Chemical Industry and Engineering Progress ›› 2021, Vol. 40 ›› Issue (7): 3995-4002.DOI: 10.16085/j.issn.1000-6613.2020-1674
• Resources and environmental engineering • Previous Articles Next Articles
SU Biyun(), RAN Liangtao, HU Yahe, ZHANG Ao, HAN Qiaoqiao, WU Jindi, LIU Yiting, MENG Zuchao
Received:
2020-08-21
Revised:
2020-11-03
Online:
2021-07-19
Published:
2021-07-06
Contact:
SU Biyun
苏碧云(), 冉良涛, 胡雅和, 张翱, 韩巧巧, 武晋娣, 刘伊婷, 孟祖超
通讯作者:
苏碧云
作者简介:
苏碧云(1979—),女,教授,硕士生导师,研究方向为能源及环境催化材料。E-mail:基金资助:
CLC Number:
SU Biyun, RAN Liangtao, HU Yahe, ZHANG Ao, HAN Qiaoqiao, WU Jindi, LIU Yiting, MENG Zuchao. Research progress on demulsification of petroleum Pickering emulsion by molecular oxidation, photocatalytic oxidation and electrochemical oxidation[J]. Chemical Industry and Engineering Progress, 2021, 40(7): 3995-4002.
苏碧云, 冉良涛, 胡雅和, 张翱, 韩巧巧, 武晋娣, 刘伊婷, 孟祖超. 分子氧化及光电催化氧化对石油Pickering乳液的破乳研究进展[J]. 化工进展, 2021, 40(7): 3995-4002.
Add to citation manager EndNote|Ris|BibTeX
URL: https://hgjz.cip.com.cn/EN/10.16085/j.issn.1000-6613.2020-1674
试验号 | 因素 | 除油率/% | |||
---|---|---|---|---|---|
反应时间/h | 反应温度/℃ | ClO2浓度/mg·L-1 | 初始pH | ||
1 | 1 | 45 | 30 | 6 | 67.9 |
2 | 1 | 55 | 35 | 7 | 72.3 |
3 | 1 | 65 | 40 | 8 | 76.6 |
4 | 2 | 45 | 35 | 8 | 88.7 |
5 | 2 | 55 | 40 | 6 | 91.8 |
6 | 2 | 65 | 30 | 7 | 87.6 |
7 | 3 | 45 | 40 | 7 | 89.5 |
8 | 3 | 55 | 30 | 8 | 90.5 |
9 | 3 | 65 | 35 | 6 | 88.4 |
试验号 | 因素 | 除油率/% | |||
---|---|---|---|---|---|
反应时间/h | 反应温度/℃ | ClO2浓度/mg·L-1 | 初始pH | ||
1 | 1 | 45 | 30 | 6 | 67.9 |
2 | 1 | 55 | 35 | 7 | 72.3 |
3 | 1 | 65 | 40 | 8 | 76.6 |
4 | 2 | 45 | 35 | 8 | 88.7 |
5 | 2 | 55 | 40 | 6 | 91.8 |
6 | 2 | 65 | 30 | 7 | 87.6 |
7 | 3 | 45 | 40 | 7 | 89.5 |
8 | 3 | 55 | 30 | 8 | 90.5 |
9 | 3 | 65 | 35 | 6 | 88.4 |
1 | ZOLFAGHARI Reza, Ahmadun FAKHRU’L-RAZI, ABDULLAH Luqman C, et al. Demulsification techniques of water-in-oil and oil-in-water emulsions in petroleum industry[J]. Separation and Purification Technology, 2016, 170: 377-407. |
2 | Maliheh DARGAHI-ZABOLI, SAHRAEI Eghbal, POURABBAS Behzad. Hydrophobic silica nanoparticle-stabilized invert emulsion as drilling fluid for deep drilling[J]. Petroleum Science, 2017, 14(1): 105-115. |
3 | LIU Dexin, YAN Yicheng, BAI Gang, et al. Mechanisms for stabilizing and supporting shale fractures with nanoparticles in Pickering emulsion[J]. Journal of Petroleum Science and Engineering, 2018, 164: 103-109. |
4 | 刘德新, 朱彤宇, 邵明鲁, 等. Pickering乳液在石油行业中的应用进展[J]. 石油化工, 2017, 46(11): 1434-1441. |
LIU Dexin, ZHU Tongyu, SHAO Minglu, et al. Applications of Pickering emulsion in petroleum industry[J]. Petrochemical Technology, 2017, 46(11): 1434-1441. | |
5 | VARJANI Sunita, JOSHI Rutu, SRIVASTAVA Vijay Kumar, et al. Treatment of wastewater from petroleum industry: current practices and perspectives[J]. Environmental Science and Pollution Research, 2020, 27(22): 27172-27180. |
6 | ISSAKA Souleyman A, NOUR Abdurahman H, YUNUS Rosli Mohd. Review on the fundamental aspects of petroleum oil emulsions and techniques of demulsification[J]. Journal of Petroleum & Environmental Biotechnology, 2015, 6(2). DOI: 10.4172/2157-7463.1000214. |
7 | ABED S M, ABDURAHMAN N H, YUNUS RM, et al. Oil emulsions and the different recent demulsification techniques in the petroleum industry—A review[J]. IOP Conference Series Materials Science and Engineering, 2019, 702: 012060. |
8 | AL-SABAGH Ahmed M, KANDILE Nadia G, NOOR EL-DIN Mahmoud R. Functions of demulsifiers in the petroleum industry[J]. Separation Science and Technology, 2011, 46(7): 1144-1163. |
9 | RAYA Sofiah Atirah, SAAID Ismail Mohd, AHMED Abdelazim Abbas, et al. A critical review of development and demulsification mechanisms of crude oil emulsion in the petroleum industry[J]. Journal of Petroleum Exploration and Production Technology, 2020, 10: 1711-1728. |
10 | YAN Chuanyu, HAN Jin, HUANG Chengyi, et al. Demulsification of water‐in‐oil emulsions for the petroleum industry by using alternating copolymers[J]. Energy Technology, 2014, 2(7): 618-624. |
11 | ALSABAGH A M, HASSAN M E, DESOUKY S E M, et al. Demulsification of W/O emulsion at petroleum field and reservoir conditions using some demulsifiers based on polyethylene and propylene oxides[J]. Egyptian Journal of Petroleum, 2016, 25(4): 585-595. |
12 | 刘海峰. 原油乳状液化学破乳机理——锁匙说[J]. 化工进展, 2010, 29(S2): 125-127. |
LIU Haifeng. Chemical demulsification mechanism of demulsifier for water-in-crude oil emulsion—Lock and key[J]. Chemical Industry and Engineering Progress, 2010, 29(S2): 125-127. | |
13 | QIAO Peiqi, HARBOTTLE David, TCHOUKOV Plamen, et al. Asphaltene subfractions responsible for stabilizing water-in-crude oil emulsions. Part 3: Effect of solvent aromaticity[J]. Energy & Fuels, 2017, 31(9): 9179-9187. |
14 | DONG J, ZHU L, GU D, et al. Theoretical and experimental study on the safety chemistry of separation of oil/water transition layer by oxidation of chlorine dioxide[J]. Bulgarian Chemical Communications, 2017, 49(K1): 24-28. |
15 | SU Biyun, HUANG Li, LI Shanjian, et al. Chemical-microwave-ultrasonic compound conditioning treatment of highly-emulsified oily sludge in gas fields[J]. Natural Gas Industry B, 2019, 6(4): 412-418. |
16 | 董秋璇. 三元复合驱采出水二氧化氯氧化破乳研究[D]. 大庆: 东北石油大学, 2014. |
DONG Qiuxuan. Oxidation demulsification of produced water from ASP flooding by chlorine dioxide[D]. Daqing: Northeast Petroleum University, 2014. | |
17 | YUAN Dandan, WU Hongjun, SHENG Haixia, et al. Comparative study on compositions of oil-water transition layer before and after ClO2-treatment process[J]. Advanced Materials Research, 2013, 652/653/654. DOI: 10.1515/jaots-2017-0011. |
18 | YUAN Dandan, TIAN Lei, SHEN Xiaoyan, et al. ClO2-oxidation-based demulsification of oil-water transition layer in oilfields: an experimental study[J]. Journal of Advanced Oxidation Technologies, 2017, 20(2). DOI:10.1515/jaots-2017-0011. |
19 | JIANG Jiaqian, LLOYD Barry. Progress in the development and use of ferrate(Ⅵ) salt as an oxidant and coagulant for water and wastewater treatment[J]. Water Research, 2002, 36(6): 1397-1408. |
20 | HAN Hongjing, LI Jinxin, GE Qin, et al. Green ferrate(Ⅵ) for multiple treatments of fracturing wastewater: demulsification, visbreaking, and chemical oxygen demand removal[J]. International Journal of Molecular Sciences, 2019, 20(8): 1857-1869. |
21 | 王宝辉, 孔凡贵, 张铁锴, 等. 高铁酸钾氧化去除油田污水中聚丙烯酰胺的研究[J]. 工业水处理, 2004, 24(1): 21-23. |
WANG Baohui, KONG Fangui, ZHANG Tiekai, et al. Removal of PAM from the sewage in oilfield by ferrate[J]. Industrial Water Treatment, 2004, 24(1): 21-23. | |
22 | 吴文珍, 景有海. 酸析及混凝法处理切削废水研究[J]. 能源与环境, 2013 (2): 78-80. |
WU Wenzhen, JING Youhai. Study on treatment of cutting wastewater by acid precipitation and coagulation[J]. Energy and Environment, 2013(2): 78-80. | |
23 | 杨忠平, 王宪中, 田喜军, 等. 吉林油田联合站老化原油成因与脱水方法研究[J]. 油田化学, 2010, 27(3): 337-341. |
YANG Zhongping, WANG Xianzhong, TIAN Xijun, et al. Generation mechanism and dehydration methods of aging crude oil from stand jointly in Jilin oil fields[J]. Oilfield Chemistry, 2010, 27(3): 337-341. | |
24 | 王珏膑, 刘克凡, 郭鹏, 等. 含油污泥的H2O2氧化破乳处理工艺[J]. 扬州大学学报(自然科学版), 2016, 19(3): 32-35. |
WANG Juebin, LIU Kefan, GUO Peng, et al. The oxidation demulsification process of oily sludge by H2O2[J]. Journal of Yangzhou University(Natural Science Edition), 2016, 19(3): 32-35. | |
25 | 赵静, 尹必跃, 胡斌, 等. 双氧水对高含渣污油的破乳机制[J]. 扬州大学学报(自然科学版), 2018, 21(1): 30-34. |
ZHAO Jing, YIN Biyue, HU Bin, et al. Study on demulsification mechanism of hydrogen peroxide oxidation for high-solid dirty oil[J]. Journal of Yangzhou University (Natural Science Edition), 2018, 21(1): 30-34. | |
26 | CHENG Min, ZENG Guangming, HUANG Danlian, et al. Hydroxyl radicals based advanced oxidation processes (AOPs) for remediation of soils contaminated with organic compounds: a review[J]. Chemical Engineering Journal, 2016, 284: 582-598. |
27 | NOSAKA Yoshio, NOSAKA Atsuko. Introduction to photocatalysis: from basic science to applications[M]. Cambridge: Royal Society of Chemistry, 2019. |
28 | ZHANG Mo, LUO Wenjiao, WEI Zhen, et al. Separation free C3N4/SiO2 hybrid hydrogels as high active photocatalysts for TOC removal[J]. Applied Catalysis B: Environmental, 2016, 194: 105-110. |
29 | JIANG Longbo, YUAN Xingzhong, ZENG Guangming, et al. Metal-free efficient photocatalyst for stable visible-light photocatalytic degradation of refractory pollutant[J]. Applied Catalysis B: Environmental, 2018, 221: 715-725. |
30 | NIE Chunhong, XU Lu, GU Di, et al. Toward efficient demulsification of produced water in oilfields: solar STEP directional degradation of polymer on interfacial film of emulsions[J]. Energy & Fuels, 2016, 30(11): 9686-9692. |
31 | WANG Baohui, GU Di, DONG Jing, et al. STEP chemistry: a fundamental insight into solar thermal electrochemical process[J]. Energy Conversion and Management, 2017, 152: 99-109. |
32 | FAN Meiling, NIE Chunhong, DU Huan, et al. An insight into the solar demulsification of highly emulsified water produced from oilfields by monitoring the viscosity, zeta potential, particle size and rheology[J]. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2019, 575: 144-154. |
33 | LI Xin, XIE Jun, JIANG Chuanjia, et al. Review on design and evaluation of environmental photocatalysts[J]. Frontiers of Environmental Science & Engineering, 2018, 12(5): 14-46. |
34 | SARAVANAN R, GRACIA F, STEPHEN A. Basic principles, mechanism, and challenges of photocatalysis[M]. Switzerland: Springer, Cham, 2017: 19-40. |
35 | 张彤, 孙娟, 赵朝成, 等. 光催化降解含油污水的研究进展[J]. 石油学报(石油加工), 2019, 35(6): 1249-1260. |
ZHANG Tong, SUN Juan, ZHAO Chaocheng, et al. Research progress on photocatalytic degradation of oily wastewater[J]. Acta Petrolei Sinica(Petroleum Processing Section), 2019, 35(6): 1249-1260. | |
36 | WANG Baohui, GU Di, JI Lei, et al. Photocatalysis: a novel approach to efficient demulsification[J]. Catalysis Communications, 2016, 75: 83-86. |
37 | KÖRBAHTI Bahadik K, ARTUT Kahraman. Electrochemical oil/water demulsification and purification of bilge water using Pt/Ir electrodes[J]. Desalination, 2010, 258(1/2/3): 219-228. |
38 | ESKANDARLOO Hamed, SELIG Michael J, ABBASPOURRAD Alireza. In situ H2O2 generation for de-emulsification of fine stable bilge water emulsions[J]. Chemical Engineering Journal, 2018, 335: 434-442. |
[1] | WANG Fu'an. Consumption and emission reduction of the reactor of 300kt/a propylene oxide process [J]. Chemical Industry and Engineering Progress, 2023, 42(S1): 213-218. |
[2] | ZHANG Mingyan, LIU Yan, ZHANG Xueting, LIU Yake, LI Congju, ZHANG Xiuling. Research progress of non-noble metal bifunctional catalysts in zinc-air batteries [J]. Chemical Industry and Engineering Progress, 2023, 42(S1): 276-286. |
[3] | HU Xi, WANG Mingshan, LI Enzhi, HUANG Siming, CHEN Junchen, GUO Bingshu, YU Bo, MA Zhiyuan, LI Xing. Research progress on preparation and sodium storage properties of tungsten disulfide composites [J]. Chemical Industry and Engineering Progress, 2023, 42(S1): 344-355. |
[4] | ZHANG Jie, BAI Zhongbo, FENG Baoxin, PENG Xiaolin, REN Weiwei, ZHANG Jingli, LIU Eryong. Effect of PEG and its compound additives on post-treatment of electrolytic copper foils [J]. Chemical Industry and Engineering Progress, 2023, 42(S1): 374-381. |
[5] | GAO Yufei, LU Jinfeng. Mechanism of heterogeneous catalytic ozone oxidation:A review [J]. Chemical Industry and Engineering Progress, 2023, 42(S1): 430-438. |
[6] | GU Yongzheng, ZHANG Yongsheng. Dynamic behavior and kinetic model of Hg0 adsorption by HBr-modified fly ash [J]. Chemical Industry and Engineering Progress, 2023, 42(S1): 498-509. |
[7] | ZHAO Jingchao, TAN Ming. Effect of surfactants on the reduction of industrial saline wastewater by electrodialysis [J]. Chemical Industry and Engineering Progress, 2023, 42(S1): 529-535. |
[8] | WANG Jinhang, HE Yong, SHI Lingli, LONG Zhen, LIANG Deqing. Progress of gas hydrate anti-agglomerants [J]. Chemical Industry and Engineering Progress, 2023, 42(9): 4587-4602. |
[9] | WANG Weitao, BAO Tingyu, JIANG Xulu, HE Zhenhong, WANG Kuan, YANG Yang, LIU Zhaotie. Oxidation of benzene to phenol over aldehyde-ketone resin based metal-free catalyst [J]. Chemical Industry and Engineering Progress, 2023, 42(9): 4706-4715. |
[10] | GE Yafen, SUN Yu, XIAO Peng, LIU Qi, LIU Bo, SUN Chengying, GONG Yanjun. Research progress of zeolite for VOCs removal [J]. Chemical Industry and Engineering Progress, 2023, 42(9): 4716-4730. |
[11] | LEI Wei, JIANG Weijia, WANG Yugao, HE Minghao, SHEN Jun. Synthesis of N,S co-doped coal-based carbon quantum dots by electrochemical oxidation and its application in Fe3+ detection [J]. Chemical Industry and Engineering Progress, 2023, 42(9): 4799-4807. |
[12] | WANG Yaogang, HAN Zishan, GAO Jiachen, WANG Xinyu, LI Siqi, YANG Quanhong, WENG Zhe. Strategies for regulating product selectivity of copper-based catalysts in electrochemical CO2 reduction [J]. Chemical Industry and Engineering Progress, 2023, 42(8): 4043-4057. |
[13] | LYU Chengyuan, ZHANG Han, YANG Mingwang, DU Jianjun, FAN Jiangli. Recent advances of dioxetane-based afterglow system for bio-imaging [J]. Chemical Industry and Engineering Progress, 2023, 42(8): 4108-4122. |
[14] | LIU Yi, FANG Qiang, ZHONG Dazhong, ZHAO Qiang, LI Jinping. Cu facets regulation of Ag/Cu coupled catalysts for electrocatalytic reduction of carbon dioxide [J]. Chemical Industry and Engineering Progress, 2023, 42(8): 4136-4142. |
[15] | LI Runlei, WANG Ziyan, WANG Zhimiao, LI Fang, XUE Wei, ZHAO Xinqiang, WANG Yanji. Efficient catalytic performance of CuO-CeO2/TiO2 for CO oxidation at low-temperature [J]. Chemical Industry and Engineering Progress, 2023, 42(8): 4264-4274. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||
京ICP备12046843号-2;京公网安备 11010102001994号 Copyright © Chemical Industry and Engineering Progress, All Rights Reserved. E-mail: hgjz@cip.com.cn Powered by Beijing Magtech Co. Ltd |