Chemical Industry and Engineering Progress ›› 2022, Vol. 41 ›› Issue (5): 2733-2742.DOI: 10.16085/j.issn.1000-6613.2021-1285
• Resources and environmental engineering • Previous Articles Next Articles
SHAO Mingshuai(), ZHANG Chao, WU Huanan, WANG Ning, CHEN Qindong, XU Qiyong()
Received:
2021-06-21
Revised:
2021-08-02
Online:
2022-05-24
Published:
2022-05-05
Contact:
XU Qiyong
邵明帅(), 张超, 吴华南, 王宁, 陈钦冬, 徐期勇()
通讯作者:
徐期勇
作者简介:
邵明帅(1994—),男,博士研究生,研究方向为固体废弃物处理与资源化。E-mail:基金资助:
CLC Number:
SHAO Mingshuai, ZHANG Chao, WU Huanan, WANG Ning, CHEN Qindong, XU Qiyong. Treatment process and energy analysis of hydrothermal treatment coupled with anaerobic digestion on food waste digestate management[J]. Chemical Industry and Engineering Progress, 2022, 41(5): 2733-2742.
邵明帅, 张超, 吴华南, 王宁, 陈钦冬, 徐期勇. 水热耦合厌氧消化技术处理餐厨垃圾沼渣沼液及工艺能耗分析[J]. 化工进展, 2022, 41(5): 2733-2742.
Add to citation manager EndNote|Ris|BibTeX
URL: https://hgjz.cip.com.cn/EN/10.16085/j.issn.1000-6613.2021-1285
pH | 含水率 /% | COD /mg·L-1 | CST/s | 泥饼含水率/% | C/% | H/% | O/% | N/% | S/% |
---|---|---|---|---|---|---|---|---|---|
8.3 | 97.5 | 7200 | 1335.27 | 88.43 | 38.79 | 5.28 | 20.83 | 7.28 | 1.57 |
pH | 含水率 /% | COD /mg·L-1 | CST/s | 泥饼含水率/% | C/% | H/% | O/% | N/% | S/% |
---|---|---|---|---|---|---|---|---|---|
8.3 | 97.5 | 7200 | 1335.27 | 88.43 | 38.79 | 5.28 | 20.83 | 7.28 | 1.57 |
泥饼 | 固体产率①(质量分数)/% | 灰分(质量分数)/% | 挥发分(质量分数)/% | C(质量分数)/% | HHV/MJ·kg-1 |
---|---|---|---|---|---|
DFW | 100.0 | 26.3 | 68.1 | 36.5 | 15.18 |
H60-80 | 80.4 | 30.9 | 66.1 | 34.2 | 14.40 |
H60-100 | 91.0 | 31.5 | 64.0 | 33.8 | 14.67 |
H60-120 | 79.5 | 35.3 | 62.6 | 31.8 | 13.40 |
H60-140 | 64.4 | 40.3 | 56.0 | 31.3 | 12.81 |
H60-160 | 57.4 | 45.45 | 51.4 | 30.8 | 13.34 |
H60-180 | 47.7 | 46.3 | 50.4 | 28.9 | 13.23 |
H60-200 | 43.1 | 54.2 | 42.2 | 25.8 | 12.29 |
泥饼 | 固体产率①(质量分数)/% | 灰分(质量分数)/% | 挥发分(质量分数)/% | C(质量分数)/% | HHV/MJ·kg-1 |
---|---|---|---|---|---|
DFW | 100.0 | 26.3 | 68.1 | 36.5 | 15.18 |
H60-80 | 80.4 | 30.9 | 66.1 | 34.2 | 14.40 |
H60-100 | 91.0 | 31.5 | 64.0 | 33.8 | 14.67 |
H60-120 | 79.5 | 35.3 | 62.6 | 31.8 | 13.40 |
H60-140 | 64.4 | 40.3 | 56.0 | 31.3 | 12.81 |
H60-160 | 57.4 | 45.45 | 51.4 | 30.8 | 13.34 |
H60-180 | 47.7 | 46.3 | 50.4 | 28.9 | 13.23 |
H60-200 | 43.1 | 54.2 | 42.2 | 25.8 | 12.29 |
参数 | DFW | H60-80 | H60-100 | H60-120 | H60-140 | H60-160 | H60-180 | H60-200 | 参数物理意义 |
---|---|---|---|---|---|---|---|---|---|
Mw /kg | 975 | 975 | 975 | 975 | 975 | 975 | 975 | 975 | DFW中水的含量 |
Ms /kg | 25 | 25 | 25 | 25 | 25 | 25 | 25 | 25 | DFW中固体的含量 |
Mcw/kg | 63.52 | 43.14 | 41.86 | 34.09 | 27.68 | 25.61 | 19.74 | 16.87 | 泥饼中的水含量 |
Mcs /kg | 8.31 | 7.21 | 9.10 | 8.58 | 7.05 | 6.30 | 5.10 | 5.24 | 泥饼中固体含量 |
0.98 | 1.78 | 1.99 | 2.33 | 2.84 | 3.16 | 3.16 | 3.03 | 甲烷累计产量 | |
Mrw/kg | 51.05 | 32.33 | 28.21 | 21.23 | 17.10 | 16.16 | 12.08 | 9.01 | 将泥饼干燥至60%含水率所需脱水量 |
TS (质量分数)/% | 2.49 | 2.00 | 2.72 | 1.98 | 1.60 | 1.43 | 1.19 | 1.07 | 总固体含量 |
cw /kJ·kg-1·℃-1 | 4.186 | 4.186 | 4.186 | 4.186 | 4.186 | 4.186 | 4.186 | 4.186 | 水的比热容 |
cs /kJ·kg-1·℃-1 | 0.971 | 0.971 | 0.971 | 0.971 | 0.971 | 0.971 | 0.971 | 0.971 | DFW中固体的比热容 |
THTT /℃ | — | 80 | 100 | 120 | 140 | 160 | 180 | 200 | 水热处理温度 |
2257.2 | 2257.2 | 2257.2 | 2257.2 | 2257.2 | 2257.2 | 2257.2 | 2257.2 | 水的气化潜热 | |
q /MJ·m-3 CH4 | 35.88 | 35.88 | 35.88 | 35.88 | 35.88 | 35.88 | 35.88 | 35.88 | 甲烷气体的低位热值 |
v/kW·h·kg-1 | 0.04 | 0.04 | 0.04 | 0.04 | 0.04 | 0.04 | 0.04 | 0.04 | 单位质量样品离心脱水用电量 |
ξ /% | — | 85 | 85 | 85 | 85 | 85 | 85 | 85 | 加热能耗的回收效率 |
k /W·m-2·℃-1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 热转化效率 |
Τ/d | 35 | 35 | 35 | 35 | 35 | 35 | 35 | 35 | 厌氧发酵的天数 |
参数 | DFW | H60-80 | H60-100 | H60-120 | H60-140 | H60-160 | H60-180 | H60-200 | 参数物理意义 |
---|---|---|---|---|---|---|---|---|---|
Mw /kg | 975 | 975 | 975 | 975 | 975 | 975 | 975 | 975 | DFW中水的含量 |
Ms /kg | 25 | 25 | 25 | 25 | 25 | 25 | 25 | 25 | DFW中固体的含量 |
Mcw/kg | 63.52 | 43.14 | 41.86 | 34.09 | 27.68 | 25.61 | 19.74 | 16.87 | 泥饼中的水含量 |
Mcs /kg | 8.31 | 7.21 | 9.10 | 8.58 | 7.05 | 6.30 | 5.10 | 5.24 | 泥饼中固体含量 |
0.98 | 1.78 | 1.99 | 2.33 | 2.84 | 3.16 | 3.16 | 3.03 | 甲烷累计产量 | |
Mrw/kg | 51.05 | 32.33 | 28.21 | 21.23 | 17.10 | 16.16 | 12.08 | 9.01 | 将泥饼干燥至60%含水率所需脱水量 |
TS (质量分数)/% | 2.49 | 2.00 | 2.72 | 1.98 | 1.60 | 1.43 | 1.19 | 1.07 | 总固体含量 |
cw /kJ·kg-1·℃-1 | 4.186 | 4.186 | 4.186 | 4.186 | 4.186 | 4.186 | 4.186 | 4.186 | 水的比热容 |
cs /kJ·kg-1·℃-1 | 0.971 | 0.971 | 0.971 | 0.971 | 0.971 | 0.971 | 0.971 | 0.971 | DFW中固体的比热容 |
THTT /℃ | — | 80 | 100 | 120 | 140 | 160 | 180 | 200 | 水热处理温度 |
2257.2 | 2257.2 | 2257.2 | 2257.2 | 2257.2 | 2257.2 | 2257.2 | 2257.2 | 水的气化潜热 | |
q /MJ·m-3 CH4 | 35.88 | 35.88 | 35.88 | 35.88 | 35.88 | 35.88 | 35.88 | 35.88 | 甲烷气体的低位热值 |
v/kW·h·kg-1 | 0.04 | 0.04 | 0.04 | 0.04 | 0.04 | 0.04 | 0.04 | 0.04 | 单位质量样品离心脱水用电量 |
ξ /% | — | 85 | 85 | 85 | 85 | 85 | 85 | 85 | 加热能耗的回收效率 |
k /W·m-2·℃-1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 热转化效率 |
Τ/d | 35 | 35 | 35 | 35 | 35 | 35 | 35 | 35 | 厌氧发酵的天数 |
1 | KE Chuncheng, MA Xiaoqian, TANG Yuting, et al. Effects of natural and modified calcium-based sorbents on heavy metals of food waste under oxy-fuel combustion[J]. Bioresource Technology, 2019, 271: 251-257. |
2 | SATCHWELL A J, SCOWN C D, SMITH S J, et al. Accelerating the deployment of anaerobic digestion to meet zero waste goals[J]. Environmental Science & Technology, 2018, 52(23): 13663-13669. |
3 | 吕凡, 章骅, 邵立明, 等. 基于物质流分析餐厨垃圾厌氧消化工艺的问题与对策[J]. 环境卫生工程, 2017, 25(1): 1-9. |
Fan LYU, ZHANG Hua, SHAO Liming, et al. Problems of anaerobic digestion process to deal with food waste and its countermeasures through material flow analysis[J]. Environmental Sanitation Engineering, 2017, 25(1): 1-9. | |
4 | XU Fuqing, LI Yangyang, GE Xumeng, et al. Anaerobic digestion of food waste—Challenges and opportunities[J]. Bioresource Technology, 2018, 247: 1047-1058. |
5 | OPATOKUN S A, KAN Tao, SHOAIBI A AL, et al. Characterization of food waste and its digestate as feedstock for thermochemical processing[J]. Energy & Fuels, 2016, 30(3): 1589-1597. |
6 | SHEETS J P, YANG Liangcheng, GE Xumeng, et al. Beyond land application: emerging technologies for the treatment and reuse of anaerobically digested agricultural and food waste[J]. Waste Management, 2015, 44: 94-115. |
7 | LIANG Zhiwei, LI Wenhong, YANG Shangyuan, et al. Extraction and structural characteristics of extracellular polymeric substances (EPS), pellets in autotrophic nitrifying biofilm and activated sludge[J]. Chemosphere, 2010, 81(5): 626-632. |
8 | WU Boran, DAI Xiaohu, CHAI Xiaoli. Critical review on dewatering of sewage sludge: influential mechanism, conditioning technologies and implications to sludge re-utilizations[J]. Water Research, 2020, 180: 115912. |
9 | Fan LYU, ZHOU Qi, WU Duo, et al. Dewaterability of anaerobic digestate from food waste: relationship with extracellular polymeric substances[J]. Chemical Engineering Journal, 2015, 262: 932-938. |
10 | 钱旭, 周兴求, 伍健东, 等. 恒电流模式下污泥电渗透的脱水性能及能耗分析[J]. 环境科学学报, 2018, 38(10): 4044-4051. |
QIAN Xu, ZHOU Xingqiu, WU Jiandong, et al. Performance and energy consumption of electro-osmotic sludge-dewatering in constant current mode[J]. Acta Scientiae Circumstantiae, 2018, 38(10): 4044-4051. | |
11 | CZEKAŁA W, LEWICKI A, POCHWATKA P, et al. Digestate management in Polish farms as an element of the nutrient cycle[J]. Journal of Cleaner Production, 2020, 242: 118454. |
12 | 谢景欢. 沼渣利用下温室番茄及土壤环境对水氮耦合的响应[D]. 武汉: 华中农业大学, 2010. |
XIE Jinghuan. Effect of water and nitrogen interactions on greenhouse tomato and soil environment used biogas residue[D]. Wuhan: Huazhong Agricultural University, 2010. | |
13 | KIM H J, CHON K, LEE Yonggu, et al. Enhanced mechanical deep dewatering of dewatered sludge by a thermal hydrolysis pre-treatment: effects of temperature and retention time[J]. Environmental Research, 2020, 188: 109746. |
14 | WANG Liping, LI Aimin, CHANG Yuzhi. Relationship between enhanced dewaterability and structural properties of hydrothermal sludge after hydrothermal treatment of excess sludge[J]. Water Research, 2017, 112: 72-82. |
15 | 庄修政, 阴秀丽, 黄艳琴, 等. 城市污泥水热脱水处理的工业应用与研究进展[J]. 化工进展, 2017, 36(11): 4224-4231. |
ZHUANG Xiuzheng, YIN Xiuli, HUANG Yanqin, et al. Research on hydrothermal treatment of sewage sludge and its industrial applications[J]. Chemical Industry and Engineering Progress, 2017, 36(11): 4224-4231. | |
16 | LI Chunxing, LI Jie, PAN Lanjia, et al. Treatment of digestate residues for energy recovery and biochar production: from lab to pilot-scale verification[J]. Journal of Cleaner Production, 2020, 265: 121852. |
17 | ZHANG Chao, SHAO Mingshuai, WU Huanan, et al. Management and valorization of digestate from food waste via hydrothermal[J]. Resources, Conservation and Recycling, 2021, 171: 105639. |
18 | 侯朋福, 薛利红, 冯彦房, 等. 废弃物基水热炭改良对水稻产量及氮素吸收的影响[J]. 环境科学, 2020, 41(12): 5648-5655. |
HOU Pengfu, XUE Lihong, FENG Yanfang, et al. Effects of modified biowaste-based hydrochar on rice yield and nitrogen uptake[J]. Environmental Science, 2020, 41(12): 5648-5655. | |
19 | CAO Zebin, JUNG D, OLSZEWSKI M P, et al. Hydrothermal carbonization of biogas digestate: effect of digestate origin and process conditions[J]. Waste Management, 2019, 100: 138-150. |
20 | EKPO U, ROSS A B, CAMARGO-VALERO M A, et al. A comparison of product yields and inorganic content in process streams following thermal hydrolysis and hydrothermal processing of microalgae, manure and digestate[J]. Bioresource Technology, 2016, 200: 951-960. |
21 | PARMAR K R, ROSS A B. Integration of hydrothermal carbonisation with anaerobic digestion; opportunities for valorisation of digestate[J]. Energies, 2019, 12(9): 1586. |
22 | American Public Health Association. Standard methods for the examination of water and wastewater[J]. Choice Reviews Online, 2012, 49(12): 49-6910. |
23 | KOUPAIE E H, AZIZI A, BAZYAR LAKEH A A, et al. Comparison of liquid and dewatered digestate as inoculum for anaerobic digestion of organic solid wastes[J]. Waste Management, 2019, 87: 228-236. |
24 | PELLERA F M, GIDARAKOS E. Effect of substrate to inoculum ratio and inoculum type on the biochemical methane potential of solid agroindustrial waste[J]. Journal of Environmental Chemical Engineering, 2016, 4(3): 3217-3229. |
25 | RAPOSO F, FERNÁNDEZ-CEGRÍ V, DE LA RUBIA M A, et al. Biochemical methane potential (BMP) of solid organic substrates: evaluation of anaerobic biodegradability using data from an international interlaboratory study[J]. Journal of Chemical Technology & Biotechnology, 2011, 86(8): 1088-1098. |
26 | LU Jingquan, GAVALA H N, SKIADAS I V, et al. Improving anaerobic sewage sludge digestion by implementation of a hyper-thermophilic prehydrolysis step[J]. Journal of Environmental Management, 2008, 88(4): 881-889. |
27 | SUH Y J, ROUSSEAUX P. An LCA of alternative wastewater sludge treatment scenarios[J]. Resources, Conservation and Recycling, 2002, 35(3): 191-200. |
28 | ZHENG Yangqing, KE Lanting, XIA Dong, et al. Enhancement of digestates dewaterability by CTAB combined with CFA pretreatment[J]. Separation and Purification Technology, 2016, 163: 282-289. |
29 | 陈丹丹, 窦昱昊, 卢平, 等. 污泥深度脱水技术研究进展[J]. 化工进展, 2019, 38(10): 4722-4746. |
CHEN Dandan, DOU Yuhao, LU Ping, et al. A review on sludge deep dewatering technology[J]. Chemical Industry and Engineering Progress, 2019, 38(10): 4722-4746. | |
30 | NEYENS E, BAEYENS J, WEEMAES M, et al. Advanced biosolids treatment using H2O2-oxidation[J]. Environmental Engineering Science, 2002, 19(1): 27-35. |
31 | WANG Wei, LUO Yuxiang, QIAO Wei. Possible solutions for sludge dewatering in China[J]. Frontiers of Environmental Science & Engineering in China, 2010, 4(1): 102-107. |
32 | OPATOKUN S A, STREZOV V, KAN T Product based evaluation of pyrolysis of food waste and its digestate[J]. Energy, 2015, 92: 349-354. |
33 | ZHANG Deli, WANG Fang, SHEN Xiuli, et al. Comparison study on fuel properties of hydrochars produced from corn stalk and corn stalk digestate[J]. Energy, 2018, 165: 527-536. |
34 | 蔡景成. 城市污泥灰分理化特性与同步热分析实验研究[D]. 大连: 大连理工大学, 2016. |
CAI Jingcheng. Study of municipal sludge ash on physical and chemical properties and simultaneous thermal analysis[D]. Dalian: Dalian University of Technology, 2016. | |
35 | FUNKE A, ZIEGLER F. Hydrothermal carbonization of biomass: a summary and discussion of chemical mechanisms for process engineering[J]. Biofuels, Bioproducts and Biorefining, 2010, 4(2): 160-177. |
36 | GARLAPALLI R K, WIRTH B, REZA M T. Pyrolysis of hydrochar from digestate: effect of hydrothermal carbonization and pyrolysis temperatures on pyrochar formation[J]. Bioresource Technology, 2016, 220: 168-174. |
37 | KAMBO H S, DUTTA A. A comparative review of biochar and hydrochar in terms of production, physico-chemical properties and applications[J]. Renewable and Sustainable Energy Reviews, 2015, 45: 359-378. |
38 | LIN Yousheng, MA Xiaoqian, PENG Xiaowei, et al. Hydrothermal carbonization of typical components of municipal solid waste for deriving hydrochars and their combustion behavior[J]. Bioresource Technology, 2017, 243: 539-547. |
39 | CHEN Huihui, RAO Yue, CAO Leichang, et al. Hydrothermal conversion of sewage sludge: focusing on the characterization of liquid products and their methane yields[J]. Chemical Engineering Journal, 2019, 357: 367-375. |
40 | WANG Jiaxing, LIU Huan, DENG Hongping, et al. Deep dewatering of sewage sludge and simultaneous preparation of derived fuel via carbonaceous skeleton-aided thermal hydrolysis[J]. Chemical Engineering Journal, 2020, 402: 126255. |
[1] | WANG Xueting, GU Xia, XU Xianbao, ZHAO Lei, XUE Gang, LI Xiang. Effectiveness of hydrothermal pretreatment on valeric acid production during food waste fermentation [J]. Chemical Industry and Engineering Progress, 2023, 42(9): 4994-5002. |
[2] | XI Yonglan, WANG Chengcheng, YE Xiaomei, LIU Yang, JIA Zhaoyan, CAO Chunhui, HAN Ting, ZHANG Yingpeng, TIAN Yu. Research progress on the application of micro/nano bubbles in anaerobic digestion [J]. Chemical Industry and Engineering Progress, 2023, 42(8): 4414-4423. |
[3] | LIU Yang, YE Xiaomei, MIAO Xiao, WANG Chengcheng, JIA Zhaoyan, CAO Chunhui, XI Yonglan. Pilot-scale process research on dry digestion of rural organic household waste under ammonia stress [J]. Chemical Industry and Engineering Progress, 2023, 42(7): 3847-3854. |
[4] | ZHUANG Jie, XUE Jinhui, ZHAO Bincheng, ZHANG Wenyi. Organic binding mechanism of heavy metals and humus during anaerobic digestion of pig manure [J]. Chemical Industry and Engineering Progress, 2023, 42(6): 3281-3291. |
[5] | WANG Yu, YU Guangwei, JIANG Ruqing, LI Changjiang, LIN Jiajia, XING Zhenjiao. Adsorption of ciprofloxacin hydrochloride by biochar from food waste digestate residues [J]. Chemical Industry and Engineering Progress, 2023, 42(4): 2160-2170. |
[6] | MENG Xiaoshan, TANG Zijian, CHEN Lin, HUHE Taoli, ZHOU Zhengzhong. Research progress of the early warning and regulation techniques for excessive acidification in the anaerobic digestion system [J]. Chemical Industry and Engineering Progress, 2023, 42(3): 1595-1605. |
[7] | WANG Yu, YU Guangwei, LIN Jiajia, LI Changjiang, JIANG Ruqing, XING Zhenjiao, YU Cheng. Preparation of building ceramsite from food waste digestate residues, incineration fly ash and sludge biochar [J]. Chemical Industry and Engineering Progress, 2023, 42(2): 1039-1050. |
[8] | DUAN Yihang, GAO Ningbo, QUAN Cui. Effect of hydrothermal treatment on pyrolysis characteristics and kinetics of oily sludge [J]. Chemical Industry and Engineering Progress, 2023, 42(2): 603-613. |
[9] | ZHU Jiaxin, ZHU Wenzhe, XU Jun, XIE Jing, WANG Wenbiao, XIE Li. Enhancement of anaerobic digestion under antibiotics stress via conductive materials application: A review [J]. Chemical Industry and Engineering Progress, 2023, 42(2): 1008-1019. |
[10] | GAO Ningbo, HU Yadi, QUAN Cui. Research progress on thermochemical transformation and biological treatment of food waste [J]. Chemical Industry and Engineering Progress, 2022, 41(S1): 507-515. |
[11] | LIU Yali, ZHANG Hongwei, KANG Xiaorong. Effect and mechanisms of microplastics on anaerobic digestion of sludge [J]. Chemical Industry and Engineering Progress, 2022, 41(9): 5037-5046. |
[12] | ZHENG Xiaomei, LIN Rujing, ZHOU Wenjing, XU Ling, ZHANG Hongning, ZHANG Xinying, XIE Li. Review on cathode materials for CO2 methanation assisted by microbial electrolytic cell [J]. Chemical Industry and Engineering Progress, 2022, 41(5): 2476-2486. |
[13] | RUAN Min, SUN Yutong, HUANG Zhongliang, LI Hui, ZHANG Xuan, WU Xikai, ZHAO Cheng, YAO Shirong, ZHANG Shuanbao, ZHANG Wei, HUANG Jing. Energy economy evaluation of sludge pretreatment-anaerobic digestion system [J]. Chemical Industry and Engineering Progress, 2022, 41(3): 1503-1516. |
[14] | LI Yalin, LIU Lei, GUAN Mingyue, SUN Meng, LI Liuting, MAO Ruiyue, HE Haiyang. Synthesis and swelling property analysis of hydrogel based on carbon component of food waste excited by nano-sized calcium peroxide [J]. Chemical Industry and Engineering Progress, 2022, 41(11): 6120-6129. |
[15] | YAN Xueqian, PEI Xiangjun, DU Jie, MI Xiaohui, BAI Linqin, MA Rui, ZHANG Mingkuan, QIAN Jin. Preparation, characterization and application of Bi2O2CO3/Fe3O4 magnetic composite material in environmental treatment [J]. Chemical Industry and Engineering Progress, 2021, 40(6): 3515-3525. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||
京ICP备12046843号-2;京公网安备 11010102001994号 Copyright © Chemical Industry and Engineering Progress, All Rights Reserved. E-mail: hgjz@cip.com.cn Powered by Beijing Magtech Co. Ltd |