Chemical Industry and Engineering Progress ›› 2021, Vol. 40 ›› Issue (4): 2298-2307.DOI: 10.16085/j.issn.1000-6613.2020-0967
• Resources and environmental engineering • Previous Articles Next Articles
SONG Huiyun1(), WANG Ying1, CHEN Hu2, LYU Yongkang1,2()
Received:
2020-06-01
Online:
2021-04-14
Published:
2021-04-05
Contact:
LYU Yongkang
通讯作者:
吕永康
作者简介:
宋慧赟(1995—),女,硕士研究生,研究方向为污水生物处理。E-mail:基金资助:
CLC Number:
SONG Huiyun, WANG Ying, CHEN Hu, LYU Yongkang. Effects of salinity on new biological nitrogen removal technology: a review[J]. Chemical Industry and Engineering Progress, 2021, 40(4): 2298-2307.
宋慧赟, 王莹, 陈虎, 吕永康. 盐度对新型生物脱氮技术影响的研究进展[J]. 化工进展, 2021, 40(4): 2298-2307.
Add to citation manager EndNote|Ris|BibTeX
URL: https://hgjz.cip.com.cn/EN/10.16085/j.issn.1000-6613.2020-0967
新型生物脱氮技术 | 盐浓度及去除效果 | 结论 |
---|---|---|
同步硝化反硝化技术 | 盐度为2.4%、初始氨氮浓度为40mg·L-1,氨氮去除率达到90%以上;盐度大于1.6%时,检测到大量的NO | 盐度在3%以内时,可达到一定的脱氮效果。由于盐度的存在,完全硝化反硝化逐步由部分硝化反硝化取代成为主要的脱氮方式; 添加经过盐度驯化的微生物和嗜盐菌株采用同步硝化反硝化技术处理高盐废水时,可处理更高盐度(盐度大于2%)的含氮废水并达到一定处理效果 |
盐度增加到3%时,初始氨氮浓度约为40mg·L-1,检测到NO | ||
初始氨氮浓度约为200mg·L-1,盐度不高于3%时,总氮去除率达到90%以上;盐度达到3%时,亚硝酸盐大量积累[ | ||
初始氨氮浓度为100mg·L-1,盐度为3%时,废水中总氮去除率达到90%以上[ | ||
初始氨氮浓度为15mg·L-1,盐度为28g·L-1时,NO | ||
初始氨氮浓度为400mg·L-1,盐度为1%~5%时,氨氮的去除率为70%左右[ | ||
初始氨氮浓度为20mg·L-1,盐度为2%~4%时,氨氮的去除率为70%~80%[ | ||
氨氮从119.77mg·L-1降至10.96mg·L-1,盐度为3%时,去除率可达90.86%[ | ||
初始氨氮浓度为300mg/L-1,盐度为5%时,氨氮的去除率为接近98%[ | ||
初始TN浓度为30~45mg·L-1,盐度为5%~7%时,添加嗜盐菌的反应器中总氮去除率达到60%以上[ | ||
短程硝化反硝化技术 | 初始总氮浓度约为235mg·L-1,氨氮浓度约为135mg·L-1,盐度为30g·L-1时,出水中总氮去除率高于95%[ | 系统在盐度耐受范围内,脱氮性能几乎不受影响;超过一定的盐度范围,脱氮能力下降 |
初始氨氮浓度为32.6~53.2mg·L-1,盐度为0.5%、0.75%时,总无机氮去除效率达到80%以上[ | ||
氨氮(初始值约为36.2mg·L-1)在盐浓度低于0.75%时几乎完全降解,在盐浓度为1.2%时氨氮浓度降解几乎降低一半[ | ||
进水氨氮为200mg·L-1,盐度为5g·L-1和10g·L-1时,NH | ||
初始氨浓度为60mg·L-1,盐度为5~37.7g·L-1时,氨氮的去除效率达到98.5%;盐浓度继续增加到41.9g·L-1时,氨氮和TN的去除效率分别下降到43.7%和46.2%[ | ||
厌氧氨氧化技术 | 盐度小于12g·L-1时厌氧氨氧化活性提高,但盐度继续增加时会显著抑制厌氧氨氧化活性[ | 不同厌氧氨氧化菌在其可承受的盐度范围内,盐度对系统的脱氮性能具有一定的促进作用,超过耐受值时,系统脱氮能力降低 |
NaCl浓度低于8.7g·L-1时,不会影响Anammox活性,并且观察到NaCl为 13.5g·L-1时凋亡细胞占总细胞的一半[ | ||
盐度为0~20g·L-1时,脱氮效率超过80%;盐度大于30g·L-1时,系统脱氮效率降低[ | ||
盐度为2.5~30g·L-1时,总氮去除率超过75%;盐度大于30g·L-1时,脱氮效率比对照组下降了60%左右[ | ||
30g·L-1 NaCl的冲击载荷是维持Anammox稳定性的阈值[ | ||
部分硝化-厌氧氨氧化 技术 | 初始氨氮浓度大于200mg·L-1,采用逐步添加盐度的方式,盐度为10g·L-1时,总氮去除效率达到80%以上;突然加盐的方式时,系统只能处理盐度在5g·L-1以下的废水[ | 盐度在5g·L-1之内时,系统脱氮效果几乎不受影响。采用逐步加盐的方式可使系统适应更高的盐度 |
初始氨浓度为200mg·L-1,盐度不高于2%、盐度梯度为0.5%时,脱氮性能稳定;盐度升高至5%时,系统崩溃且脱氮性能不再恢复[ | ||
进水氨氮浓度约为150mg·L-1,当盐度达到2.4%时,总氮去除速率最终下降至0.42kg·m-3·d-1[ | ||
CANON工艺 | 盐度高达15g·L-1时,总氮去除率高达72.6%;盐度为20g·L-1时,脱氮性能的快速下降[ | |
盐度为25g·L-1和45g·L-1时,氨氮去除率下降到约50%和25%[ | ||
OLAND工艺 | 盐度为30g·L-1时,氮去除能力降低31%[ |
新型生物脱氮技术 | 盐浓度及去除效果 | 结论 |
---|---|---|
同步硝化反硝化技术 | 盐度为2.4%、初始氨氮浓度为40mg·L-1,氨氮去除率达到90%以上;盐度大于1.6%时,检测到大量的NO | 盐度在3%以内时,可达到一定的脱氮效果。由于盐度的存在,完全硝化反硝化逐步由部分硝化反硝化取代成为主要的脱氮方式; 添加经过盐度驯化的微生物和嗜盐菌株采用同步硝化反硝化技术处理高盐废水时,可处理更高盐度(盐度大于2%)的含氮废水并达到一定处理效果 |
盐度增加到3%时,初始氨氮浓度约为40mg·L-1,检测到NO | ||
初始氨氮浓度约为200mg·L-1,盐度不高于3%时,总氮去除率达到90%以上;盐度达到3%时,亚硝酸盐大量积累[ | ||
初始氨氮浓度为100mg·L-1,盐度为3%时,废水中总氮去除率达到90%以上[ | ||
初始氨氮浓度为15mg·L-1,盐度为28g·L-1时,NO | ||
初始氨氮浓度为400mg·L-1,盐度为1%~5%时,氨氮的去除率为70%左右[ | ||
初始氨氮浓度为20mg·L-1,盐度为2%~4%时,氨氮的去除率为70%~80%[ | ||
氨氮从119.77mg·L-1降至10.96mg·L-1,盐度为3%时,去除率可达90.86%[ | ||
初始氨氮浓度为300mg/L-1,盐度为5%时,氨氮的去除率为接近98%[ | ||
初始TN浓度为30~45mg·L-1,盐度为5%~7%时,添加嗜盐菌的反应器中总氮去除率达到60%以上[ | ||
短程硝化反硝化技术 | 初始总氮浓度约为235mg·L-1,氨氮浓度约为135mg·L-1,盐度为30g·L-1时,出水中总氮去除率高于95%[ | 系统在盐度耐受范围内,脱氮性能几乎不受影响;超过一定的盐度范围,脱氮能力下降 |
初始氨氮浓度为32.6~53.2mg·L-1,盐度为0.5%、0.75%时,总无机氮去除效率达到80%以上[ | ||
氨氮(初始值约为36.2mg·L-1)在盐浓度低于0.75%时几乎完全降解,在盐浓度为1.2%时氨氮浓度降解几乎降低一半[ | ||
进水氨氮为200mg·L-1,盐度为5g·L-1和10g·L-1时,NH | ||
初始氨浓度为60mg·L-1,盐度为5~37.7g·L-1时,氨氮的去除效率达到98.5%;盐浓度继续增加到41.9g·L-1时,氨氮和TN的去除效率分别下降到43.7%和46.2%[ | ||
厌氧氨氧化技术 | 盐度小于12g·L-1时厌氧氨氧化活性提高,但盐度继续增加时会显著抑制厌氧氨氧化活性[ | 不同厌氧氨氧化菌在其可承受的盐度范围内,盐度对系统的脱氮性能具有一定的促进作用,超过耐受值时,系统脱氮能力降低 |
NaCl浓度低于8.7g·L-1时,不会影响Anammox活性,并且观察到NaCl为 13.5g·L-1时凋亡细胞占总细胞的一半[ | ||
盐度为0~20g·L-1时,脱氮效率超过80%;盐度大于30g·L-1时,系统脱氮效率降低[ | ||
盐度为2.5~30g·L-1时,总氮去除率超过75%;盐度大于30g·L-1时,脱氮效率比对照组下降了60%左右[ | ||
30g·L-1 NaCl的冲击载荷是维持Anammox稳定性的阈值[ | ||
部分硝化-厌氧氨氧化 技术 | 初始氨氮浓度大于200mg·L-1,采用逐步添加盐度的方式,盐度为10g·L-1时,总氮去除效率达到80%以上;突然加盐的方式时,系统只能处理盐度在5g·L-1以下的废水[ | 盐度在5g·L-1之内时,系统脱氮效果几乎不受影响。采用逐步加盐的方式可使系统适应更高的盐度 |
初始氨浓度为200mg·L-1,盐度不高于2%、盐度梯度为0.5%时,脱氮性能稳定;盐度升高至5%时,系统崩溃且脱氮性能不再恢复[ | ||
进水氨氮浓度约为150mg·L-1,当盐度达到2.4%时,总氮去除速率最终下降至0.42kg·m-3·d-1[ | ||
CANON工艺 | 盐度高达15g·L-1时,总氮去除率高达72.6%;盐度为20g·L-1时,脱氮性能的快速下降[ | |
盐度为25g·L-1和45g·L-1时,氨氮去除率下降到约50%和25%[ | ||
OLAND工艺 | 盐度为30g·L-1时,氮去除能力降低31%[ |
1 | ASLAN S, ŞEKERDAĞ N. Salt inhibition on anaerobic treatment of high salinity wastewater by upflow anaerobic sludge blanket (UASB) reactor[J]. Desalination and Water Treatment, 2015, 57(28): 12998-13004. |
2 | WOOLARD C R, IRVINE R L. Tretatment of hypersaline wastewater in the sequencing batch reactor[J]. Water Research, 1995, 29(4): 1159-1168. |
60 | WANG H T, GILBERT J A, ZHU Y G, et al. Salinity is a key factor driving the nitrogen cycling in the mangrove sediment[J]. Science of the Total Environment, 2018, 631/632: 1342-1349. |
61 | AHNEN M VON, AALTO S L, SUURNÄKKI S, et al. Salinity affects nitrate removal and microbial composition of denitrifying woodchip bioreactors treating recirculating aquaculture system effluents[J]. Aquaculture, 2019, 504: 182-189. |
3 | SHI Z, ZHANG Y, ZHOU J T, et al. Biological removal of nitrate and ammonium under aerobic atmosphere by Paracoccusversutus LYM[J]. Bioresource Technology, 2013, 148: 144-148. |
4 | 周少奇.环境生物技术[M].北京: 科学出版社,2003: 119-120. |
62 | DENG Y L, RUAN Y J, ZHU S M, et al. The impact of DO and salinity on microbial community in poly(butylene succinate) denitrification reactors for recirculating aquaculture system wastewater treatment[J]. AMB Express, 2017, 7(1): 113. |
63 | ONTIVEROS-VALENCIA A, TANG Y, KRAJMALNIK-BROWN R, et al. Managing the interactions between sulfate and perchlorate-reducing bacteria when using hydrogen-fed biofilms to treat a groundwater with a high perchlorate concentration[J]. Water Research, 2014, 55: 215-224. |
4 | ZHOU S Q. Environmental biotechnology[M]. Beijing: Science Press, 2003: 119-120. |
5 | HE Q L, WANG H Y, CHEN L, et al. Robustness of an aerobic granular sludge sequencing batch reactor for low strength and salinity wastewater treatment at ambient to winter temperatures[J]. Journal of Hazardous Materials, 2020, 384: 121454. |
6 | HUANG W Y, SHE Z L, GAO M C, et al. Effect of anaerobic/aerobic duration on nitrogen removal and microbial community in a simultaneous partial nitrification and denitrification system under low salinity[J]. The Science of the Total Environment, 2019, 651(1): 859-870. |
7 | QIAN J, ZHANG M K, WU Y G, et al. A feasibility study on biological nitrogen removal (BNR) via integrated thiosulfate-driven denitratation with anammox[J]. Chemosphere, 2018, 208: 793-799. |
8 | DU R, CAO S B, PENG Y Z, et al. Combined partial denitrification (PD)-anammox: a method for high nitrate wastewater treatment[J]. Environment International, 2019, 126: 707-716. |
64 | WANG Z C, GAO M C, REN Y, et al. Effect of hydraulic retention time on performance of an anoxic-aerobic sequencing batch reactor treating saline wastewater[J]. International Journal of Environmental Science and Technology, 2014, 12(6): 2043-2054. |
65 | AHMADI M, JORFI S, KUJLU R, et al. A novel salt-tolerant bacterial consortium for biodegradation of saline and recalcitrant petrochemical wastewater[J]. Journal of Environmental Management, 2017, 191: 198-208. |
9 | LU Y, FENG L J, YANG G F, et al. Intensification and microbial pathways of simultaneous nitrification-denitrification in asequencing batch biofilm reactor forseawater-based saline wastewater treatment[J]. Chemical Technology and Biotechnology, 2018, 93(9): 2766-2773. |
10 | CHEN X Z, WANG X J, CHEN X K, et al. Salt inhibition on partial nitritation performance of ammonium-rich saline wastewater in the zeolite biological aerated filter[J]. Bioresource Technology, 2019, 280: 287-294. |
11 | JI J T, PENG Y Z, WANG B, et al. Effects of salinity build-up on the performance and microbial community of partial-denitrification granular sludge with high nitrite accumulation[J]. Chemosphere, 2018, 209: 53-60. |
12 | GOGINA E, GULSHIN I. Simultaneous nitrification and denitrification with low dissolved oxygen level and C/N ratio[J]. Procedia Engineering, 2016, 153: 189-194. |
13 | XIA Z G, WANG Q, SHE Z L, et al. Nitrogen removal pathway and dynamics of microbial community with the increase of salinity in simultaneous nitrification and denitrification process[J]. The Science of the Total Environment, 2019, 697: 134047. |
14 | SHE Z L, ZHAO L T, ZHANG X L, et al. Partial nitrification and denitrification in a sequencing batch reactor treating high-salinity wastewater[J]. Chemical Engineering Journal, 2016, 288: 207-215. |
15 | HE Q L, WANG H Y, CHEN L, et al. Elevated salinity deteriorated enhanced biological phosphorus removal in an aerobic granular sludge sequencing batch reactor performing simultaneous nitrification, denitrification and phosphorus removal[J]. Journal of Hazardous Materials, 2020, 390: 121782. |
16 | SHE Z L, WU L, WANG Q, et al. Salinity effect on simultaneous nitrification and denitrification, microbial characteristics in a hybrid sequencing batch biofilm reactor[J]. Bioprocess and Biosystems Engineering, 2018, 41(1): 65-75. |
17 | WANG J L, GONG B Z, HUANG W, et al. Bacterial community structure in simultaneous nitrification, denitrification and organic matter removal process treating saline mustard tuber wastewater as revealed by 16S rRNA sequencing[J]. Bioresource Technology, 2017, 228: 31-38. |
18 | WANG J L, GONG B Z, WANG Y M, et al. The potential multiple mechanisms and microbial communities in simultaneous nitrification and denitrification process treating high carbon and nitrogen concentration saline wastewater[J]. Bioresource Technology, 2017, 243: 708-715. |
19 | HONG J M, LI W B, LIN B, et al. Deciphering the effect of salinity on the performance of submerged membrane bioreactor for aquaculture of bacterial community[J]. Desalination, 2013, 316: 23-30. |
20 | JIN R F, LIU T Q, LIU G F, et al. Simultaneous heterotrophic nitrification and aerobic denitrification by the marine origin bacterium Pseudomonas sp. ADN-42[J]. Applied Biochemistry and Biotechnology, 2014, 175(4): 2000-2011. |
21 | HUANG F, PAN L Q, LV N, et al. Characterization of novel Bacillus strain N31 from mariculture water capable of halophilic heterotrophic nitrification-aerobic denitrification[J]. Journal of Bioscience and Bioengineering, 2017, 124(5): 564-571. |
22 | DUAN J M, FANG H D, SU B, et al. Characterization of a halophilic heterotrophic nitrification-aerobic denitrification bacterium and its application on treatment of saline wastewater[J]. Bioresource Technology, 2015, 179: 421-428. |
23 | CORSINO S F, CAPODICI M, MORICI C, et al. Simultaneous nitritation-denitritation for the treatment of high-strength nitrogen in hypersaline wastewater by aerobic granular sludge[J]. Water Research, 2016, 88: 329-336. |
24 | SHI K, ZHOU W Z, ZHAO H X, et al. Performance of halophilic marine bacteria inocula on nutrient removal from hypersaline wastewater in an intermittently aerated biological filter[J]. Bioresource Technology, 2012, 113: 280-287. |
25 | ZHANG Z J, CHEN S H, WU P, et al. Start-up of the CANON process from activated sludge under salt stress in a sequencing batch biofilm reactor (SBBR)[J]. Bioresource Technology, 2010, 101(16): 6309-6314. |
26 | WEI D, ZHANG K Y, NGO H H, et al. Nitrogen removal via nitrite in a partial nitrification sequencing batch biofilm reactor treating high strength ammonia wastewater and its greenhouse gas emission[J]. Bioresource Technology, 2017, 230: 49-55. |
27 | CAPODICI M, CORSINO S F, TORREGROSSA M, et al. Shortcut nitrification-denitrification by means of autochthonous halophilic biomass in an SBR treating fish-canning wastewater[J]. Journal of Environmental Management, 2018, 208: 142-148. |
66 | BURGESS J E, PLETSCHKE B I. Hydrolytic enzymes in sewage sludge treatment: a mini-review[J]. Water SA, 2008, 34: 343-349. |
67 | LI W, LI H, LIU Y D, et al. Salinity-aided selection of progressive onset denitrifiers as a means of providing nitrite for ANAMMOX[J]. Environmental Science Technology, 2018, 52(18): 10665-10672. |
68 | WANG J l, ZHOU J, WANG Y m, et al. Efficient nitrogen removal in a modified sequencing batch biofilm reactor treating hypersaline mustard tuber wastewater: the potential multiple pathways and key microorganisms[J]. Water Research, 2020, 177: 115734. |
28 | YUAN C S, PENG Y Z, WANG B, et al. Facilitating sludge granulation and favoring glycogen accumulating organisms by increased salinity in an anaerobic/micro-aerobic simultaneous partial nitrification, denitrification and phosphorus removal (SPNDPR) process[J]. Bioresour Technology, 2020, 313: 123698. |
29 | YE L, PENG C Y, TANG B, et al. Determination effect of influent salinity and inhibition time on partial nitrification in a sequencing batch reactor treating saline sewage[J]. Desalination, 2009, 246: 556-566. |
30 | LI J B, YE W, WEI D, et al. System performance and microbial community succession in a partial nitrification biofilm reactor in response to salinity stress[J]. Bioresource Technology, 2018, 270: 512-518. |
31 | MOSQUERA-CORRAL A, GONZáLEZ F, CAMPOS J L, et al. Partial nitrification in a SHARON reactor in the presence of salts and organic carbon compounds[J]. Process Biochemistry, 2005, 40(9): 3109-3118. |
32 | STROUS M, GERVEN V E, ZHENG P, et al. Anmonium removal from concentrated waste streams with the anaerobic ammonium oxidation (ANAMMOX) process in different configurations[J]. Water Research, 1997, 31(8): 1995-1962. |
33 | MAO N J, REN H Q, GENG J J, et al. Engineering application of anaerobic ammonium oxidation process in wastewater treatment[J]. World Journal of Microbiology & Biotechnology, 2017, 33(8): 153. |
34 | JIN R C, YANG G F, YU J J, et al. The inhibition of the ANAMMOX process: a review[J]. Chemical Engineering Journal, 2012, 197: 67-79. |
35 | CHEN H, MA C, JI Y X, et al. Evaluation of the efficacy and regulation measures of the ANAMMOX process under salty conditions[J]. Separation and Purification Technology, 2014, 132: 584-592. |
36 | WANG G J, TANG Z K, WEI J, et al. Effect of salinity on ANAMMOX nitrogen removal efficiency and sludge properties at low temperature[J]. Environmental Technology, 2019, 41: 2920-2927. |
37 | DAPENA-MORA A, CAMPOS J L, MOSQUERA-CORRAL A, et al. ANAMMOX process for nitrogen removal from anaerobically digested fish canning effluents[J]. Water Science Technology, 2006, 53(12): 265-274. |
38 | WANG X D, WANG Y Y, SONG S K, et al. Impact of salinity on the performance and microbial community of anaerobic ammonia oxidation (ANAMMOX) using 16S rRNA high throughput sequencing technology[J]. Global NEST Journal, 2017, 19(3): 377-388. |
39 | 刘成良,刘可慧,李天煜,等. 盐度对厌氧氨氧化(ANAMMOX)生物脱氮效率的影响研究[J]. 环境科学学报, 2011, 31(9): 1919-1924. |
LIU C L, LIU K H, LI T Y, et al. Effects of salinity on nitrogen removal with the ANAMMOX process[J]. Acta Scientiae Circumstantiae, 2011, 31(9): 1919-1924. | |
40 | MA C, JIN R C, YANG G F, et al. Impacts of transient salinity shock loads on ANAMMOX process performance[J]. Bioresource Technology, 2012, 112: 124-130. |
41 | DAPENA-MORA A, VAZQUEZ-PADIN J R, CAMPOS J L, et al. Monitoring the stability of an ANAMMOX reactor under high salinity conditions[J]. Biochemical Engineering Journal, 2010, 51(3): 167-171. |
42 | FERNANDEZ I, VAZQUEZ-PADIN J R, MOSQUERA-CORRAL A, et al. Biofilm and granular systems to improve ANAMMOX biomass retention[J]. Biochemical Engineering Journal, 2008, 42(3): 308-313. |
43 | LIU M, PENG Y Z, WANG S Y, et al. Enhancement of ANAMMOX activity by addition of compatible solutes at high salinity conditions[J]. Bioresource Technology, 2014, 167: 560-563. |
44 | ZHANG F Z, PENG Y Z, MIAO L, et al. A novel simultaneous partial nitrification ANAMMOX and denitrification (SNAD) with intermittent aeration for cost-effective nitrogen removal from mature landfill leachate[J]. Chemical Engineering Journal, 2017, 313: 619-628. |
45 | VAL DEL RIO A, PICHEL A, FERNANDEZ-GONZALEZ N, et al. Performance and microbial features of the partial nitritation-ANAMMOX process treating fish canning wastewater with variable salt concentrations[J]. Journal of Environmental Management, 2018, 208: 112-121. |
46 | GE C H, DONG Y, LI H M, et al. Nitritation-ANAMMOX process—A realizable and satisfactory way to remove nitrogen from high saline wastewater[J]. Bioresource Technology, 2019, 275: 86-93. |
47 | LI X, YUAN Y, YUAN Y, et al. Effects of salinity on the denitrification efficiency and community structure of a combined partial nitritation- anaerobic ammonium oxidation process[J]. Bioresource Technology, 2018, 249: 550-556. |
48 | LIU C C, YU D S, WANG Y Y, et al. A novel control strategy for the partial nitrification and ANAMMOX process (PN/A) of immobilized particles: using salinity as a factor[J]. Bioresoure Technology, 2020, 302: 122864. |
49 | THIRD K A, SLIEKERS A O, KUENEN J G, et al. The CANON system (completely autotrophic nitrogen-removal over nitrite) under ammonium limitation: interaction and competition between three groups of bacteria[J]. Systematic and Applied Microbiology, 2001, 24(4): 588-596. |
50 | WANG Y Y, CHEN J, ZHOU S, et al. 16S rRNA gene high-throughput sequencing reveals shift in nitrogen conversion related microorganisms in a CANON system in response to salt stress[J]. Chemical Engineering Journal, 2017, 317: 512-521. |
51 | GARCÍA-RUIZ M J, CASTELLANO-HINOJOSA A, GONZÁLEZ-LÓPEZ J, et al. Effects of salinity on the nitrogen removal efficiency and bacterial community structure in fixed-bed biofilm CANON bioreactors[J]. Chemical Engineering Journal, 2018, 347: 156-164. |
52 | 赖政钢, 褚淑祎, 崔灵周, 等. 限制自养硝化反硝化工艺脱氮机制及强化研究进展[J]. 浙江农林大学学报, 2017, 34(5): 934-941. |
LAI Z G, CHU S Y, CUI L Z, et al. Research on the mechanism and strengthening of OLAND process[J]. Journal of Zhejiang A&F University, 2017, 34(5): 934-941. | |
53 | WINDEY K, DE BO I, VERSTRAETE W. Oxygen-limited autotrophic nitrification-denitrification (OLAND) in a rotating biological contactor treating high-salinity wastewater[J]. Water Research, 2005, 39(18): 4512-4520. |
54 | BASSIN J P, DEZOTTI M, SANT'ANNA G L JR. Nitrification of industrial and domestic saline wastewaters in moving bed biofilm reactor and sequencing batch reactor[J]. Journal of Hazardous Materials, 2011, 185(1): 242-248. |
55 | OZALP G, GOMEC C Y, OZTURK I, et al. Effect of high salinity on anaerobic treatment of low strength effluents[J]. Water Science Technology, 2004, 48(11/12): 207-212. |
56 | WANG J L, ZHAN X M, FENG Y C, et al. Effect of salinity variations on the performance of activated sludge system[J]. Biomedicaland Environmental Sciences, 2005, 18(1):5-8. |
57 | BELLA G D, TRAPANI D D, TORREGROSSA M, et al. Performance of a MBR pilot plant treating high strength wastewater subject to salinity increase: analysis of biomass activity and fouling behaviour[J]. Bioresource Technology, 2013, 147: 614-618. |
58 | LI L L. Study of biological treatment of high-salinity[D]. Qingdao: Ocean University of China, 2006. |
59 | FU G P, YU T Y, HUANGSHEN L K, et al. The influence of complex fermentation broth on denitrification of saline sewage in constructed wetlands by heterotrophic nitrifying/aerobic denitrifying bacterial communities[J]. Bioresource Technology, 2018, 250: 290-298. |
[1] | WANG Ying, HAN Yunping, LI Lin, LI Yanbo, LI Huili, YAN Changren, LI Caixia. Research status and future prospects of the emission characteristics of virus aerosols in urban wastewater treatment plants [J]. Chemical Industry and Engineering Progress, 2023, 42(S1): 439-446. |
[2] | XU Chunshu, YAO Qingda, LIANG Yongxian, ZHOU Hualong. Research progress on functionalization strategies of covalent organic frame materials and its adsorption properties for Hg(Ⅱ) and Cr(Ⅵ) [J]. Chemical Industry and Engineering Progress, 2023, 42(S1): 461-478. |
[3] | WANG Lele, YANG Wanrong, YAO Yan, LIU Tao, HE Chuan, LIU Xiao, SU Sheng, KONG Fanhai, ZHU Canghai, XIANG Jun. Influence of spent SCR catalyst blending on the characteristics and deNO x performance for new SCR catalyst [J]. Chemical Industry and Engineering Progress, 2023, 42(S1): 489-497. |
[4] | LI Ning, LI Jinke, DONG Jinshan. Research and development of porous medium burner in ethylene cracking furnace [J]. Chemical Industry and Engineering Progress, 2023, 42(S1): 73-83. |
[5] | XU Zhongshuo, ZHOU Panpan, WANG Yuhui, HUANG Wei, SONG Xinshan. Advances in sulfur iron ore mediated autotrophic denitrification [J]. Chemical Industry and Engineering Progress, 2023, 42(9): 4863-4871. |
[6] | WANG Chen, BAI Haoliang, KANG Xue. Performance study of high power UV-LED heat dissipation and nano-TiO2 photocatalytic acid red 26 coupling system [J]. Chemical Industry and Engineering Progress, 2023, 42(9): 4905-4916. |
[7] | XU Jie, XIA Longbo, LUO Ping, ZOU Dong, ZHONG Zhaoxiang. Progress in preparation and application of omniphobic membranes for membrane distillation process [J]. Chemical Industry and Engineering Progress, 2023, 42(8): 3943-3955. |
[8] | ZHANG Wei, QIN Chuan, XIE Kang, ZHOU Yunhe, DONG Mengyao, LI Jie, TANG Yunhao, MA Ying, SONG Jian. Application and performance enhancement challenges of H2-SCR modified platinum-based catalysts for low-temperature denitrification [J]. Chemical Industry and Engineering Progress, 2023, 42(6): 2954-2962. |
[9] | LI Baixue, XIN Xin, ZHU Yumeng, LIU Qin, LIU Xin. Construction of sulfur autotrophic short-cut denitrification and anaerobic ammonium oxidation (SASD-A) coupling system and effect mechanisms of influent S/N ratio on denitrification process [J]. Chemical Industry and Engineering Progress, 2023, 42(6): 3261-3271. |
[10] | YANG Hongmei, GAO Tao, YU Tao, QU Chengtun, GAO Jiapeng. Treatment of refractory organics sulfonated phenolic resin with ferrate [J]. Chemical Industry and Engineering Progress, 2023, 42(6): 3302-3308. |
[11] | ZHANG Ning, WU Haibin, LI Yu, LI Jianfeng, CHENG Fangqin. Recent advances in preparation and application of floating photocatalysts in water treatment [J]. Chemical Industry and Engineering Progress, 2023, 42(5): 2475-2485. |
[12] | ZHANG Han, ZHANG Xiaojing, MA Bingbing, NAI Can, LIU Shuoshuo, MA Yongpeng, SONG Yali. Feasibility of starting anammox process with municipal waste sludge as seed sludge [J]. Chemical Industry and Engineering Progress, 2023, 42(2): 1080-1088. |
[13] | WU Xinbo, DANG Hongzhong, MA Jiao, YAN Yuan, ZENG Tianxu, LI Weiwei, ZHANG Guozhen, CHEN Yongzhi. Effect of denitrifying phosphorus removal under short-cut nitrification mode with A2/O-BAF process [J]. Chemical Industry and Engineering Progress, 2023, 42(2): 1089-1097. |
[14] | LIU Dan, FAN Yunjie, WANG Huimin, YAN Zheng, LI Pengfei, LI Jiacheng, CAO Xuebo. High value-added functional porous carbon materials from waste PET and their applications [J]. Chemical Industry and Engineering Progress, 2023, 42(2): 969-984. |
[15] | ZHANG Yingjie, LU Jiayue, WANG Fanggang. Synthesis of a new MCER and its performance in removing Cu(Ⅱ) from water [J]. Chemical Industry and Engineering Progress, 2023, 42(10): 5558-5566. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||
京ICP备12046843号-2;京公网安备 11010102001994号 Copyright © Chemical Industry and Engineering Progress, All Rights Reserved. E-mail: hgjz@cip.com.cn Powered by Beijing Magtech Co. Ltd |