBR/0.3L | 35±1 | 7.0±0.2 | 220d | 100 | 50 | 65 | 27.4% | [ |
rGO | SBR/0.5L | 35±1 | 7.0±0.2 | 200d | 100 | 120 | 150 | 13.7% | [ |
rGO | 血清瓶/100mL | 13 | 7.3±0.2 | 2~8h | 15 | 25 | 30 | — | [ |
rGO | SBR/5L | 10~30 | 7.6±0.3 | 316h | 15 | TN=124~269 | 温度大于15°C时,NRR可提升17% | [ | |
rGO | SBR/1L | 15或23 | 7.5±0.4 | 26d | — | — | NRR与对照组相似 | [ | |
GO/rGO | 血清瓶/100mL | 35 | 7.5±0.2 | 36h/18d | 25~150 | 100 | 132 | GO比RGO对Anammox具有更好的促进效果 | [ |
1 | MULDER A, VAN DE GRAAF A A, ROBERTSON L A, et al. Anaerobic ammonium oxidation discovered in a denitrifying fluidized bed reactor[J]. FEMS Microbiology Ecology, 1995, 16(3): 177-183. |
2 | VAN DE GRAAF A A, MULDER A, DE BRUIJN P, et al. Anaerobic oxidation of ammonium is a biologically mediated process[J]. Applied and Environmental Microbiology, 1995, 61(4): 1246-1251. |
3 | Muhammad ALI, OKABE Satoshi. Anammox-based technologies for nitrogen removal: advances in process start-up and remaining issues[J]. Chemosphere, 2015, 141: 144-153. |
4 | JIA Fangxu, YANG Qing, HAN Jinhao, et al. Modeling optimization and evaluation of tightly bound extracellular polymeric substances extraction by sonication[J]. Applied Microbiology and Biotechnology, 2016, 100(19): 8485-8494. |
5 | JIA Fangxu, YANG Qing, LIU Xiuhong, et al. Stratification of extracellular polymeric substances (EPS) for aggregated Anammox microorganisms[J]. Environmental Science & Technology, 2017, 51(6): 3260-3268. |
6 | 贾方旭, 刘莹洁, 于晓华, 等. 尿素废水生物处理技术原理与工艺研究进展[J]. 中国环境科学, 2020, 40(12): 5270-5279. |
JIA Fangxu, LIU Yingjie, YU Xiaohua, et al. Principle and application of urea wastewater biological treatment technology[J]. China Environmental Science, 2020, 40(12): 5270-5279. | |
7 | JIA Fangxu, PENG Yongzhen, LI Jianwei, et al. Metagenomic prediction analysis of microbial aggregation in Anammox-dominated community[J]. Water Environment Research, 2021, 93(11): 2549-2558. |
8 | 张星星, 张钰, 王超超, 等. 短程反硝化耦合厌氧氨氧化工艺及其应用前景研究进展[J]. 化工进展, 2020, 39(5): 1981-1991. |
ZHANG Xingxing, ZHANG Yu, WANG Chaochao, et al. Research advances in application prospect of partial denitrification coupled with Anammox: a review[J]. Chemical Industry and Engineering Progress, 2020, 39(5): 1981-1991. | |
9 | VAN DE GRAAF A A, DE BRUIJN P, ROBERTSON L A, et al. Autotrophic growth of anaerobic ammonium-oxidizing micro-organisms in a fluidized bed reactor[J]. Microbiology, 1996, 142(8): 2187-2196. |
10 | KARTAL B, KUENEN J, VAN LOOSDRECHT M V. Sewage treatment with Anammox[J]. Science, 2010, 328(5979): 702-703. |
11 | 贾方旭, 彭永臻, 杨庆. 厌氧氨氧化菌与其他细菌之间的协同竞争关系[J]. 环境科学学报, 2014, 34(6): 1351-1361. |
JIA Fangxu, PENG Yongzhen, YANG Qing. Competition and synergism between Anammox bacteria and other bacteria[J]. Acta Scientiae Circumstantiae, 2014, 34(6): 1351-1361. | |
12 | VAN DER STAR Wouter R L, ABMA Wiebe R, BLOMMERS Dennis, et al. Startup of reactors for anoxic ammonium oxidation: experiences from the first full-scale Anammox reactor in Rotterdam[J]. Water Research, 2007, 41(18): 4149-4163. |
13 | ZHANG Lei, NARITA Yuko, GAO Lin, et al. Maximum specific growth rate of Anammox bacteria revisited[J]. Water Research, 2017, 116: 296-303. |
14 | OSHIKI M, SATOH H, OKABE S. Ecology and physiology of anaerobic ammonium oxidizing bacteria[J]. Environmental Microbiology, 2016, 18(9): 2784-2796. |
15 | KARTAL Boran, KELTJENS Jan T. Anammox biochemistry: a tale of heme c proteins[J]. Trends in Biochemical Sciences, 2016, 41(12): 998-1011. |
16 | SINNINGHE DAMSTÉ Jaap S, STROUS Marc, RIJPSTRA W Irene C, et al. Linearly concatenated cyclobutane lipids form a dense bacterial membrane[J]. Nature, 2002, 4196908: 708-712. |
17 | YIN Xin, QIAO Sen, ZHOU Jiti, et al. Fast start-up of the Anammox process with addition of reduced graphene oxides[J]. Chemical Engineering Journal, 2016, 283: 160-166. |
18 | KUENEN J G. Anammox and beyond[J]. Environmental Microbiology, 2020, 22(2): 525-536. |
19 | WATANABE Kazuya, MANEFIELD Mike, LEE Matthew, et al. Electron shuttles in biotechnology[J]. Current Opinion in Biotechnology, 2009, 20(6): 633-641. |
20 | RABAEY Korneel, BOON Nico, Monica HÖFTE, et al. Microbial phenazine production enhances electron transfer in biofuel cells[J]. Environmental Science & Technology, 2005, 39(9): 3401-3408. |
21 | HUSAIN Maroof, HUSAIN Qayyum. Applications of redox mediators in the treatment of organic pollutants by using oxidoreductive enzymes: a review[J]. Critical Reviews in Environmental Science and Technology, 2007, 38(1): 1-42. |
22 | DAI Ruobin, CHEN Xiaoguang, MA Chengyu, et al. Insoluble/immobilized redox mediators for catalyzing anaerobic bio-reduction of contaminants[J]. Reviews in Environmental Science and Bio/Technology, 2016, 15(3): 379-409. |
23 | VAN DER ZEE Frank P, CERVANTES Francisco J. Impact and application of electron shuttles on the redox (bio)transformation of contaminants: a review[J]. Biotechnology Advances, 2009, 27(3): 256-277. |
24 | 陈甜甜, 王先宝, 张雨笛, 等. 氧化还原介体强化生物反硝化脱氮研究进展[J]. 环境化学, 2021, 40(10): 3199-3206. |
CHEN Tiantian, WANG Xianbao, ZHANG Yudi, et al. Enhanced biological denitrification by redox mediators: a review[J]. Environmental Chemistry, 2021, 40(10): 3199-3206. | |
25 | WANG Jing, WANG Di, LIU Guangfei, et al. Enhanced nitrobenzene biotransformation by graphene-anaerobic sludge composite[J]. Journal of Chemical Technology & Biotechnology, 2014, 89(5): 750-755. |
26 | COLUNGA Alejandra, Rene RANGEL-MENDEZ J, CELIS Lourdes B, et al. Graphene oxide as electron shuttle for increased redox conversion of contaminants under methanogenic and sulfate-reducing conditions[J]. Bioresource Technology, 2015, 175: 309-314. |
27 | ZHANG Haikun, LU Hong, WANG Jing, et al. Accelerating effect of bio-reduced graphene oxide on decolorization of acid red 18 by shewanella algae [J]. Applied Biochemistry and Biotechnology, 2014, 174(2): 602-611. |
28 | CHEN Zehan, WANG Yue, WANG Jinxiu, et al. Enhanced activity and selectivity of electrocatalytic denitrification by highly dispersed CuPd bimetals on reduced graphene oxide[J]. Chemical Engineering Journal, 2021, 416: 129074. |
29 | LIAO Yinhao, LI Shengjie, ZHU Xianfang, et al. The promotion and inhibition effect of graphene oxide on the process of microbial denitrification at low temperature[J]. Bioresource Technology, 2021, 340: 125636. |
30 | XU Zhicheng, LI Yuran, GUO Junxiang, et al. An efficient and sulfur resistant K-modified activated carbon for SCR denitrification compared with acid- and Cu-modified activated carbon[J]. Chemical Engineering Journal, 2020, 395: 125047. |
31 | ROXON J J, RYAN A J, WRIGHT S E. Enzymatic reduction of tartrazine by proteus vulgaris from rats[J]. Food and Cosmetics Toxicology, 1967, 5(5): 645-656. |
32 | 苑宏英, 孙烨怡, 李原玲, 等. 不同碳源对低温投加氧化还原介体污水生物反硝化脱氮过程的影响[J]. 化工进展, 2018, 37(2): 783-788. |
YUAN Hongying, SUN Yeyi, LI Yuanling, et al. Effects of different carbon sources on biological denitrification of wastewater at low temperature with adding redox mediator[J]. Chemical Industry and Engineering Progress, 2018, 37(2): 783-788. | |
33 | LIU Yuan, NIU Qigui, WANG Shaopo, et al. Upgrading of the symbiosis of nitrosomanas and Anammox bacteria in a novel single-stage partial nitritation-Anammox system: nitrogen removal potential and microbial characterization[J]. Bioresource Technology, 2017, 244: 463-472. |
34 | WANG Sike, YU Heng, SU Qingxian, et al. Exploring the role of heterotrophs in partial nitritation-Anammox process treating thermal hydrolysis process-anaerobic digestion reject water[J]. Bioresource Technology, 2021, 341: 125762. |
35 | GOTTSHALL Ekaterina Y, BRYSON Sam J, COGERT Kathryn I, et al. Sustained nitrogen loss in a symbiotic association of Comammox Nitrospira and Anammox bacteria[J]. Water Research, 2021, 202: 117426. |
36 | PROKOPENKO M G, HIRST M B, DE BRABANDERE L, et al. Nitrogen losses in anoxic marine sediments driven by Thioploca-Anammox bacterial consortia[J]. Nature, 2013, 500(7461): 194-198. |
37 | XIAO Rui, ZHU Wanlu, ZHENG Yuanzhu, et al. Active assimilators of soluble microbial products produced by wastewater Anammox bacteria and their roles revealed by DNA-SIP coupled to metagenomics[J]. Environment International, 2022, 164: 107265. |
38 | WANG Yujia, HU Xiaomin, JIANG Binhui, et al. Symbiotic relationship analysis of predominant bacteria in a lab-scale Anammox UASB bioreactor[J]. Environmental Science and Pollution Research, 2016, 23(8): 7615-7626. |
39 | XU Jisheng, ZHAO Bingzi, CHU Wenying, et al. Chemical nature of humic substances in two typical Chinese soils (upland vs. paddy soil): a comparative advanced solid state NMR study[J]. Science of the Total Environment, 2017, 576: 444-452. |
40 | LI Mu, SU Yinglong, CHEN Yinguang, et al. The effects of fulvic acid on microbial denitrification: promotion of NADH generation, electron transfer, and consumption[J]. Applied Microbiology and Biotechnology, 2016, 100(12): 5607-5618. |
41 | LIU Lingjie, JI Min, WANG Fen, et al. Insight into the short-term effect of fulvic acid on nitrogen removal performance and N-acylated-L-homoserine lactones (AHLs) release in the Anammox system[J]. Science of the Total Environment, 2020, 704: 135285. |
42 | 王家辉, 张苧文. 垃圾渗滤液中富里酸对厌氧氨氧化污泥的脱氮效能的影响[J]. 辽宁化工, 2021, 50(12): 1793-1798. |
WANG Jiahui, ZHANG Ningwen. Effect of fulvic acid in landfill leachate on denitrification efficiency of Anammox sludge[J]. Liaoning Chemical Industry, 2021, 50(12): 1793-1798. | |
43 | LIU Lingjie, WANG Fen, XU Sihan, et al. Long-term effect of fulvic acid amendment on the Anammox biofilm system at 15℃: performance, microbial community and metagenomics analysis[J]. Bioresource Technology, 2022, 344(B): 126234. |
44 | CHEN Xiujuan, XU Yuan, FAN Mengjie, et al. The stimulatory effect of humic acid on the co-metabolic biodegradation of tetrabromobisphenol A in bioelectrochemical system[J]. Journal of Environmental Management, 2019, 235: 350-356. |
45 | KRAIEM Khadija, WAHAB Mohamed Ali, KALLALI Hamadi, et al. Effects of short- and long-term exposures of humic acid on the Anammox activity and microbial community[J]. Environmental Science and Pollution Research, 2019, 26(19): 19012-19024. |
46 | LU Changhao, YUAN Chunli, ZHU Tong, et al. Effect of humic acid on the single-stage nitrogen removal using Anammox and partial nitritation (SNAP) process: performance and bacterial communities[J]. Journal of Environmental Chemical Engineering, 2021, 9(6): 106680. |
47 | LIU Yinuo, HAN Yi, ZHANG Jianbing, et al. Deciphering effects of humic acid in landfill leachate on the simultaneous nitrification, Anammox and denitrification (SNAD) system from performance, electron transfer and microbial community[J]. Science of the Total Environment, 2022, 809: 151178. |
48 | ZHANG Li, WANG Yueping, SODA Satoshi, et al. Effect of fulvic acid on bioreactor performance and on microbial populations within the Anammox process[J]. Bioresource Technology, 2020, 318: 124094. |
49 | QIAO Sen, TIAN Tian, ZHOU Jiti. Effects of quinoid redox mediators on the activity of Anammox biomass[J]. Bioresource Technology, 2014, 152: 116-123. |
50 | DAPSON R W. The history, chemistry and modes of action of carmine and related dyes[J]. Biotechnic & Histochemistry: Official Publication of the Biological Stain Commission, 2007, 82(4/5): 173-187. |
51 | LIU Lingjie, JI Min, WANG Fen, et al. Response of nitrogen removal performance, functional genes abundances and N-acyl-homoserine lactones release to carminic acid of Anammox biomass[J]. Bioresource Technology, 2020, 299: 122567. |
52 | CHEN Guanhong, ZHANG Zhirong, ZHANG Zhiyuan, et al. Redox-active reactions in denitrification provided by biochars pyrolyzed at different temperatures[J]. Science of the Total Environment, 2018, 615: 1547-1556. |
53 | WANG Weigang, LIU Qinghua, XUE Hao, et al. The feasibility and mechanism of redox-active biochar for promoting Anammox performance[J]. Science of the Total Environment, 2022, 814: 152813. |
54 | WANG Weigang, WANG Tong, LIU Qinghua, et al. Biochar-mediated DNRA pathway of Anammox bacteria under varying COD/N ratios[J]. Water Research, 2022, 212: 118100. |
55 | XU Jiajia, LI Chao, ZHU Nanwen, et al. Particle size-dependent behavior of redox-active biochar to promote anaerobic ammonium oxidation (Anammox)[J]. Chemical Engineering Journal, 2021, 410: 127925. |
56 | XU Jiajia, WU Xiaohui, ZHU Nanwen, et al. Anammox process dosed with biochars for enhanced nitrogen removal: role of surface functional groups[J]. Science of the Total Environment, 2020, 748: 141367. |
57 | XU Jiajia, LI Chao, ZHU Nanwen, et al. Alleviating the nitrite stress on anaerobic ammonium oxidation by pyrolytic biochar[J]. Science of the Total Environment, 2021, 774: 145800. |
58 | LI Qian, JIA Ziwen, FU Jingwei, et al. Biochar enhances partial denitrification/Anammox by sustaining high rates of nitrate to nitrite reduction[J]. Bioresource Technology, 2022, 349: 126869. |
59 | XU Jiajia, LI Chao, SHEN Yanwen, et al. Anaerobic ammonium oxidation (Anammox) promoted by pyrogenic biochar: deciphering the interaction with extracellular polymeric substances (EPS)[J]. Science of the Total Environment, 2022, 802: 149884. |
60 | ZHANG Beichen, WANG Jingshu, HUANG Jinhui Jeanne, et al. Promotion of Anammox process by different graphene-based materials: roles of particle size and oxidation degree[J]. Science of the Total Environment, 2022, 831: 154816. |
61 | ELREEDY Ahmed, ISMAIL Sherif, Manal ALI, et al. Unraveling the capability of graphene nanosheets and γ-Fe2O3 nanoparticles to stimulate Anammox granular sludge[J]. Journal of Environmental Management, 2021, 277: 111495. |
62 | WANG Dong, WANG Guowen, ZHANG Guoquan, et al. Using graphene oxide to enhance the activity of Anammox bacteria for nitrogen removal[J]. Bioresource Technology, 2013, 131: 527-530. |
63 | LI Huai, CHI Zifang, YAN Baixing. Long-term impacts of graphene oxide and Ag nanoparticles on Anammox process: performance, microbial community and toxic mechanism[J]. Journal of Environmental Sciences, 2019, 79: 239-247. |
64 | YIN Xin, QIAO Sen, YU Cong, et al. Effects of reduced graphene oxide on the activities of Anammox biomass and key enzymes[J]. Chemical Engineering Journal, 2015, 276: 106-112. |
65 | TOMASZEWSKI Mariusz, CEMA Grzegorz, CIESIELSKI Slawomir, et al. Cold Anammox process and reduced graphene oxide -Varieties of effects during long-term interaction[J]. Water Research, 2019, 156: 71-81. |
66 | QIAO Sen, YIN Xin, ZHOU Jiti. Application of cathode modified by reduced graphene oxide/polypyrrole to enhance Anammox activity[J]. RSC Advances, 2016, 6(99): 97208-97215. |
67 | TOMASZEWSKI Mariusz, CEMA Grzegorz, Aleksandra ZIEMBIŃSKA-BUCZYŃSKA. Short-term effects of reduced graphene oxide on the Anammox biomass activity at low temperatures[J]. Science of the Total Environment, 2019, 646: 206-211. |
68 | Anna BANACH-WIŚNIEWSKA, TOMASZEWSKI Mariusz, HELLAL Mohamed S, et al. Effect of biomass immobilization and reduced graphene oxide on the microbial community changes and nitrogen removal at low temperatures[J]. Scientific Reports, 2021, 11(1): 840. |
[1] | LI Baixue, XIN Xin, ZHU Yumeng, LIU Qin, LIU Xin. Construction of sulfur autotrophic short-cut denitrification and anaerobic ammonium oxidation (SASD-A) coupling system and effect mechanisms of influent S/N ratio on denitrification process [J]. Chemical Industry and Engineering Progress, 2023, 42(6): 3261-3271. |
[2] | ZHU Jiaxin, ZHU Wenzhe, XU Jun, XIE Jing, WANG Wenbiao, XIE Li. Enhancement of anaerobic digestion under antibiotics stress via conductive materials application: A review [J]. Chemical Industry and Engineering Progress, 2023, 42(2): 1008-1019. |
[3] | YANG Liu, WANG Mingwei, ZHANG Yaobin. Magnetite-loaded biochar for enhanced anaerobic microbial treatment of 2,4-dichlorophenol wastewater [J]. Chemical Industry and Engineering Progress, 2022, 41(9): 5065-5073. |
[4] | LIU Feng, ZHANG Xuezhi, WANG Suqin, FENG Zhen, GE Dandan, YANG Yang. Thiosulfate-driven denitrification coupled with ANAMMOX to enhance total nitrogen removal [J]. Chemical Industry and Engineering Progress, 2022, 41(2): 990-997. |
[5] | ZHUANG Haifeng, XIE Qiaona, TANG Haojie, WU Hao, XUE Xiangdong, SHAN Shengdao. Research progress of magnetic material enhanced anaerobic process for organic wastewater treatment [J]. Chemical Industry and Engineering Progress, 2021, 40(7): 3976-3983. |
[6] | TIAN Shuai, ZHU Yichun, HUANG Shuchang, LIAN Junfeng, QIN Xinxin, REN Liye, LI Xin. Research progress in anaerobic biological treatment of low-strength sewage [J]. Chemical Industry and Engineering Progress, 2021, 40(4): 2338-2346. |
[7] | SONG Huiyun, WANG Ying, CHEN Hu, LYU Yongkang. Effects of salinity on new biological nitrogen removal technology: a review [J]. Chemical Industry and Engineering Progress, 2021, 40(4): 2298-2307. |
[8] | REN Jing, LIU Zhuang, GUO Shujuan, LI Jianfeng, CHENG Fangqin. Progresses of hydrophilic/hydrophobic composite membranes in membrane distillation for enhanced treatment of industrial wastewater [J]. Chemical Industry and Engineering Progress, 2021, 40(11): 6347-6357. |
[9] | Xingxing ZHANG, Yu ZHANG, Chaochao WANG, Fanghua DA, Lezhong XU, Peng WU. Research advances in application prospect of partial denitrification coupled with anammox: a review [J]. Chemical Industry and Engineering Progress, 2020, 39(5): 1981-1991. |
[10] | Ran LÜ,Bin LI,Ying XIAO,Jingwen ZHANG,Yuliang MAI. Research progress on the effects of iron on microbiological nitrogen removal in wastewater [J]. Chemical Industry and Engineering Progress, 2020, 39(2): 709-719. |
[11] | Junxiang XIE, Ying JIANG, Yaofeng CHANG, Jiawei XIE, Menglei GUO, Chongjun CHEN. Research progress of anaerobic ammonia oxidation treatment of urban sewage [J]. Chemical Industry and Engineering Progress, 2020, 39(10): 4175-4184. |
[12] | Haoliang LU, Qing TIAN, Yanbin ZHU, Jian ZHANG, Pengbo JIAO, Huan LIN. State of the art for mechanisms and countermeasures of low temperature biological nitrogen removal [J]. Chemical Industry and Engineering Progress, 2020, 39(1): 372-379. |
[13] | Rongshan BI, Qingqing YANG, Chen CHEN, Shuguang XIANG. Study on effects of annular gas holdup in reversed flow jet loop reactor [J]. Chemical Industry and Engineering Progress, 2019, 38(04): 1696-1701. |
[14] | ZHOU Chen, PAN Yuting, LIU Min, CHEN Ying. Advance of mechanism on N2O emissions from biological denitrification [J]. Chemical Industry and Engineering Progress, 2017, 36(08): 3074-3084. |
[15] | CHEN Hu, WANG Ying, LÜ Yongkang. Progress on mechanisms and influence factors of N2O production in microbial nitrogen removal process from wastewater [J]. Chemical Industry and Engineering Progree, 2016, 35(12): 4020-4025. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||
京ICP备12046843号-2;京公网安备 11010102001994号 Copyright © Chemical Industry and Engineering Progress, All Rights Reserved. E-mail: hgjz@cip.com.cn Powered by Beijing Magtech Co. Ltd |