Chemical Industry and Engineering Progress ›› 2021, Vol. 40 ›› Issue (7): 3976-3983.DOI: 10.16085/j.issn.1000-6613.2020-1654
• Resources and environmental engineering • Previous Articles Next Articles
ZHUANG Haifeng1,2(), XIE Qiaona2, TANG Haojie2, WU Hao1, XUE Xiangdong2, SHAN Shengdao1
Received:
2020-08-19
Revised:
2020-12-02
Online:
2021-07-19
Published:
2021-07-06
Contact:
ZHUANG Haifeng
庄海峰1,2(), 谢巧娜2, 唐浩杰2, 吴昊1, 薛向东2, 单胜道1
通讯作者:
庄海峰
作者简介:
庄海峰(1984—),男,博士,副教授,硕士生导师,研究方向为废水和废物的治理和资源化利用。E-mail:基金资助:
CLC Number:
ZHUANG Haifeng, XIE Qiaona, TANG Haojie, WU Hao, XUE Xiangdong, SHAN Shengdao. Research progress of magnetic material enhanced anaerobic process for organic wastewater treatment[J]. Chemical Industry and Engineering Progress, 2021, 40(7): 3976-3983.
庄海峰, 谢巧娜, 唐浩杰, 吴昊, 薛向东, 单胜道. 磁性材料强化厌氧工艺处理有机废水的研究进展[J]. 化工进展, 2021, 40(7): 3976-3983.
1 | KATO S, HASHIMOTO K, WATANABE K. Methanogenesis facilitated by electric syntrophy via (semi)conductive iron-oxide minerals[J]. Environmental Microbiology, 2012, 14(7): 1646-1654. |
2 | 邢丽. 新型金属/炭材料的合成、表征及催化加氢性能[D]. 大连: 大连理工大学, 2007. |
XING L. Fabrication, characterization and catalytic hydrogenation properties of novel metal/carbon composites[D]. Dalian: Dalian University of Technology, 2007. | |
3 | WANG S F, ZHOU A J, ZHANG J G, et al. Enhanced quinoline removal by zero-valent iron-coupled novel anaerobic processes: performance and underlying function analysis[J]. RSC Advances, 2019, 9(3): 1176-1186. |
4 | WANG Y Y, WANG D L, FANG H Y. Comparison of enhancement of anaerobic digestion of waste activated sludge through adding nano-zero valent iron and zero valent iron[J]. RSC Advances, 2018, 8(48): 27181-27190. |
5 | ZANG Y, YANG Y, HU Y S, et al. Zero-valent iron enhanced anaerobic digestion of pre-concentrated domestic wastewater for bioenergy recovery: characteristics and mechanisms[J]. Bioresource Technology, 2020, 310: 123441. |
6 | PAN X F, LYU N, LI C X, et al. Impact of nano zero valent iron on tetracycline degradation and microbial community succession during anaerobic digestion[J]. Chemical Engineering Journal, 2019, 359: 662-671. |
7 | XU W C, ZHAO H, CAO H B, et al. New insights of enhanced anaerobic degradation of refractory pollutants in coking wastewater: role of zero-valent iron in metagenomic functions[J]. Bioresource Technology, 2020, 300: 122667. |
8 | YANG Y, GUO J L, HU Z Q. Impact of nano zero valent iron (NZVI) on methanogenic activity and population dynamics in anaerobic digestion[J]. Water Research, 2013, 47(17): 6790-6800. |
9 | XU R, XU S N, ZHANG L, et al. Impact of zero valent iron on blackwater anaerobic digestion[J]. Bioresource Technology, 2019, 285: 121351. |
10 | LI L, LI Z Y, SONG K, et al. Improving methane production from algal sludge based anaerobic digestion by co-pretreatment with ultrasound and zero-valent iron[J]. Journal of Cleaner Production, 2020, 255: 120214. |
11 | HE C H, LIN W S, ZHENG X H, et al. Synergistic effect of magnetite and zero-valent iron on anaerobic degradation and methanogenesis of phenol[J]. Bioresource Technology, 2019, 291: 121874. |
12 | TANG H Y, HOLMES D E, UEKI T, et al. Iron corrosion via direct metal-microbe electron transfer[J]. mBio, 2019, 10(3). DOI: 10.1128/mbio.00303-19. |
13 | YANG Y, YANG F, HUANG W W, et al. Enhanced anaerobic digestion of ammonia-rich swine manure by zero-valent iron: with special focus on the enhancement effect on hydrogenotrophic methanogenesis activity[J]. Bioresource Technology, 2018, 270: 172-179. |
14 | BARUA S, DHAR B R. Advances towards understanding and engineering direct interspecies electron transfer in anaerobic digestion[J]. Bioresource Technology, 2017, 244: 698-707. |
15 | CHEN S J, TAO Z, YAO F B, et al. Enhanced anaerobic co-digestion of waste activated sludge and food waste by sulfidated microscale zerovalent iron: insights in direct interspecies electron transfer mechanism[J]. Bioresource Technology, 2020, 316: 123901. |
16 | JIA H, YANG G, NGO H, et al. Enhancing simultaneous response and amplification of biosensor in microbial fuel cell-based upflow anaerobic sludge bed reactor supplemented with zero-valent iron[J]. Chemical Engineering Journal, 2017, 327: 1117-1127. |
17 | ZHU Y H, ZHAO Z Q, YANG Y F, et al. Dual roles of zero-valent iron in dry anaerobic digestion: enhancing interspecies hydrogen transfer and direct interspecies electron transfer[J]. Waste Management, 2020, 118: 481-490. |
18 | YU Q L, ZHANG Y B. Fouling-resistant biofilter of an anaerobic electrochemical membrane reactor[J]. Nature Communications, 2019, 10(1): 4860. |
19 | 蒋海明, 王路路, 李侠. 微生物种间直接电子传递方式耦合产甲烷研究进展[J]. 高校化学工程学报, 2019, 33(6): 1303-1313. |
JIANG H M, WANG L L, LI X. Advances in co-culture stoichiometrically producing mathane via direct interspecies electron transfer within microbes[J]. Journal of Chemical Engineering of Chinese Universities, 2019, 33(6): 1303-1313. | |
20 | JIANG J F, LI L H, CUI M C, et al. Anaerobic digestion of kitchen waste: the effects of source, concentration, and temperature[J]. Biochemical Engineering Journal, 2018, 135: 91-97. |
21 | YUAN T G, KO J H, ZHOU L L, et al. Iron oxide alleviates acids stress by facilitating syntrophic metabolism between Syntrophomonas and methanogens[J]. Chemosphere, 2020, 247: 125866. |
22 | YIN Q D, YANG S, WANG Z Z, et al. Clarifying electron transfer and metagenomic analysis of microbial community in the methane production process with the addition of ferroferric oxide[J]. Chemical Engineering Journal, 2018, 333: 216-225. |
23 | ZHANG Z S, GUO L, WANG Y, et al. Application of iron oxide (Fe3O4) nanoparticles during the two-stage anaerobic digestion with waste sludge: impact on the biogas production and the substrate metabolism[J]. Renewable Energy, 2020, 146: 2724-2735. |
24 | 马金莲. 磁铁矿促进有机质厌氧降解过程及微生物机制初探[D]. 北京: 中国科学院大学, 2016. |
MA J L. Magnetite promote anaerobic degradation of organic matters[D]. Beijing: University of Chinese Academy of Sciences, 2016. | |
25 | IM S, YUN Y M, SONG Y C, et al. Enhanced anaerobic digestion of glycerol by promoting DIET reaction[J]. Biochemical Engineering Journal, 2019, 142: 18-26. |
26 | WANG D X, HAN Y X, HAN H J, et al. New insights into enhanced anaerobic degradation of Fischer-Tropsch wastewater with the assistance of magnetite[J]. Bioresource Technology, 2018, 257: 147-156. |
27 | 王德欣. 外源强化厌氧处理费托合成废水的效能研究[D]. 哈尔滨: 哈尔滨工业大学, 2017. |
WANG D X. Research on enhanced anaerobic treatment of Fischer-Tropsch wastewater with the assistance of exogenous source[D]. Harbin: Harbin Institute of Technology, 2017. | |
28 | BAEK G, JUNG H, KIM J, et al. A long-term study on the effect of magnetite supplementation in continuous anaerobic digestion of dairy effluent—Magnetic separation and recycling of magnetite[J]. Bioresource Technology, 2017, 241: 830-840. |
29 | 赵智强. 厌氧甲烷化中互养微生物种间直接电子传递的构建与强化[D]. 大连: 大连理工大学, 2017. |
ZHAO Z Q. Establishment and enhancement of interspecies electron transfer between syntrophic microorganisms during anaerobic methanosenesis[D]. Dalian: Dalian University of Technology, 2017. | |
30 | ZHU H, HAN Y X, MA W C, et al. New insights into enhanced anaerobic degradation of coal gasification wastewater (CGW) with the assistance of graphene[J]. Bioresource Technology, 2018, 262: 302-309. |
31 | ZHUANG H F, ZHU H, SHAN S D, et al. Potential enhancement of direct interspecies electron transfer for anaerobic degradation of coal gasification wastewater using up-flow anaerobic sludge blanket (UASB) with nitrogen doped sewage sludge carbon assisted[J]. Bioresource Technology, 2018, 270: 230-235. |
32 | ZHANG S, CHANG J L, LIN C, et al. Enhancement of methanogenesis via direct interspecies electron transfer between Geobacteraceae and Methanosaetaceae conducted by granular activated carbon[J]. Bioresource Technology, 2017, 245: 132-137. |
33 | SHRESTHA P M, MALVANKAR N S, WERNER J J, et al. Correlation between microbial community and granule conductivity in anaerobic bioreactors for brewery wastewater treatment[J]. Bioresource Technology, 2014, 174: 306-310. |
34 | YANG Y F, ZHANG Y B, LI Z Y, et al. Adding granular activated carbon into anaerobic sludge digestion to promote methane production and sludge decomposition[J]. Journal of Cleaner Production, 2017, 149: 1101-1108. |
35 | PEREIRA L, DIAS P, SOARES O S G P, et al. Synthesis, characterization and application of magnetic carbon materials as electron shuttles for the biological and chemical reduction of the azo dye Acid Orange 10[J]. Applied Catalysis B: Environmental, 2017, 212: 175-184. |
36 | ZHUANG H F, HAN H J, XU P, et al. Biodegradation of quinoline by Streptomyces sp. N01 immobilized on bamboo carbon supported Fe3O4 nanoparticles[J]. Biochemical Engineering Journal, 2015, 99: 44-47. |
37 | ZHANG M, LI J H, WANG Y C. Impact of biochar-supported zerovalent iron nanocomposite on the anaerobic digestion of sewage sludge[J]. Environmental Science and Pollution Research, 2019, 26(10): 10292-10305. |
38 | ZHUANG H F, ZHU H, ZHANG J, et al. Enhanced 2,4,6-trichlorophenol anaerobic degradation by Fe3O4 supported on water hyacinth biochar for triggering direct interspecies electron transfer and its use in coal gasification wastewater treatment[J]. Bioresource Technology, 2020, 296: 122306. |
39 | GONG K D, HU Q, YAO L, et al. Ultrasonic pretreated sludge derived stable magnetic active carbon for Cr(Ⅵ) removal from wastewater[J]. ACS Sustainable Chemistry & Engineering, 2018, 6: 7283-7291. |
40 | ZHANG Z H, GAO P, CHENG J Q, et al. Enhancing anaerobic digestion and methane production of tetracycline wastewater in EGSB reactor with GAC/NZVI mediator[J]. Water Research, 2018, 136: 54-63. |
41 | DONG D, WANG R K, GENG P F, et al. Enhancing effects of activated carbon supported nano zero-valent iron on anaerobic digestion of phenol-containing organic wastewater[J]. Journal of Environmental Management, 2019, 244: 1-12. |
42 | QIN Y, WANG H S, LI X R, et al. Improving methane yield from organic fraction of municipal solid waste (OFMSW) with magnetic rice-straw biochar[J]. Bioresource Technology, 2017, 245: 1058-1066. |
43 | ZHAO Z Q, LI Y, QUAN X, et al. Towards engineering application: potential mechanism for enhancing anaerobic digestion of complex organic waste with different types of conductive materials[J]. Water Research, 2017, 115: 266-277. |
[1] | XU Chunshu, YAO Qingda, LIANG Yongxian, ZHOU Hualong. Research progress on functionalization strategies of covalent organic frame materials and its adsorption properties for Hg(Ⅱ) and Cr(Ⅵ) [J]. Chemical Industry and Engineering Progress, 2023, 42(S1): 461-478. |
[2] | LAI Shini, JIANG Lixia, LI Jun, HUANG Hongyu, KOBAYASHI Noriyuki. Research progress of ammonia blended fossil fuel [J]. Chemical Industry and Engineering Progress, 2023, 42(9): 4603-4615. |
[3] | CHEN Xiangyu, BIAN Chunlin, XIAO Benyi. Research progress on temperature phased anaerobic digestion technology [J]. Chemical Industry and Engineering Progress, 2023, 42(9): 4872-4881. |
[4] | WANG Chen, BAI Haoliang, KANG Xue. Performance study of high power UV-LED heat dissipation and nano-TiO2 photocatalytic acid red 26 coupling system [J]. Chemical Industry and Engineering Progress, 2023, 42(9): 4905-4916. |
[5] | WANG Xueting, GU Xia, XU Xianbao, ZHAO Lei, XUE Gang, LI Xiang. Effectiveness of hydrothermal pretreatment on valeric acid production during food waste fermentation [J]. Chemical Industry and Engineering Progress, 2023, 42(9): 4994-5002. |
[6] | HUANG Yufei, LI Ziyi, HUANG Yangqiang, JIN Bo, LUO Xiao, LIANG Zhiwu. Research progress on catalysts for photocatalytic CO2 and CH4 reforming [J]. Chemical Industry and Engineering Progress, 2023, 42(8): 4247-4263. |
[7] | XI Yonglan, WANG Chengcheng, YE Xiaomei, LIU Yang, JIA Zhaoyan, CAO Chunhui, HAN Ting, ZHANG Yingpeng, TIAN Yu. Research progress on the application of micro/nano bubbles in anaerobic digestion [J]. Chemical Industry and Engineering Progress, 2023, 42(8): 4414-4423. |
[8] | LIU Yang, YE Xiaomei, MIAO Xiao, WANG Chengcheng, JIA Zhaoyan, CAO Chunhui, XI Yonglan. Pilot-scale process research on dry digestion of rural organic household waste under ammonia stress [J]. Chemical Industry and Engineering Progress, 2023, 42(7): 3847-3854. |
[9] | ZHANG Kai, LYU Qiunan, LI Gang, LI Xiaosen, MO Jiamei. Morphology and occurrence characteristics of methane hydrates in the mud of the South China Sea [J]. Chemical Industry and Engineering Progress, 2023, 42(7): 3865-3874. |
[10] | LI Baixue, XIN Xin, ZHU Yumeng, LIU Qin, LIU Xin. Construction of sulfur autotrophic short-cut denitrification and anaerobic ammonium oxidation (SASD-A) coupling system and effect mechanisms of influent S/N ratio on denitrification process [J]. Chemical Industry and Engineering Progress, 2023, 42(6): 3261-3271. |
[11] | ZHUANG Jie, XUE Jinhui, ZHAO Bincheng, ZHANG Wenyi. Organic binding mechanism of heavy metals and humus during anaerobic digestion of pig manure [J]. Chemical Industry and Engineering Progress, 2023, 42(6): 3281-3291. |
[12] | YANG Hongmei, GAO Tao, YU Tao, QU Chengtun, GAO Jiapeng. Treatment of refractory organics sulfonated phenolic resin with ferrate [J]. Chemical Industry and Engineering Progress, 2023, 42(6): 3302-3308. |
[13] | HUANG Yue, ZHAO Lixin, YAO Zonglu, YU Jiadong, LI Zaixing, SHEN Ruixia, AN Kemeng, HUANG Yali. Research progress in directed bioconversion of lactic acid and acetic acid from wood lignocellulosic wastes [J]. Chemical Industry and Engineering Progress, 2023, 42(5): 2691-2701. |
[14] | RUAN Peng, YANG Runnong, LIN Zirong, SUN Yongming. Advances in catalysts for catalytic partial oxidation of methane to syngas [J]. Chemical Industry and Engineering Progress, 2023, 42(4): 1832-1846. |
[15] | FAN Sihan, YU Guoxi, LAI Chaochao, HE Huan, HUANG Bin, PAN Xuejun. Effect of abiotic modification on photochemical activity of anaerobic microbial products [J]. Chemical Industry and Engineering Progress, 2023, 42(4): 2180-2189. |
Viewed | ||||||||||||||||||||||||||||||||||||||||||||||||||
Full text 417
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||
Abstract 327
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||
京ICP备12046843号-2;京公网安备 11010102001994号 Copyright © Chemical Industry and Engineering Progress, All Rights Reserved. E-mail: hgjz@cip.com.cn Powered by Beijing Magtech Co. Ltd |