Chemical Industry and Engineering Progress ›› 2021, Vol. 40 ›› Issue (7): 4003-4010.DOI: 10.16085/j.issn.1000-6613.2020-1520
• Resources and environmental engineering • Previous Articles Next Articles
JIA Yuejuan1(), LI Xiaohan2, MA Xuanxuan2, XIE Qingming3, LIU Ying2, LIU Sujing2, XIA Chuanhai1,2(
)
Received:
2020-08-03
Revised:
2020-11-13
Online:
2021-07-19
Published:
2021-07-06
Contact:
XIA Chuanhai
贾月娟1(), 李晓涵2, 马宣宣2, 谢清明3, 刘莺2, 刘苏静2, 夏传海1,2(
)
通讯作者:
夏传海
作者简介:
贾月娟(1995—),女,硕士研究生,研究方向为污染物控制。E-mail:基金资助:
CLC Number:
JIA Yuejuan, LI Xiaohan, MA Xuanxuan, XIE Qingming, LIU Ying, LIU Sujing, XIA Chuanhai. Effective reductive dechlorination of chlorophenols over Raney Ni catalyst under mild conditions[J]. Chemical Industry and Engineering Progress, 2021, 40(7): 4003-4010.
贾月娟, 李晓涵, 马宣宣, 谢清明, 刘莺, 刘苏静, 夏传海. Raney Ni高效催化氯酚类污染物还原脱氯降解[J]. 化工进展, 2021, 40(7): 4003-4010.
催化剂性质 | 表征值 |
---|---|
Ni质量分数/% | 90 |
Al质量分数/% | ≤7 |
Mo质量分数/% | 3 |
pH | 8~11 |
平均粒径/μm | 50 |
活性(以H2产量计)/mL·min-1·g-1 | ≥5 |
催化剂性质 | 表征值 |
---|---|
Ni质量分数/% | 90 |
Al质量分数/% | ≤7 |
Mo质量分数/% | 3 |
pH | 8~11 |
平均粒径/μm | 50 |
活性(以H2产量计)/mL·min-1·g-1 | ≥5 |
t/min | 流动相A/% | 流动相B/% | 流动相C/% |
---|---|---|---|
0 | 55 | 5 | 40 |
7 | 35 | 15 | 50 |
12 | 20 | 15 | 65 |
25 | 20 | 15 | 65 |
26 | 55 | 5 | 40 |
32 | 55 | 5 | 40 |
t/min | 流动相A/% | 流动相B/% | 流动相C/% |
---|---|---|---|
0 | 55 | 5 | 40 |
7 | 35 | 15 | 50 |
12 | 20 | 15 | 65 |
25 | 20 | 15 | 65 |
26 | 55 | 5 | 40 |
32 | 55 | 5 | 40 |
序号 | 保留时间/min | 化合物 | 主要离子(m/z) | 质量浓度/g·kg-1 | 质量分数/% |
---|---|---|---|---|---|
1 | 3.23 | PA | 151,137,93 | 1.23 | 0.32 |
2 | 4.12 | 2-CPA | 185,127,92,79 | 26.37 | 5.64 |
3 | 4.38 | 2,6-DCPA | 219,161,127,91 | 46.74 | 8.43 |
4 | 4.77 | 4-CPA | 185,127,92,79 | 21.98 | 4.70 |
5 | 5.56 | 苯酚 | 93,79 | N.D. | 0 |
6 | 6.69 | 2,4-DCPA | 219,161,127,91 | 64.77 | 11.68 |
7 | 7.52 | TriCP | 195,161,125,91 | 11.79 | 2.38 |
8 | 7.89 | 2-CP | 127,91,65 | 3.53 | 1.10 |
9 | 8.78 | 4-CP | 127,91,65 | N.D. | 0 |
10 | 9.98 | 2,6-DCP | 161,125,91 | 73.60 | 17.99 |
11 | 11.88 | 2,4-DCP | 161,125,91 | 154.37 | 37.75 |
12 | 13.83 | 2,4,6-TCP | 195,161,123,91 | 24.15 | 4.87 |
13 | 15.04 | TetraCPA | 287,253,195,161 | 38.66 | 5.14 |
序号 | 保留时间/min | 化合物 | 主要离子(m/z) | 质量浓度/g·kg-1 | 质量分数/% |
---|---|---|---|---|---|
1 | 3.23 | PA | 151,137,93 | 1.23 | 0.32 |
2 | 4.12 | 2-CPA | 185,127,92,79 | 26.37 | 5.64 |
3 | 4.38 | 2,6-DCPA | 219,161,127,91 | 46.74 | 8.43 |
4 | 4.77 | 4-CPA | 185,127,92,79 | 21.98 | 4.70 |
5 | 5.56 | 苯酚 | 93,79 | N.D. | 0 |
6 | 6.69 | 2,4-DCPA | 219,161,127,91 | 64.77 | 11.68 |
7 | 7.52 | TriCP | 195,161,125,91 | 11.79 | 2.38 |
8 | 7.89 | 2-CP | 127,91,65 | 3.53 | 1.10 |
9 | 8.78 | 4-CP | 127,91,65 | N.D. | 0 |
10 | 9.98 | 2,6-DCP | 161,125,91 | 73.60 | 17.99 |
11 | 11.88 | 2,4-DCP | 161,125,91 | 154.37 | 37.75 |
12 | 13.83 | 2,4,6-TCP | 195,161,123,91 | 24.15 | 4.87 |
13 | 15.04 | TetraCPA | 287,253,195,161 | 38.66 | 5.14 |
12 | 陈阳雯, 刘蕊, 姚洁, 等. La掺杂钛基氧化物电极降解水中2,4-二氯酚的研究[J]. 环境科学与技术, 2018, 41(1): 94-98. |
CHEN Yangwen, LIU Rui, YAO Jie, et al. Degradation of 2,4-dichlorophenol by Ti-based oxide electrodes doped with La[J]. Environmental Science and Technology, 2018, 41(1): 94-98. | |
13 | YANG Z, ZHANG X, PU S, et al. Novel Fenton-like system (Mg/Fe-O2) for degradation of 4-chlorophenol[J]. Environmental Pollution, 2019, 250: 906-913. |
14 | HADI S, TAHERI E, AMIN M M, et al. Synergistic degradation of 4-chlorophenol by persulfate and oxalic acid mixture with heterogeneous Fenton like system for wastewater treatment: adaptive neuro-fuzzy inference systems modeling[J]. Journal of Environmental Management, 2020, 268: 110678. |
15 | 张云飞, 杨波, 张鸿, 等. 负载型催化剂用于卤代有机污染物氢解去除[J]. 化学进展, 2013, 25(12): 2159-2168. |
ZHANG Yunfei, YANG Bo, ZHANG Hong, et al. Degradation of halogenated organic contaminants with hydrodehalogenation using supported catalysts[J]. Progress in Chemistry, 2013, 25(12): 2159-2168. | |
16 | XIONG J, MA Y, YANG W, et al. Rapid, highly efficient and stable catalytic hydrodechlorination of chlorophenols over novel Pd/CNTs-Ni foam composite catalyst in continuous-flow[J]. Journal of Hazardous Materials, 2018, 355: 89-95. |
17 | XU F, DENG S, XU J, et al. Highly active and stable Ni-Fe bimetal prepared by ball milling for catalytic hydrodechlorination of 4-chlorophenol[J]. Environmental Science and Technology, 2012, 46: 4576-4582. |
18 | MA X, LIU Y, LI X, et al. Water: the most effective solvent for liquid-phase hydrodechlorination of chlorophenols over Raney Ni catalyst[J]. Applied Catalysis B: Environmental, 2015, 165: 351-359. |
19 | RAUT S S, SHETTY R, RAJU N M, et al. Screening of zero valent mono/bimetallic catalysts and recommendation of Raney Ni (without reducing agent) for dechlorination of 4-chlorophenol[J]. Chemosphere, 2020, 250: 126298. |
20 | WANG W, NIU J, YANG Z. An efficient reduction of unsaturated bonds and halogen-containing groups by nascent hydrogen over Raney Ni catalyst[J]. Journal of Hazardous Materials, 2020, 389: 121912. |
21 | URBANO F J, MARINAS J M. Hydrogenolysis of organohalogen compounds over palladium supported catalysts[J]. Journal of Molecular Catalysis A: Chemical, 2001, 173(1/2): 329-345. |
22 | CONCIBIDO N C, OKUDA T, NISHIJIMA W, et al. Deactivation and reactivation of Pd/C catalyst used in repeated batch hydrodechlorination of PCE[J]. Applied Catalysis B: Environmental, 2007, 71(1/2): 64-69. |
23 | XIA C, LIU Y, ZHOU S, et al. The Pd-catalyzed hydrodechlorination of chlorophenols in aqueous solutions under mild conditions: a promising approach to practical use in wastewater[J]. Journal of Hazardous Materials, 2009, 169(1/2/3): 1029-1033. |
24 | MA X, LIU Y, LIU S, et al. Water-promoted catalytic hydrodechlorination of transformer oil-contained PCBs in liquid system under mild conditions[J]. Applied Catalysis B: Environmental, 2014, 144: 580-587. |
1 | CHENG R, ZHOU W, WANG J, et al. Dechlorination of pentachlorophenol using nanoscale Fe/Ni particles: role of nano-Ni and its size effect[J]. Journal of Hazardous Materials, 2010, 180(1/2/3): 79-85. |
2 | GARBA Z N, ZHOU W, LAWAN I, et al. An overview of chlorophenols as contaminants and their removal from wastewater by adsorption: a review[J]. Journal of Environmental Management, 2019, 241: 59-75. |
3 | 兰丽娟, 刘莺, 杜芳林. Pd/CNTs对4-氯苯酚的液相催化加氢去氯[J].化工进展, 2017, 36(6): 2171-2176. |
25 | 马宣宣. Pd/C和Raney Ni催化有机卤代物的液相高效加氢脱卤研究[D]. 烟台: 中国科学院烟台海岸带研究所, 2015. |
Ma Xuanxuan. Highly efficient liquid-phase hydrodehalogenation of halogenated aromatic compounds over Pd/C and Raney Ni catalysts[D]. Yantai: Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, 2015. | |
26 | MA X, ZHOU S, YANG C, et al. The influence of triethylamine on the hydrodechlorination reactivity of chlorophenols over Raney Ni catalyst[J]. Catalysis Communications, 2010, 12(4): 282-285. |
27 | YONEDA T, TAKIDO T, KONUMA K. Hydrodechlorination reactivity of para-substituted chlorobenzenes over platinum/carbon catalyst[J]. Journal of Molecular Catalysis A: Chemical, 2007, 265(1-2): 80-89. |
28 | AREMENDÍA M A, BORÁU V, GARCÍA I M, et al. Liquid-phase hydrodehalogenation of substituted chlorobenzenes over palladium supported catalysts[J]. Applied Catalysis B: Environmental, 2003, 43(1): 71-79. |
29 | KONUMA K, KAMEDA N. Effect of substituents on the hydrodechlorination reactivity of para-substituted chlorobenzenes[J]. Journal of Molecular Catalysis A: Chemical, 2002, 178(1-2): 239-251. |
30 | WU W H, XU J, OHNISHI R. Complete hydrodechlorination of chlorobenzene and its derivatives over supported nickel catalysts under liquid phase conditions[J]. Applied Catalysis B: Environmental, 2005, 60(1/2): 129-137. |
31 | GRYGLEWICZ S, PIECHOCKI W. Hydrodechlorination of dichlorobenzenes and their derivatives over Ni-Mo/C catalyst: kinetic analysis and effect of molecular structure of reactant[J]. Chemosphere, 2011, 83(3): 334-339. |
3 | LAN Lijuan, LIU Ying, DU Fanglin. Liquid-phase catalytic hydrodechlorination of 4-chlorophenol over Pd/CNTs[J]. Chemical Industry and Engineering Progress, 2017, 36(6): 2171-2176. |
4 | WEI D, ZHAO C, KHAN A, et al. Sorption mechanism and dynamic behavior of graphene oxide as an effective adsorbent for the removal of chlorophenol based environmental-hormones: a DFT and MD simulation study[J]. Chemical Engineering Journal, 2019, 375: 121964. |
5 | YOUNIS S A, MOTAWEA E A, MOUSTAFA Y M, et al. A strategy for the efficient removal of chlorophenols in petrochemical wastewater by organophilic and aminated silica@alginate microbeads: taguchi optimization and isotherm modeling based on partition coefficient[J]. Journal of Hazardous Materials, 2020, 397: 122792. |
6 | ADEYEMI I, SULAIMAN R, ALMAZROUI M, et al. Removal of chlorophenols from aqueous media with hydrophobic deep eutectic solvents: experimental study and COSMO RS evaluation[J]. Journal of Molecular Liquids, 2020, 311: 113180. |
7 | 李燕妮, 陈泉源, 周娟, 等. 石墨烯杂氮载Pd催化剂对2,4-二氯酚的液相催化加氢脱氯[J]. 中国环境科学, 2017, 37(2): 577-583. |
LI Yanni, CHEN Quanyuan, ZHOU Juan, et al. The liquid phase catalytic hydrogenation of 2,4-dichlorophenol over Pd catalyst supported on nitrogen-doped graphene[J]. China Environmental Science, 2017, 37(2): 577-583. | |
8 | 刘楚琛, 阎秀兰, 刘琼枝, 等. Fenton试剂和活化过硫酸钠氧化降解土壤中的二氯酚和三氯酚[J]. 环境工程学报, 2018, 12(6): 1749-1758. |
LIU Chuchen, YAN Xiulan, LIU Qiongzhi, et al. Oxidative degradation of dichlorophenol and trichlorophenol in soils by Fenton reagent and activated persulfate[J]. Chinese Journal of Environmental Engineering, 2018, 12(6): 1749-1758. | |
9 | 阮霞, 刘红, 马驰, 等. 铜质量比对Fe/Cu还原2,4-二氯酚影响及还原途径[J]. 环境科学与技术, 2017, 40(5): 43-48. |
RUAN Xia, LIU Hong, MA Chi, et al. Effects of mass ratio of copper on reduction of 2,4-dichlorophenol by Fe/Cu and reduction pathway[J]. Environmental Science and Technology, 2017, 40(5): 43-48. | |
10 | MA X, LIU S, LIU Y, et al. Promoted liquid-phase hydrodechlorination of chlorophenol over Raney Ni via controlling base: performance, mechanism, and application[J]. Chemosphere, 2020, 242: 125202. |
11 | BAO T, DAMTIE M M, HOSSEINZADEH A, et al. Catalytic degradation of P-chlorophenol by muscovite-supported nano zero valent iron composite: synthesis, characterization, and mechanism studies[J]. Applied Clay Science, 2020, 195: 105735. |
[1] | ZHENG Qian, GUAN Xiushuai, JIN Shanbiao, ZHANG Changming, ZHANG Xiaochao. Photothermal catalysis synthesis of DMC from CO2 and methanol over Ce0.25Zr0.75O2 solid solution [J]. Chemical Industry and Engineering Progress, 2023, 42(S1): 319-327. |
[2] | WANG Zhengkun, LI Sifang. Green synthesis of gemini surfactant decyne diol [J]. Chemical Industry and Engineering Progress, 2023, 42(S1): 400-410. |
[3] | DENG Liping, SHI Haoyu, LIU Xiaolong, CHEN Yaoji, YAN Jingying. Non-noble metal modified vanadium titanium-based catalyst for NH3-SCR denitrification simultaneous control VOCs [J]. Chemical Industry and Engineering Progress, 2023, 42(S1): 542-548. |
[4] | SHAO Boshi, TAN Hongbo. Simulation on the enhancement of cryogenic removal of volatile organic compounds by sawtooth plate [J]. Chemical Industry and Engineering Progress, 2023, 42(S1): 84-93. |
[5] | GENG Yuanze, ZHOU Junhu, ZHANG Tianyou, ZHU Xiaoyu, YANG Weijuan. Homogeneous/heterogeneous coupled combustion of heptane in a partially packed bed burner [J]. Chemical Industry and Engineering Progress, 2023, 42(9): 4514-4521. |
[6] | GAO Yanjing. Analysis of international research trend of single-atom catalysis technology [J]. Chemical Industry and Engineering Progress, 2023, 42(9): 4667-4676. |
[7] | GE Quanqian, XU Mai, LIANG Xian, WANG Fengwu. Research progress on the application of MOFs in photoelectrocatalysis [J]. Chemical Industry and Engineering Progress, 2023, 42(9): 4692-4705. |
[8] | LI Dongze, ZHANG Xiang, TIAN Jian, HU Pan, YAO Jie, ZHU Lin, BU Changsheng, WANG Xinye. Research progress of NO x reduction by carbonaceous substances for denitration in cement kiln [J]. Chemical Industry and Engineering Progress, 2023, 42(9): 4882-4893. |
[9] | WANG Chen, BAI Haoliang, KANG Xue. Performance study of high power UV-LED heat dissipation and nano-TiO2 photocatalytic acid red 26 coupling system [J]. Chemical Industry and Engineering Progress, 2023, 42(9): 4905-4916. |
[10] | HUANG Yufei, LI Ziyi, HUANG Yangqiang, JIN Bo, LUO Xiao, LIANG Zhiwu. Research progress on catalysts for photocatalytic CO2 and CH4 reforming [J]. Chemical Industry and Engineering Progress, 2023, 42(8): 4247-4263. |
[11] | WU Haibo, WANG Xilun, FANG Yanxiong, JI Hongbing. Progress of the development and application of 3D printing catalyst [J]. Chemical Industry and Engineering Progress, 2023, 42(8): 3956-3964. |
[12] | XU Wei, LI Kaijun, SONG Linye, ZHANG Xinghui, YAO Shunhua. Research progress of photocatalysis and co-electrochemical degradation of VOCs [J]. Chemical Industry and Engineering Progress, 2023, 42(7): 3520-3531. |
[13] | GONG Pengcheng, YAN Qun, CHEN Jinfu, WEN Junyu, SU Xiaojie. Properties and mechanism of eriochrome black T degradation by carbon nanotube-cobalt ferrite composites activated persulfate [J]. Chemical Industry and Engineering Progress, 2023, 42(7): 3572-3581. |
[14] | GUO Lixing, PANG Weiying, MA Keyao, YANG Jiahan, SUN Zehui, ZHANG Pan, FU Dong, ZHAO Kun. Hierarchically multilayered TiO2 with spatial pore-structure for efficient photocatalytic CO2 reduction [J]. Chemical Industry and Engineering Progress, 2023, 42(7): 3643-3651. |
[15] | CHU Tiantian, LIU Runzhu, DU Gaohua, MA Jiahao, ZHANG Xiao’a, WANG Chengzhong, ZHANG Junying. Preparation and chemical degradability of organoguanidine-catalyzed dehydrogenation type RTV silicone rubbers [J]. Chemical Industry and Engineering Progress, 2023, 42(7): 3664-3673. |
Viewed | ||||||||||||||||||||||||||||||||||||||||||||||||||
Full text 647
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||
Abstract 257
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||
京ICP备12046843号-2;京公网安备 11010102001994号 Copyright © Chemical Industry and Engineering Progress, All Rights Reserved. E-mail: hgjz@cip.com.cn Powered by Beijing Magtech Co. Ltd |