Chemical Industry and Engineering Progress ›› 2021, Vol. 40 ›› Issue (7): 3984-3994.DOI: 10.16085/j.issn.1000-6613.2020-1658
• Resources and environmental engineering • Previous Articles Next Articles
ZHAO Yingxin(), MA Zehao, YANG Zhifan, YANG Kaichao, QIU Xiaojie
Received:
2020-08-19
Revised:
2020-11-11
Online:
2021-07-19
Published:
2021-07-06
Contact:
ZHAO Yingxin
通讯作者:
赵迎新
作者简介:
赵迎新(1985—),女,副教授,博士生导师,研究方向为污水低碳处理与资源化。E-mail:基金资助:
CLC Number:
ZHAO Yingxin, MA Zehao, YANG Zhifan, YANG Kaichao, QIU Xiaojie. Progress of advanced oxidation process catalyzed by sludge biochar[J]. Chemical Industry and Engineering Progress, 2021, 40(7): 3984-3994.
赵迎新, 麻泽浩, 杨知凡, 杨凯超, 邱潇洁. 污泥生物炭催化高级氧化过程进展[J]. 化工进展, 2021, 40(7): 3984-3994.
Add to citation manager EndNote|Ris|BibTeX
URL: https://hgjz.cip.com.cn/EN/10.16085/j.issn.1000-6613.2020-1658
生物炭 | 掺杂改性 | 活性位点 | PS类型 | 活性氧(ROS) | 效果 | 参考文献 |
---|---|---|---|---|---|---|
NSC | 尿素污泥共热解 | —C=O,吡啶氮,石墨氮 | PMS | 1O2, | 30min完全去除AO7 | Sun等[ |
MnFe2O4-SAC | MnFe2O4负载 | —OH,—COOH,Mn,Fe | PDS | 橙黄G去除率达94% | Li等[ | |
Fe-ADSBC | 二硫酸铁/零价铁 | FeO,C—O—Fe | PDS | 60min降解94.1%SMT | Chen等[ | |
Mn-SDBC | 氧化锰负载 | Fe,Mn | PDS | 90.38%橙黄G去除率 | Fan等[ | |
生物炭复合催化剂 | Mg/Fe层状双氢氧化物(LDHs) | Fe,Mg | PMS | ·OH,·OOH和1O2 | 92.2%泰乐菌,81.9%罗丹明B | Huang等[ |
ASMn-Nb | MnCl2掺杂,氨热解 | N-炭,MnOx,氧缺陷, 羰基 | PDS,PMS | 40min去除100%酸性橙 | Mian等[ | |
MS-biochar | 氮掺杂 | FexOy、N和石墨C | PDS | SO4-·,·OH | 82.24%四环素去除率 | Yu等[ |
生物炭 | 掺杂改性 | 活性位点 | PS类型 | 活性氧(ROS) | 效果 | 参考文献 |
---|---|---|---|---|---|---|
NSC | 尿素污泥共热解 | —C=O,吡啶氮,石墨氮 | PMS | 1O2, | 30min完全去除AO7 | Sun等[ |
MnFe2O4-SAC | MnFe2O4负载 | —OH,—COOH,Mn,Fe | PDS | 橙黄G去除率达94% | Li等[ | |
Fe-ADSBC | 二硫酸铁/零价铁 | FeO,C—O—Fe | PDS | 60min降解94.1%SMT | Chen等[ | |
Mn-SDBC | 氧化锰负载 | Fe,Mn | PDS | 90.38%橙黄G去除率 | Fan等[ | |
生物炭复合催化剂 | Mg/Fe层状双氢氧化物(LDHs) | Fe,Mg | PMS | ·OH,·OOH和1O2 | 92.2%泰乐菌,81.9%罗丹明B | Huang等[ |
ASMn-Nb | MnCl2掺杂,氨热解 | N-炭,MnOx,氧缺陷, 羰基 | PDS,PMS | 40min去除100%酸性橙 | Mian等[ | |
MS-biochar | 氮掺杂 | FexOy、N和石墨C | PDS | SO4-·,·OH | 82.24%四环素去除率 | Yu等[ |
1 | 戴晓虎. 我国城镇污泥处理处置现状及思考[J]. 给水排水, 2012, 48(2): 1-5. |
DAI X H. Current situation and thinking of sludge treatment and disposal in China[J]. Water & Wastewater Engineering, 2012, 48(2): 1-5. | |
2 | HII K, BAROUTIAN S, PARTHASARATHY R, et al. A review of wet air oxidation and thermal hydrolysis technologies in sludge treatment[J]. Bioresource Technology, 2014, 155: 289-299. |
3 | 张云霞, 王瑞, 王立彤, 等. 填埋方式对污泥填埋稳定性的影响[J]. 中国给水排水, 2011, 27(11): 75-77. |
ZHANG Y X, WANG R, WANG L T, et al. Influence of landfill modes on stabilization of sludge landfill[J]. China Water & Wastewater, 2011, 27(11): 75-77. | |
4 | 余忆玄, 陈虹, 王晓萌, 等. 我国城市污泥中的有机污染物污染状况及其海洋倾倒处置研究[J]. 海洋环境科学, 2013, 32(5): 652-656. |
YU Y X, CHEN H, WANG X M, et al. Pollution characteristics of organic contaminant in sludge from wastewater treatment plants and sludge ocean dumping disposal in China[J]. Marine Environmental Science, 2013, 32(5): 652-656. | |
5 | 李辉, 吴晓芙, 蒋龙波, 等. 城市污泥焚烧工艺研究进展[J]. 环境工程, 2014, 32(6): 88-92. |
LI H, WU X F, JIANG L B, et al. Progress in study on the incineration technology of municipal sewage sludge[J]. Environmental Engineering, 2014, 32(6): 88-92. | |
6 | 陈文和, 邓明佳, 罗辉, 等. 污泥直接干化产生的恶臭及挥发性有机物特征研究[J]. 环境科学, 2014, 35(8): 2897-2902. |
CHEN W H, DENG J M, LUO H, et al. Characteristics of odors and VOCs from sludge direct drying process[J]. Environmental Science, 2014, 35(8): 2897-2902. | |
7 | 刘莹. 城市污水处理厂污泥处理处置现状与技术研究[J].节能与环保, 2019(1): 78-79. |
LIU Y. Present situation and technology of sludge treatment and disposal in municipal sewage treatment plant[J]. Energy Conservation and Environment Protection, 2019(1): 78-79. | |
8 | 周天水, 崔荣煜, 王东田, 等. 市政污泥和工业污泥资源化处置利用技术[J]. 环境科学与技术, 2016, 39(S2): 251-255. |
ZHOU T S, CUI R Y, WANG D T, et al. Resource utilization and disposal technology of municipal and industrial sludge[J]. Environmental Science & Technology, 2016, 39(S2): 251-255. | |
9 | 张俊杰, 邵敬爱, 黄河洵, 等. 利用污泥制备活性炭及其吸附特性的研究进展[J]. 化工进展, 2017, 36(10): 3876-3886. |
ZAHNG J J, SHAO J A, HUANG H X, et al. Review on the preparation of activated carbon from sludge and its adsorption characteristics[J]. Chemical Industry and Engineering Progress, 2017, 36(10): 3876-3886. | |
10 | 杜明明, 卢聪, 王凤超, 等. 污泥活性炭的制备及其在环境治理方面的应用[J]. 应用化工, 2018, 47(12): 2777-2780, 2785. |
DU M M, LU C, WANG F C, et al. Preparation of activated carbon from sludge and its application in environmental treatment[J]. Applied Chemical Industry, 2018, 47(12): 2777-2780, 2785. | |
11 | AGRAFIOTI E, BOURAS G, KALDERIS D, et al. Biochar production by sewage sludge pyrolysis[J]. Journal of Analytical and Applied Pyrolysis, 2013, 101: 72-78. |
12 | REN X, LIANG B, LIU M, et al. Effects of pyrolysis temperature, time and leaf litter and powder coal ash addition on sludge-derived adsorbents for nitrogen oxide[J]. Bioresource Technology, 2012, 125: 300-304, |
13 | 王定美, 王跃强, 袁浩然, 等. 水热炭化制备污泥生物炭的碳固定[J]. 化工学报, 2013, 64(7): 2625-2632. |
WANG D M, WANG Y Q, YUAN H R, et al. Carbon fixation of sludge biochar by hydrothermal carbonization[J]. CIESC Journal, 2013, 64(7): 2625-2632. | |
14 | WANG L, CHANG Y, LI A. Hydrothermal carbonization for energy-efficient processing of sewage sludge: a review[J]. Renewable and Sustainable Energy Reviews, 2019, 108: 423-440. |
15 | 范皓翔, 院士杰, 戴晓虎. 污泥衍生生物炭研究进展[J]. 净水技术, 2019, 38(3): 32-37, 44. |
FAN H X, YUAN S J, DAI X H. Research progress of sludge derived biochar[J]. Water Purification Technology, 2019, 38(3): 32-37, 44. | |
16 | 黄燕宁, 王晓, 张宏杰, 等. 污泥生物炭的研究进展[J]. 功能材料, 2017, 48(9): 9024-9029. |
HUANG Y N, WANG X, ZHANG H J, et al. Research progress on sewage sludge-based biochar[J]. Journal of Functional Materials, 2017, 48(9): 9024-9029. | |
17 | JARIA G, SILVA C P, OLIVEIRA J A B P, et al. Production of highly efficient activated carbons from industrial wastes for the removal of pharmaceuticals from water—A full factorial design[J]. Journal of Hazardous Materials, 2019, 370: 212-218. |
18 | YAN L, LIU Y, ZHANG Y, et al. ZnCl2 modified biochar derived from aerobic granular sludge for developed microporosity and enhanced adsorption to tetracycline[J]. Bioresource Technology, 2020, 297: 122381. |
19 | ZHANG J, SHAO J, JIN Q, et al. Sludge-based biochar activation to enhance Pb(Ⅱ) adsorption[J]. Fuel, 2019, 252: 101-108. |
20 | ROS A, LILLO-RÓDENAS M A, FUENTE E, et al. High surface area materials prepared from sewage sludge-based precursors[J]. Chemosphere, 2006, 65(1): 132-140. |
21 | 杨招艺, 陶家林, 王瑞露, 等. 热解温度对污泥碳基材料表面性质及吸附性能的影响[J]. 环境工程学报, 2019, 13(11): 2711-2721. |
YANG Z Y, TAO J L, WANG R L, et al. Effect of pyrolysis temperature on surface properties and adsorption performance of sludge biochar[J]. Chinese Journal of Environmental Engineering, 2019, 13(11): 2711-2721. | |
22 | SILVA T L, RONIX A, PEZOTI O, et al. Mesoporous activated carbon from industrial laundry sewage sludge: adsorption studies of reactive dye Remazol Brilliant Blue R[J]. Chemical Engineering Journal, 2016, 303: 467-476. |
23 | RIO S, FAUR-BRASQUET C, LE COQ L, et al. Production and characterization of adsorbent materials from an industrial waste[J]. Adsorption, 2005, 11(1): 793-798. |
24 | 翟世民, 柳荣展, 郭雪松, 等. 污水处理厂污泥制备生物炭及应用的研究进展[J]. 化工进展, 2016, 35(S2): 363-368. |
ZHAI S M, LIU R Z, GUO X S, et al. Researches progress and application development of sewage sludge biochar[J]. Chemical Industry and Engineering Progress, 2016, 35(S2): 363-368. | |
25 | 姚宏, 沈燕, 袁鑫, 等. 污泥活性炭理化性质表征及吸附抗生素效果研究[J]. 环境科学与技术, 2012, 35(2): 154-158. |
YAO H, SHEN Y, YUAN X, et al. Research of antibiotics adsorption by sludge activated carbon[J]. Environmental Science & Technology, 2012, 35(2): 154-158. | |
26 | 谭雪梅, 吉芳英, 傅敏, 等. ZnCl2/CuCl2复合活化剂制备污泥活性炭及其分形研究[J]. 环境工程, 2012, 30(3): 85-88. |
TAN X M, JI F Y, FU M, et al. Preparation and fractal research of activated carbon from sludge with ZnCl2/CuCl2 as activating agent[J]. Environmental Engineering, 2012, 30(3): 85-88. | |
27 | LI S, WANG P, ZHENG H, et al. Adsorption and one-step degradation-regeneration of 4-amino-5-hydroxynaphthalene-2,7-disulfonic acid using biochar-based BiFeO3 nanocomposites[J]. Bioresource Technology, 2017, 245:1103-1109. |
28 | 刘亚利, 贺月莛, 汤慧俐, 等. 污泥活性炭的制备、改性及应用研究进展[J]. 应用化工, 2020, 49(6): 1527-1531. |
LIU Y L, HE Y T, TANG H L, et al. Study on preparation, modification and application of sludge activated carbon[J]. Applied Chemical Industry, 2020, 49(6): 1527-1531. | |
29 | 王静松, 刘杰, 唐蕾. 污泥基生物质炭在水处理中的应用[J]. 化工管理, 2020(7): 113-114. |
WANG J S, LIU J, TANG L. Application of wasted sludge-based biochar in water treatment[J]. Chemical Enterprise Management, 2020(7): 113-114. | |
30 | 黄智辉, 纪志永, 陈希, 等. 过硫酸盐高级氧化降解水体中有机污染物研究进展[J]. 化工进展, 2019, 38(5): 2461-2470. |
HUANG Z H, JI Z Y, CHEN X, et al. Degradation of organic pollutants in water by persulfate advanced oxidation[J]. Chemical Industry and Engineering Progress, 2019, 38(5): 2461-2470. | |
31 | REN Y, LIN L, MA J, et al. Sulfate radicals induced from peroxymonosulfate by magnetic ferrospinel MFe2O4 (M = Co, Cu, Mn, and Zn) as heterogeneous catalysts in the water[J]. Applied Catalysis B: Environmental, 2015, 165: 572-578. |
32 | WANG J, WANG S. Activation of persulfate (PS) and peroxymonosulfate (PMS) and application for the degradation of emerging contaminants[J]. Chemical Engineering Journal, 2018, 334: 1502-1517. |
33 | YU J, TANG L, PANG Y, et al. Magnetic nitrogen-doped sludge-derived biochar catalysts for persulfate activation: internal electron transfer mechanism[J]. Chemical Engineering Journal, 2019, 364: 146-159. |
34 | MATZEK L W, CARTER K E. Activated persulfate for organic chemical degradation: a review[J]. Chemosphere, 2016, 151: 178-188. |
35 | LIANG C, LIN Y, SHIN W. Persulfate regeneration of trichloroethylene spent activated carbon[J]. Journal of Hazardous Materials, 2009, 168(1): 187-192. |
36 | DUAN X G, SUN H Q, WANG S B. Metal-free carbocatalysis in advanced oxidation reactions[J]. Accounts of Chemical Research, 2018, 51(3): 678-687. |
37 | SUN H Q, LIU S Z, ZHOU G L, et al. Reduced graphene oxide for catalytic oxidation of aqueous organic pollutants[J]. ACS Applied Materials & Interfaces, 2012, 4(10): 5466-5471. |
38 | WANG S Z, WANG J L. Activation of peroxymonosulfate by sludge-derived biochar for the degradation of triclosan in water and wastewater[J]. Chemical Engineering Journal, 2019, 256: 350-358. |
39 | SHAO P H, TIAN J Y, YANG F, et al. Catalytic oxidation: identification and regulation of active sites on nanodiamonds: establishing a highly efficient catalytic system for oxidation of organic contaminants[J]. Advanced Functional Materials, 2018, 28(13): 1870081. |
40 | HUANG B C, JIANG J, HUANG G X, et al. Sludge biochar-based catalysts for improved pollutant degradation by activating peroxymonosulfate[J]. Journal of Materials Chemistry A, 2018, 6(19): 8978-8985. |
41 | HU W R, TAN J T, PAN G H, et al. Direct conversion of wet sewage sludge to carbon catalyst for sulfamethoxazole degradation through peroxymonosulfate activation[J]. Science of the Total Environment, 2020, 728: 138853. |
42 | DUAN X G, SUN H Q, SHAO Z P, et al. Nonradical reactions in environmental remediation processes: uncertainty and challenges[J]. Applied Catalysis B: Environmental, 2018, 224: 973-982. |
43 | DUAN X G, SUN H Q, WANG S B. Comment on “activation of persulfate by graphitized nanodiamonds for removal of organic compounds”[J]. Environmental Science & Technology, 2017, 51(9): 5351-5352. |
44 | CHEN Y D, DUAN X G, ZHANG C F, et al. Graphitic biochar catalysts from anaerobic digestion sludge for nonradical degradation of micropollutants and disinfection[J]. Chemical Engineering Journal, 2020, 384: 123244. |
45 | ZHU S S, HUANG X C, MA F, et al. Catalytic removal of aqueous contaminants on N-doped graphitic biochars: inherent roles of adsorption and nonradical mechanisms[J]. Environmental Science & Technology, 2018, 52(15): 8649-8658. |
46 | ZHU S J, WANG W, XU Y P, et al. Iron sludge-derived magnetic Fe0/Fe3C catalyst for oxidation of ciprofloxacin via peroxymonosulfate activation[J]. Chemical Engineering Journal, 2019, 365: 99-110. |
47 | WEI J, LIU Y T, ZHU Y H, et al. Enhanced catalytic degradation of tetracycline antibiotic by persulfate activated with modified sludge bio-hydrochar[J]. Chemosphere, 2020, 247: 125854. |
48 | DUAN X G, O’DONNELL K, SUN H Q, et al. Catalysis: sulfur and nitrogen co-doped graphene for metal-free catalytic oxidation reactions[J]. Small, 2015, 11(25): 244-251. |
49 | MIAN M M, LIU G. Activation of peroxymonosulfate by chemically modified sludge biochar for the removal of organic pollutants: understanding the role of active sites and mechanism[J]. Chemical Engineering Journal, 2020, 392: 856-863. |
50 | SUN H W, PENG X X, ZHANG S P, et al. Activation of peroxymonosulfate by nitrogen-functionalized sludge carbon for efficient degradation of organic pollutants in water[J]. Bioresource Technology, 2017, 241: 244-251. |
51 | LI Y,YANG Z Q, ZHANG H G, et al. Fabrication of sewage sludge-derived magnetic nanocomposites as heterogeneous catalyst for persulfate activation of Orange G degradation[J]. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2017, 529: 856-863. |
52 | CHEN Y D, BAI S W, LI R X, et al. Magnetic biochar catalysts from anaerobic digested sludge: production, application and environment impact[J]. Environment International, 2019, 126: 302-308. |
53 | FAN Z X, ZHANG X, LI M, et al. Activation of persulfate by manganese oxide-modified sludge-derived biochar to degrade Orange G in aqueous solution[J]. Environmental Pollutants and Bioavailability, 2019, 31(1): 70-79. |
54 | HUANG Z Y, WANG T L, SHEN M X, et al. Coagulation treatment of swine wastewater by the method of in-situ forming layered double hydroxides and sludge recycling for preparation of biochar composite catalyst[J]. Chemical Engineering Journal, 2019, 369: 784-792. |
55 | MIAN M M, LIU G, FU B, et al. Facile synthesis of sludge-derived MnOx-N-biochar as an efficient catalyst for peroxymonosulfate activation[J]. Applied Catalysis B: Environmental, 2019, 255: 117765. |
56 | 张志旭, 罗琳, 许振成. 磁性污泥炭在四环素降解中的应用研究[J]. 农业环境科学学报, 2017, 36(4): 777-782. |
ZHANG Z X, LUO L, XU Z C. Application research of degradation of tetracycline on sewage sludge derived magnetic carbon[J]. Journal of Agro-Environment Science, 2017, 36(4): 777-782. | |
57 | WANG J, LIAO Z, IFTHIKAR J, et al. Treatment of refractory contaminants by sludge-derived biochar/persulfate system via both adsorption and advanced oxidation process[J]. Chemosphere, 2017, 185: 754-763. |
58 | WANG X, GU L, ZHOU P, et al. Pyrolytic temperature dependent conversion of sewage sludge to carbon catalyst and their performance in persulfate degradation of 2-naphthol[J]. Chemical Engineering Journal, 2017, 324: 203-215. |
59 | YIN R, GUO W, WANG H, et al. Singlet oxygen-dominated peroxydisulfate activation by sludge-derived biochar for sulfamethoxazole degradation through a nonradical oxidation pathway: performance and mechanism[J]. Chemical Engineering Journal, 2019, 357: 589-599. |
60 | DIAO Z, DONG F, YAN L, et al. Synergistic oxidation of Bisphenol A in a heterogeneous ultrasound-enhanced sludge biochar catalyst/persulfate process: reactivity and mechanism[J]. Journal of Hazardous Materials, 2020, 384: 121385. |
61 | LUO K, YANG Q, PANG Y, et al. Unveiling the mechanism of biochar-activated hydrogen peroxide on the degradation of ciprofloxacin[J]. Chemical Engineering Journal, 2019, 374: 520-530. |
62 | LING J K, YU T Z, MING X L, et al. Conversion of Fe-rich waste sludge into nano-flake Fe-SC hybrid Fenton-like catalyst for degradation of AOⅡ[J]. Environmental Pollution, 2016, 216: 568-574. |
63 | ZHANG F, WU K, ZHOU H, et al. Ozonation of aqueous phenol catalyzed by biochar produced from sludge obtained in the treatment of coking wastewater[J]. Journal of Environmental Management, 2018, 224: 376-386. |
64 | ZHOU G, FANG F, CHEN Z, et al. Facile synthesis of paper mill sludge-derived heterogeneous catalyst for the Fenton-like degradation of methylene blue[J]. Catalysis Communications, 2015, 62: 71-74. |
65 | ZHANG H, XUE G, CHEN H, et al. Magnetic biochar catalyst derived from biological sludge and ferric sludge using hydrothermal carbonization: preparation, characterization and its circulation in Fenton process for dyeing wastewater treatment[J]. Chemosphere, 2018, 191: 64-71. |
66 | TU Y, TIAN S, KONG L, et al. Co-catalytic effect of sewage sludge-derived char as the support of Fenton-like catalyst[J]. Chemical Engineering Journal, 2012, 185: 44-51. |
67 | WEN H, GU L, YU H, et al. Radical assisted iron impregnation on preparing sewage sludge derived Fe/carbon as highly stable catalyst for heterogeneous Fenton reaction[J]. Chemical Engineering Journal, 2018, 352: 837-846. |
68 | LI J, PAN L J, YU G W, et al. The synthesis of heterogeneous Fenton-like catalyst using sewage sludge biochar and its application for ciprofloxacin degradation[J]. Science of the total environment, 2019, 654: 1284-1292. |
69 | GU L, ZHU N, GUO H, et al. Adsorption and Fenton-like degradation of naphthalene dye intermediate on sewage sludge derived porous carbon[J]. Journal of Hazardous Materials, 2013, 246/247: 145-153. |
70 | LYU Y, ZHANG J, ASGODOM M E, et al. Study on the degradation of accumulated bisphenol S and regeneration of magnetic sludge-derived biochar upon microwave irritation in the presence of hydrogen peroxide for application in integrated process[J]. Bioresource Technology, 2019, 293: 122072. |
71 | GU L, LI C, WEN H, et al. Facile synthesis of magnetic sludge-based carbons by using electro-Fenton activation and its performance in dye degradation[J]. Bioresource Technology, 2017, 241: 391-396. |
72 | YUAN S, DAI X. Facile synthesis of sewage sludge-derived mesoporous material as an efficient and stable heterogeneous catalyst for photo-Fenton reaction[J]. Applied Catalysis B: Environmental, 2014, 154/155: 252-258. |
73 | 史宇滨, 陈子文, 鲍玥, 等. 造纸污泥活性炭在催化臭氧氧化降解橙黄Ⅱ中的应用研究[J]. 浙江大学学报(理学版), 2017, 44(5): 568-575. |
SHI Y B, CHEN Z W, BAO Y, et al. Application of activated carbon from papermaking sludge in catalytic ozonation of orange Ⅱ[J]. Journal of Zhejiang University(Science Edition), 2017, 44(5): 568-575. | |
74 | 李璐, 封莉, 张立秋. 污泥基活性炭表面官能团对其催化臭氧氧化活性的影响[J]. 环境化学, 2014, 33(6): 937-942. |
LI L, FENG L, ZHANG L Q. Influences of surface functional groups of sludge-corncob activated carbon on catalytic ozonation activity[J]. Environmental Chemistry, 2014, 33(6): 937-942. | |
75 | XU J, YU Y, DING K, et al. Heterogeneous catalytic ozonation of hydroquinone using sewage sludge-derived carbonaceous catalysts[J]. Water Science and Technology, 2018, 77(5/6): 1410-1417. |
76 | 李璐, 封莉, 张立秋. 污泥基活性炭催化臭氧氧化对氯苯甲酸效能[J]. 环境工程学报, 2014, 8(9): 3613-3619. |
LI L, FENG L, ZHANG L Q. Ozonation degradation of para-chlorobenzoic acid by sludge-corncob activated carbon[J]. Chinese Journal of Environmental Engineering, 2014, 8(9): 3613-3619. | |
77 | WANG Y, ZHU X X, FENG D Q, et al. Biochar-supported FeS/Fe3O4 composite for catalyzed Fenton-type degradation of ciprofloxacin[J]. Catalysts, 2019, 9(12):106 |
78 | 王红娟, 齐飞, 封莉, 等. 污泥基活性炭催化臭氧氧化降解水中微量布洛芬的效能研究[J]. 环境科学, 2012, 33(5): 1591-1596. |
WANG H J, QI F, FENG L, et al. Catalytic ozonation of ibuprofen in aqueous solution by activated carbon made from sludge and corn cob[J]. Environmental Science, 2012, 33(5): 1591-1596. | |
79 | 陈美玲, 颜家保, 胡杰, 等. 钢渣污泥陶粒催化剂催化臭氧深度处理炼油废水[J]. 环境工程学报, 2019, 13(6): 1299-1304. |
CHEN M L, YAN J B, HU J, et al. Advanced treatment of refinery wastewater by catalytic ozonation with steel slag sludge ceramsite catalyst[J]. Chinese Journal of Environmental Engineering, 2019, 13(6): 1299-1304. | |
80 | 卢思颖, 孙中恩, 封莉, 等. T-FMSAC制备及其催化臭氧氧化去除p-CBA效能研究[J]. 中国环境科学, 2017, 37(6): 2139-2144. |
LU S Y, SUN Z E, FENG L, et al. Preparation of T-FMSAC and its catalytic ozonation performance on the removal of p-CBA in water[J]. China Environmental Science, 2017, 37(6): 2139-2144. | |
81 | 游洋洋, 卢学强, 许丹宇, 等. 复合污泥基活性炭催化臭氧氧化降解水中罗丹明B[J]. 工业水处理, 2015, 35(1): 56-59. |
YOU Y Y, LU X Q, XU D Y, et al. The catalytic ozonation of sludge-based composite activated carbon for the degradation of RhB in aqueous solution[J]. Industrial Water Treatment, 2015, 35(1): 56-59. | |
82 | HUANG Y X, SUN Y R, XU Z H, et al. Removal of aqueous oxalic acid by heterogeneous catalytic ozonation with MnOx/sewage sludge-derived activated carbon as catalysts[J]. Science of the Total Environment, 2017, 575: 50-57. |
83 | JAMIL T S, SHARAF EL-DEEN S E A. Removal of persistent tartrazine dye by photodegradation on TiO2 nanoparticles enhanced by immobilized calcinated sewage sludge under visible light[J]. Separation Science and Technology, 2016, 51(10): 1744-1756. |
84 | ZHU X, YUAN W, LANG M, et al. Novel methods of sewage sludge utilization for photocatalytic degradation of tetracycline-containing wastewater[J]. Fuel, 2019, 252:148-156. |
85 | MIAN M M, LIU G. Sewage sludge-derived TiO2/Fe/Fe3C-biochar composite as an efficient heterogeneous catalyst for degradation of methylene blue[J]. Chemosphere, 2018, 215: 101-114. |
86 | CHEN N, SHANG H, TAO S, et al. Visible light driven organic pollutants degradation with hydrothermally carbonized sewage sludge and oxalate via molecular oxygen activation[J]. Environmental Science & Technology, 2018, 52(21): 12656-12666. |
[1] | WANG Fu'an. Consumption and emission reduction of the reactor of 300kt/a propylene oxide process [J]. Chemical Industry and Engineering Progress, 2023, 42(S1): 213-218. |
[2] | ZHANG Mingyan, LIU Yan, ZHANG Xueting, LIU Yake, LI Congju, ZHANG Xiuling. Research progress of non-noble metal bifunctional catalysts in zinc-air batteries [J]. Chemical Industry and Engineering Progress, 2023, 42(S1): 276-286. |
[3] | ZHENG Qian, GUAN Xiushuai, JIN Shanbiao, ZHANG Changming, ZHANG Xiaochao. Photothermal catalysis synthesis of DMC from CO2 and methanol over Ce0.25Zr0.75O2 solid solution [J]. Chemical Industry and Engineering Progress, 2023, 42(S1): 319-327. |
[4] | WANG Zhengkun, LI Sifang. Green synthesis of gemini surfactant decyne diol [J]. Chemical Industry and Engineering Progress, 2023, 42(S1): 400-410. |
[5] | LI Shilin, HU Jingze, WANG Yilin, WANG Qingji, SHAO Lei. Research progress in separation and extraction of high value components by electrodialysis [J]. Chemical Industry and Engineering Progress, 2023, 42(S1): 420-429. |
[6] | GAO Yufei, LU Jinfeng. Mechanism of heterogeneous catalytic ozone oxidation:A review [J]. Chemical Industry and Engineering Progress, 2023, 42(S1): 430-438. |
[7] | GU Yongzheng, ZHANG Yongsheng. Dynamic behavior and kinetic model of Hg0 adsorption by HBr-modified fly ash [J]. Chemical Industry and Engineering Progress, 2023, 42(S1): 498-509. |
[8] | DENG Liping, SHI Haoyu, LIU Xiaolong, CHEN Yaoji, YAN Jingying. Non-noble metal modified vanadium titanium-based catalyst for NH3-SCR denitrification simultaneous control VOCs [J]. Chemical Industry and Engineering Progress, 2023, 42(S1): 542-548. |
[9] | ZHANG Tingting, ZUO Xuqian, TIAN Lingdi, WANG Shimeng. Construction method of volatile organic compounds emission inventory and factor database in chemical industry park [J]. Chemical Industry and Engineering Progress, 2023, 42(S1): 549-557. |
[10] | GENG Yuanze, ZHOU Junhu, ZHANG Tianyou, ZHU Xiaoyu, YANG Weijuan. Homogeneous/heterogeneous coupled combustion of heptane in a partially packed bed burner [J]. Chemical Industry and Engineering Progress, 2023, 42(9): 4514-4521. |
[11] | WANG Peng, SHI Huibing, ZHAO Deming, FENG Baolin, CHEN Qian, YANG Da. Recent advances on transition metal catalyzed carbonylation of chlorinated compounds [J]. Chemical Industry and Engineering Progress, 2023, 42(9): 4649-4666. |
[12] | GAO Yanjing. Analysis of international research trend of single-atom catalysis technology [J]. Chemical Industry and Engineering Progress, 2023, 42(9): 4667-4676. |
[13] | WANG Weitao, BAO Tingyu, JIANG Xulu, HE Zhenhong, WANG Kuan, YANG Yang, LIU Zhaotie. Oxidation of benzene to phenol over aldehyde-ketone resin based metal-free catalyst [J]. Chemical Industry and Engineering Progress, 2023, 42(9): 4706-4715. |
[14] | GE Yafen, SUN Yu, XIAO Peng, LIU Qi, LIU Bo, SUN Chengying, GONG Yanjun. Research progress of zeolite for VOCs removal [J]. Chemical Industry and Engineering Progress, 2023, 42(9): 4716-4730. |
[15] | LEI Wei, JIANG Weijia, WANG Yugao, HE Minghao, SHEN Jun. Synthesis of N,S co-doped coal-based carbon quantum dots by electrochemical oxidation and its application in Fe3+ detection [J]. Chemical Industry and Engineering Progress, 2023, 42(9): 4799-4807. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||
京ICP备12046843号-2;京公网安备 11010102001994号 Copyright © Chemical Industry and Engineering Progress, All Rights Reserved. E-mail: hgjz@cip.com.cn Powered by Beijing Magtech Co. Ltd |