Chemical Industry and Engineering Progress ›› 2023, Vol. 42 ›› Issue (3): 1583-1594.DOI: 10.16085/j.issn.1000-6613.2022-0816
• Resources and environmental engineering • Previous Articles Next Articles
WANG Xiaoyue(), ZHANG Weimin, YAO Zhengyang, GUO Xiaohong, LI Congming()
Received:
2022-05-05
Revised:
2022-07-13
Online:
2023-04-10
Published:
2023-03-15
Contact:
LI Congming
通讯作者:
李聪明
作者简介:
王晓月(1991—),男,博士研究生,研究方向为多相催化CO2转化利用。E-mail:1220509409@qq.com。
基金资助:
CLC Number:
WANG Xiaoyue, ZHANG Weimin, YAO Zhengyang, GUO Xiaohong, LI Congming. Research progress of reverse water gas shift reaction[J]. Chemical Industry and Engineering Progress, 2023, 42(3): 1583-1594.
王晓月, 张伟敏, 姚正阳, 郭晓宏, 李聪明. 逆水煤气变换反应研究进展[J]. 化工进展, 2023, 42(3): 1583-1594.
Add to citation manager EndNote|Ris|BibTeX
URL: https://hgjz.cip.com.cn/EN/10.16085/j.issn.1000-6613.2022-0816
1 | WANG W, WANG S P, MA X B, et al. Recent advances in catalytic hydrogenation of carbon dioxide[J]. Chemical Society Reviews, 2011, 40(7): 3703-3727. |
2 | ARESTA M, DIBENEDETTO A, ANGELINI A. Catalysis for the valorization of exhaust carbon: From CO2 to chemicals, materials, and fuels. Technological use of CO2 [J]. Chemical Reviews, 2014, 114(3): 1709-1742. |
3 | POROSOFF M D, YAN B H, CHEN J G G. Catalytic reduction of CO2 by H2 for synthesis of CO, methanol and hydrocarbons: Challenges and opportunities[J]. Energy & Environmental Science, 2016, 9(1): 62-73. |
4 | LEUNG D Y C, CARAMANNA G, MAROTO-VALER M M. An overview of current status of carbon dioxide capture and storage technologies[J]. Renewable and Sustainable Energy Reviews, 2014, 39: 426-443. |
5 | FAZLOLLAHI F, BOWN A, SAEIDI S, et al. Transient natural gas liquefaction process comparison-dynamic heat exchanger under transient changes in flow[J]. Applied Thermal Engineering, 2016, 109: 775-788. |
6 | OUYANG B, TAN W L, LIU B. Morphology effect of nanostructure ceria on the Cu/CeO2 catalysts for synthesis of methanol from CO2 hydrogenation[J]. Catalysis Communications, 2017, 95: 36-39. |
7 | BAHRI S, VENEZIA A M, UPADHYAYULA S. Utilization of greenhouse gas carbon dioxide for cleaner Fischer-Tropsch diesel production[J]. Journal of Cleaner Production, 2019, 228: 1013-1024. |
8 | POROSOFF M D, YANG X F, BOSCOBOINIK J A, et al. Molybdenum carbide as alternative catalysts to precious metals for highly selective reduction of CO2 to CO[J]. Angewandte Chemie International Edition, 2014, 53(26): 6705-6709. |
9 | YUAN F, ZHANG G H, ZHU J, et al. Boosting light olefin selectivity in CO2 hydrogenation by adding Co to Fe catalysts within close proximity[J]. Catalysis Today, 2021, 371: 142-149. |
10 | YANG S, LI M Z, NAWAZ M A, et al. High selectivity to aromatics by a Mg and Na co-modified catalyst in direct conversion of syngas[J]. ACS Omega, 2020, 5(20): 11701-11709. |
11 | CHANG C D, LANG W H, SILVESTRI A J. Synthesis gas conversion to aromatic hydrocarbons[J]. Journal of Catalysis, 1979, 56(2): 268-273. |
12 | JIA X Y, SUN K H, WANG J, et al. Selective hydrogenation of CO2 to methanol over Ni/In2O3 catalyst[J]. Journal of Energy Chemistry, 2020, 50: 409-415. |
13 | WANG S, WANG P F, QIN Z F, et al. Enhancement of light olefin production in CO2 hydrogenation over In2O3-based oxide and SAPO-34 composite[J]. Journal of Catalysis, 2020, 391: 459-470. |
14 | SU X, XU J H, LIANG B L, et al. Catalytic carbon dioxide hydrogenation to methane: A review of recent studies[J]. Journal of Energy Chemistry, 2016, 25(4): 553-565. |
15 | KAISER P, UNDE R B, KERN C, et al. Production of liquid hydrocarbons with CO2 as carbon source based on reverse water-gas shift and Fischer-Tropsch synthesis[J]. Chemie Ingenieur Technik, 2013, 85(4): 489-499. |
16 | KATTEL S, YAN B H, CHEN J G, et al. CO2 hydrogenation on Pt, Pt/SiO2 and Pt/TiO2: Importance of synergy between Pt and oxide support[J]. Journal of Catalysis, 2016, 343: 115-126. |
17 | VOVCHOK D, ZHANG C, HWANG S, et al. Deciphering dynamic structural and mechanistic complexity in Cu/CeO2/ZSM-5 catalysts for the reverse water-gas shift reaction[J]. ACS Catalysis, 2020, 10 (17): 10216-10228. |
18 | KALAMARAS C M, PANAGIOTOPOULOU P, KONDARIDES D I, et al. Kinetic and mechanistic studies of the water-gas shift reaction on Pt/TiO2 catalyst[J]. Journal of Catalysis, 2009, 264(2): 117-129. |
19 | CAO Z R, GUO L, LIU N Y, et al. Theoretical study on the reaction mechanism of reverse water-gas shift reaction using a Rh-Mo6S8 cluster[J]. RSC Advances, 2016, 6(110): 108270-108279. |
20 | KIM S S, LEE H H, HONG S C. A study on the effect of support’s reducibility on the reverse water-gas shift reaction over Pt catalysts[J]. Applied Catalysis A: General, 2012, 423/424: 100-107. |
21 | GUO J L, DUCHESNE P N, WANG L, et al. High-performance, scalable, and low-cost copper hydroxyapatite for photothermal CO2 reduction[J]. ACS Catalysis, 2020, 10: 13668-13681. |
22 | ZHU M H, TIAN P F, KURTZ R, et al. Strong metal-support interactions between copper and iron oxide during the high-temperature water-gas shift reaction[J]. Angewandte Chemie International Edition, 2019, 58(27): 9083-9087. |
23 | ZHU M H, TIAN P F, FORD M E, et al. Nature of reactive oxygen intermediates on copper-promoted iron-chromium oxide catalysts during CO2 activation[J]. ACS Catalysis, 2020, 10(14): 7857-7863. |
24 | WANG L C, KHAZANEH T, WIDMANN D, et al. TAP reactor studies of the oxidizing capability of CO2 on an Au/CeO2 catalyst – A first step toward identifying a redox mechanism in the reverse water-gas shift reaction[J]. Journal of Catalysis, 2013, 302:20-30. |
25 | BOBADILLA L F, SANTOS J L, IVANOVA S, et al. Unravelling the role of oxygen vacancies in the mechanism of the reverse water-gas shift reaction by operando DRIFTS and ultraviolet-visible spectroscopy[J]. ACS Catalysis, 2018, 8(8): 7455-7467. |
26 | LIANG B L, DUAN H M, SU X, et al. Promoting role of potassium in the reverse water gas shift reaction on Pt/mullite catalyst[J]. Catalysis Today, 2017, 281: 319-326. |
27 | CHEN C S, CHENG W H, LIN S S. Study of reverse water gas shift reaction by TPD, TPR and CO2 hydrogenation over potassium-promoted Cu/SiO2 catalyst[J]. Applied Catalysis A: General, 2003, 238(1): 55-67. |
28 | WANG X, HONG Y C, SHI H, et al. Kinetic modeling and transient DRIFTS-MS studies of CO2 methanation over Ru/Al2O3 catalysts[J]. Journal of Catalysis, 2016, 343: 185-195. |
29 | CHEN X D, SU X, LIANG B L, et al. Identification of relevant active sites and a mechanism study for reverse water gas shift reaction over Pt/CeO2 catalysts[J]. Journal of Energy Chemistry, 2016, 25(6): 1051-1057. |
30 | KIM S S, PARK K H, HONG S C. A study of the selectivity of the reverse water-gas-shift reaction over Pt/TiO2 catalysts[J]. Fuel Processing Technology, 2013, 108: 47-54. |
31 | GOGUET A, MEUNIER F C, TIBILETTI D, et al. Spectrokinetic investigation of reverse water-gas-shift reaction intermediates over a Pt/CeO2 catalyst[J]. The Journal of Physical Chemistry B, 2004, 108(52): 20240-20246. |
32 | KIM S S, LEE H H, HONG S C. The effect of the morphological characteristics of TiO2 supports on the reverse water-gas shift reaction over Pt/TiO2 catalysts[J]. Applied Catalysis B: Environmental, 2012, 119/120: 100-108. |
33 | WANG X, SHI H, KWAK J H, et al. Mechanism of CO2 hydrogenation on Pd/Al2O3 catalysts: Kinetics and transient DRIFTS-MS studies[J]. ACS Catalysis, 2015, 5(11): 6337-6349. |
34 | MATSUBU J C, YANG V N, CHRISTOPHER P. Isolated metal active site concentration and stability control catalytic CO2 reduction selectivity[J]. Journal of the American Chemical Society, 2015, 137(8): 3076-3084. |
35 | CHEN X D, SU X, SU H Y, et al. Theoretical insights and the corresponding construction of supported metal catalysts for highly selective CO2 to CO conversion[J]. ACS Catalysis, 2017, 7(7): 4613-4620. |
36 | ZHOU G L, DAI B C, XIE H M, et al. CeCu composite catalyst for CO synthesis by reverse water-gas shift reaction: effect of Ce/Cu mole ratio[J]. Journal of CO2 Utilization, 2017, 21:292-301. |
37 | KATTEL S, YAN B H, YANG Y X, et al. Optimizing binding energies of key intermediates for CO2 hydrogenation to methanol over oxide-supported copper[J]. Journal of the American Chemical Society, 2016, 138(38): 12440-12450. |
38 | CHEN C S, CHENG W H, LIN S S. Study of iron-promoted Cu/SiO2 catalyst on high temperature reverse water gas shift reaction[J]. Applied Catalysis A: General, 2004, 257(1): 97-106. |
39 | WANG L H, LIU H, LIU Y, et al. Influence of preparation method on performance of Ni-CeO2 catalysts for reverse water-gas shift reaction[J]. Journal of Rare Earths, 2013, 31(6): 559-564. |
40 | WU H C, CHANG C Y, WU J H, et al. Methanation of CO2 and reverse water gas shift reactions on Ni/SiO2 catalysts: the influence of particle size on selectivity and reaction pathway[J]. Catalysis Science & Technology, 2015, 5(8): 4154-4163. |
41 | ZHANG Z M, TIAN Y, ZHANG L J, et al. Impacts of nickel loading on properties, catalytic behaviors of Ni/γ-Al2O3 catalysts and the reaction intermediates formed in methanation of CO2 [J]. International Journal of Hydrogen Energy, 2019, 44(18): 9291-9306. |
42 | RANJBAR A, IRANKHAH A, AGHAMIRI S F. Reverse water gas shift reaction and CO2 mitigation: nanocrystalline MgO as a support for nickel based catalysts[J]. Journal of Environmental Chemical Engineering, 2018, 6(4): 4945-4952. |
43 | WINTER L R, CHEN R, CHEN X, et al. Elucidating the roles of metallic Ni and oxygen vacancies in CO2 hydrogenation over Ni/CeO2 using isotope exchange and in situ measurements[J]. Applied Catalysis B: Environmental, 2019, 245: 360-366. |
44 | WINTER L R, GOMEZ E, YAN B H, et al. Tuning Ni-catalyzed CO2 hydrogenation selectivity via Ni-ceria support interactions and Ni-Fe bimetallic formation[J]. Applied Catalysis B: Environmental, 2018, 224: 442-450. |
45 | SUN F M, YAN C F, WANG Z D, et al. Ni/Ce-Zr-O catalyst for high CO2 conversion during reverse water gas shift reaction (RWGS)[J]. International Journal of Hydrogen Energy, 2015, 40(46): 15985-15993. |
46 | WANG W, ZHANG Y, WANG Z Y, et al. Reverse water gas shift over In2O3-CeO2 catalysts[J]. Catalysis Today, 2016, 259: 402-408. |
47 | LI K Z, CHEN J G. CO2 hydrogenation to methanol over ZrO2-containing catalysts: Insights into ZrO2 induced synergy[J]. ACS Catalysis, 2019, 9(9): 7840-7861. |
48 | SU J J, ZHOU H B, LIU S, et al. Syngas to light olefins conversion with high olefin/paraffin ratio using ZnCrO x /AlPO-18 bifunctional catalysts[J]. Nature Communications, 2019, 10: 1297. |
49 | PARK S W, JOO O S, JUNG K D, et al. ZnO/Cr2O3 catalyst for reverse-water-gas-shift reaction of CAMERE process[J]. Korean Journal of Chemical Engineering, 2000, 17(6): 719-722. |
50 | PARK S W, JOO O S, JUNG K D, et al. Development of ZnO/Al2O3 catalyst for reverse-water-gas-shift reaction of CAMERE (carbon dioxide hydrogenation to form methanol via a reverse-water-gas-shift reaction) process[J]. Applied Catalysis A: General, 2001, 211(1): 81-90. |
51 | DAZA Y A, KENT R A, YUNG M M, et al. Carbon dioxide conversion by reverse water-gas shift chemical looping on perovskite-type oxides[J]. Industrial & Engineering Chemistry Research, 2014, 53(14): 5828-5837. |
52 | GAO J J, WU Y, JIA C M, et al. Controllable synthesis of α-MoC1- x and β-Mo2C nanowires for highly selective CO2 reduction to CO[J]. Catalysis Communications, 2016, 84: 147-150. |
53 | ZHANG X, ZHU X B, LIN L L, et al. Highly dispersed copper over β-Mo2C as an efficient and stable catalyst for the reverse water gas shift (RWGS) reaction[J]. ACS Catalysis, 2017, 7(1): 912-918. |
54 | GONG J, CHU M Y, GUAN W H, et al. Regulating the interfacial synergy of Ni/Ga2O3 for CO2 hydrogenation toward the reverse water–gas shift reaction[J]. Industrial & Engineering Chemistry Research, 2021, 60(26): 9448-9455. |
55 | AITBEKOVA A, WU L H, WRASMAN C J, et al. Low-temperature restructuring of CeO2-supported Ru nanoparticles determines selectivity in CO2 catalytic reduction[J]. Journal of the American Chemical Society, 2018, 140(42): 13736-13745. |
56 | LI S W, XU Y, CHEN Y F, et al. Tuning the selectivity of catalytic carbon dioxide hydrogenation over iridium/cerium oxide catalysts with a strong metal-support interaction[J]. Angewandte Chemie International Edition, 2017, 56(36): 10761-10765. |
57 | GONZÁLEZ-CASTANO M, NAVARRO DE MIGUEL J C, SINHA F, et al. Cu supported Fe-SiO2 nanocomposites for reverse water gas shift reaction[J]. Journal of CO2 Utilization, 2021, 46: 101493. |
58 | YANG X L, SU X, CHEN X D, et al. Promotion effects of potassium on the activity and selectivity of Pt/zeolite catalysts for reverse water gas shift reaction[J]. Applied Catalysis B: Environmental, 2017, 216: 95-105. |
59 | YUAN H J, ZHU X L, HAN J Y, et al. Rhenium-promoted selective CO2 methanation on Ni-based catalyst[J]. Journal of CO2 Utilization, 2018, 26: 8-18. |
60 | POROSOFF M D, CHEN J G. Trends in the catalytic reduction of CO2 by hydrogen over supported monometallic and bimetallic catalysts[J]. Journal of Catalysis, 2013, 301: 30-37. |
[1] | YANG Hanyue, KONG Lingzhen, CHEN Jiaqing, SUN Huan, SONG Jiakai, WANG Sicheng, KONG Biao. Decarbonization performance of downflow tubular gas-liquid contactor of microbubble-type [J]. Chemical Industry and Engineering Progress, 2023, 42(S1): 197-204. |
[2] | WANG Shengyan, DENG Shuai, ZHAO Ruikai. Research progress on carbon dioxide capture technology based on electric swing adsorption [J]. Chemical Industry and Engineering Progress, 2023, 42(S1): 233-245. |
[3] | ZHANG Mingyan, LIU Yan, ZHANG Xueting, LIU Yake, LI Congju, ZHANG Xiuling. Research progress of non-noble metal bifunctional catalysts in zinc-air batteries [J]. Chemical Industry and Engineering Progress, 2023, 42(S1): 276-286. |
[4] | SHI Yongxing, LIN Gang, SUN Xiaohang, JIANG Weigeng, QIAO Dawei, YAN Binhang. Research progress on active sites in Cu-based catalysts for CO2 hydrogenation to methanol [J]. Chemical Industry and Engineering Progress, 2023, 42(S1): 287-298. |
[5] | XIE Luyao, CHEN Songzhe, WANG Laijun, ZHANG Ping. Platinum-based catalysts for SO2 depolarized electrolysis [J]. Chemical Industry and Engineering Progress, 2023, 42(S1): 299-309. |
[6] | YANG Xiazhen, PENG Yifan, LIU Huazhang, HUO Chao. Regulation of active phase of fused iron catalyst and its catalytic performance of Fischer-Tropsch synthesis [J]. Chemical Industry and Engineering Progress, 2023, 42(S1): 310-318. |
[7] | ZHENG Qian, GUAN Xiushuai, JIN Shanbiao, ZHANG Changming, ZHANG Xiaochao. Photothermal catalysis synthesis of DMC from CO2 and methanol over Ce0.25Zr0.75O2 solid solution [J]. Chemical Industry and Engineering Progress, 2023, 42(S1): 319-327. |
[8] | WANG Lele, YANG Wanrong, YAO Yan, LIU Tao, HE Chuan, LIU Xiao, SU Sheng, KONG Fanhai, ZHU Canghai, XIANG Jun. Influence of spent SCR catalyst blending on the characteristics and deNO x performance for new SCR catalyst [J]. Chemical Industry and Engineering Progress, 2023, 42(S1): 489-497. |
[9] | DENG Liping, SHI Haoyu, LIU Xiaolong, CHEN Yaoji, YAN Jingying. Non-noble metal modified vanadium titanium-based catalyst for NH3-SCR denitrification simultaneous control VOCs [J]. Chemical Industry and Engineering Progress, 2023, 42(S1): 542-548. |
[10] | SUN Yuyu, CAI Xinlei, TANG Jihai, HUANG Jingjing, HUANG Yiping, LIU Jie. Optimization and energy-saving of a reactive distillation process for the synthesis of methyl methacrylate [J]. Chemical Industry and Engineering Progress, 2023, 42(S1): 56-63. |
[11] | DONG Jiayu, WANG Simin. Experimental on ultrasound enhancement of para-xylene crystallization characteristics and regulation mechanism [J]. Chemical Industry and Engineering Progress, 2023, 42(9): 4504-4513. |
[12] | CHENG Tao, CUI Ruili, SONG Junnan, ZHANG Tianqi, ZHANG Yunhe, LIANG Shijie, PU Shi. Analysis of impurity deposition and pressure drop increase mechanisms in residue hydrotreating unit [J]. Chemical Industry and Engineering Progress, 2023, 42(9): 4616-4627. |
[13] | WANG Peng, SHI Huibing, ZHAO Deming, FENG Baolin, CHEN Qian, YANG Da. Recent advances on transition metal catalyzed carbonylation of chlorinated compounds [J]. Chemical Industry and Engineering Progress, 2023, 42(9): 4649-4666. |
[14] | ZHANG Qi, ZHAO Hong, RONG Junfeng. Research progress of anti-toxicity electrocatalysts for oxygen reduction reaction in PEMFC [J]. Chemical Industry and Engineering Progress, 2023, 42(9): 4677-4691. |
[15] | GE Quanqian, XU Mai, LIANG Xian, WANG Fengwu. Research progress on the application of MOFs in photoelectrocatalysis [J]. Chemical Industry and Engineering Progress, 2023, 42(9): 4692-4705. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||
京ICP备12046843号-2;京公网安备 11010102001994号 Copyright © Chemical Industry and Engineering Progress, All Rights Reserved. E-mail: hgjz@cip.com.cn Powered by Beijing Magtech Co. Ltd |