Chemical Industry and Engineering Progress ›› 2023, Vol. 42 ›› Issue (12): 6478-6489.DOI: 10.16085/j.issn.1000-6613.2023-0101
• Materials science and technology • Previous Articles
LUO Lingping1(), WANG Huimin1, ZHU Taizhong1, ZHANG Liang1, LIU Mengjiao1, HUANG Fei1(), XUE Lixin1,2()
Received:
2023-01-29
Revised:
2023-03-04
Online:
2024-01-08
Published:
2023-12-25
Contact:
HUANG Fei, XUE Lixin
罗伶萍1(), 王慧敏1, 朱泰忠1, 张良1, 刘梦娇1, 黄菲1(), 薛立新1,2()
通讯作者:
黄菲,薛立新
作者简介:
罗伶萍(1997—),女,硕士研究生,研究方向为膜科学与技术。E-mail:2112001153@zjut.edu.cn。
基金资助:
CLC Number:
LUO Lingping, WANG Huimin, ZHU Taizhong, ZHANG Liang, LIU Mengjiao, HUANG Fei, XUE Lixin. Preparation and properties of composite total heat exchange membranes based on polyimide microspheres[J]. Chemical Industry and Engineering Progress, 2023, 42(12): 6478-6489.
罗伶萍, 王慧敏, 朱泰忠, 张良, 刘梦娇, 黄菲, 薛立新. 基于PI微球复合型全热交换膜的制备与性能[J]. 化工进展, 2023, 42(12): 6478-6489.
Add to citation manager EndNote|Ris|BibTeX
URL: https://hgjz.cip.com.cn/EN/10.16085/j.issn.1000-6613.2023-0101
添加量/mg | 粗糙度/ |
---|---|
0 | 0.48 |
2 | 0.47 |
5 | 0.56 |
8 | 0.79 |
添加量/mg | 粗糙度/ |
---|---|
0 | 0.48 |
2 | 0.47 |
5 | 0.56 |
8 | 0.79 |
膜类型 | 热交换效率/% | 焓交换效率/% | 二氧化碳渗透率/GPU | 水蒸气渗透率/g·m-2·(24h)-1 |
---|---|---|---|---|
商业纸膜 | 97.52 | 72.47 | 9.5×106 | 2237.83 |
PA | 95.59 | 71.43 | 21.04 | 1763.45 |
PI-PA-Ⅳ-2 | 97.47 | 71.41 | 3.64 | 1949.51 |
膜类型 | 热交换效率/% | 焓交换效率/% | 二氧化碳渗透率/GPU | 水蒸气渗透率/g·m-2·(24h)-1 |
---|---|---|---|---|
商业纸膜 | 97.52 | 72.47 | 9.5×106 | 2237.83 |
PA | 95.59 | 71.43 | 21.04 | 1763.45 |
PI-PA-Ⅳ-2 | 97.47 | 71.41 | 3.64 | 1949.51 |
1 | HONG Tianzhen, CHEN Yixing, LUO Xuan, et al. Ten questions on urban building energy modeling[J]. Building and Environment, 2020, 168: 106508. |
2 | LI Zhengdao, ZHANG Limei, LIANG Xin, et al. Advances in the research of building energy saving[J]. Energy and Buildings, 2022, 254: 111556. |
3 | ARIDI Rima, FARAJ Jalal, Samer ALI, et al. A comprehensive review on hybrid heat recovery systems: Classifications, applications, pros and cons, and new systems[J]. Renewable and Sustainable Energy Reviews, 2022, 167: 112669. |
4 | CHEN Yulu, OZAKI Akihito, LEE Haksung. Energy saving potential of passive dehumidification system combined with energy recovery ventilation using renewable energy[J]. Energy and Buildings, 2022, 268: 112170. |
5 | PEI Xiang. Application of exhaust heat recovery in energy saving of HVAC[J]. IOP Conference Series: Earth and Environmental Science. IOP Publishing, 2019, 295(5): 052009. |
6 | 张炎, 张立志, 项辉, 等. 基于亲水/憎水复合膜的全热交换器换热换湿性能[J]. 化工学报, 2007, 58(2): 294-298. |
ZHANG Yan, ZHANG Lizhi, XIANG Hui, et al. Performance of heat and mass transfer based on hydrophilic/hydrophobic composite membrane[J]. Journal of Chemical Industry and Engineering (China), 2007, 58(2): 294-298. | |
7 | 孔令健, 高晓坤, 刘广哲, 等. 高分子膜式新风机组换热特性研究[J]. 制冷与空调, 2023, 23(5): 86-89. |
KONG Lingjian, GAO Xiaokun, LIU Guangzhe, et al. Study on heat transfer characteristcs of polymer membrane-based outdoor air handling unit[J]. Refrigeration and Air-conditioning, 2023, 23(5): 86-89. | |
8 | ZHANG Xinru, ZHANG Lizhi, LIU Hongmei, et al. One-step fabrication and analysis of an asymmetric cellulose acetate membrane for heat and moisture recovery[J]. Journal of Membrane Science, 2011, 366(1/2): 158-165. |
9 | Neda ASASIAN-KOLUR, SHARIFIAN Seyedmehdi, HADDADI Bahram, et al. Membrane-based enthalpy exchangers for coincident sensible and latent heat recovery[J]. Energy Conversion and Management, 2022, 253: 115144. |
10 | FANG Lei, YUAN Shu, NIE Jinzhe. Experimental evaluation of a total heat recovery unit with polymer membrane foils[C]//Proceedings of the 8th International Symposium on Heating, Ventilation and Air Conditioning. Berlin, Heidelberg: Springer, 2014: 235-242. |
11 | 聂金哲, 李赞, 张群力, 等. 全热回收新风机组二次携带污染物风险测试及分析[J]. 建筑科学, 2017, 33(8): 17-22. |
NIE Jinzhe, LI Zan, ZHANG Qunli, et al. Risk test and analysis of secondary pollutants carried by total heat recovery fresh air unit[J]. Building Science, 2017, 33(8): 17-22, 28. | |
12 | KHOONSAP Santi, AMNUAYPANICH Sittipong. Mixed matrix membranes prepared from poly(vinyl alcohol) (PVA) incorporated with zeolite 4A-graft-poly(2-hydroxyethyl methacrylate) (zeolite-g-PHEMA) for the pervaporation dehydration of water-acetone mixtures[J]. Journal of Membrane Science, 2011, 367(1/2): 182-189. |
13 | CHANG Xian, Zixuan LYU, YU Hang, et al. Thin film composite polyamide (TFC-PA) total heat exchange membranes (THEMs) with ultrahigh sensible heat recovery and greatly improved CO2 barrier property[J]. Journal of Membrane Science, 2022, 662: 120956. |
14 | YUAN Zhe, HE Guangwei, LI Xin, et al. Gas separations using nanoporous atomically thin membranes: recent theoretical, simulation, and experimental advances[J]. Advanced Materials, 2022, 34(32): 2201472. |
15 | JEONG Seungyeop, YUAN Guangcui, SATIJA Sushil K, et al. Polyamide thin films with nanochannel networks synthesized at the liquid-gas interface for water purification[J]. Journal of Membrane Science, 2022, 657: 120671. |
16 | SHIRKE Yogita M, ABOU-ELANWAR Ali M, CHOI Won Kil, et al. Influence of nitrogen/phosphorus-doped carbon dots on polyamide thin film membranes for water vapor/N2 mixture gas separation[J]. RSC Advances, 2019, 9(55): 32121-32129. |
17 | DONG Leixi, HUANG Xiaochuan, WANG Zhi, et al. A thin-film nanocomposite nanofiltration membrane prepared on a support with in situ embedded zeolite nanoparticles[J]. Separation and Purification Technology, 2016, 166: 230-239. |
18 | HUANG Hai, QU Xinying, DONG Hang, et al. Role of NaA zeolites in the interfacial polymerization process towards a polyamide nanocomposite reverse osmosis membrane[J]. RSC Advances, 2013, 3(22): 8203-8207. |
19 | BAIG Muhammad Irshad, INGOLE Pravin G, CHOI Won Kil, et al. Synthesis and characterization of thin film nanocomposite membranes incorporated with surface functionalized Silicon nanoparticles for improved water vapor permeation performance[J]. Chemical Engineering Journal, 2017, 308: 27-39. |
20 | ZHANG Qinnan, LI Si, WANG Ceming, et al. Carbon nanotube-based mixed-matrix membranes with supramolecularly engineered interface for enhanced gas separation performance[J]. Journal of Membrane Science, 2020, 598: 117794. |
21 | ZHAO Haiyang, QIU Shi, WU Liguang, et al. Improving the performance of polyamide reverse osmosis membrane by incorporation of modified multi-walled carbon nanotubes[J]. Journal of Membrane Science, 2014, 450: 249-256. |
22 | KIM Hee Joong, CHOI Kwon tong, BAEK Youngbin, et al. High-performance reverse osmosis CNT/polyamide nanocomposite membrane by controlled interfacial interactions[J]. ACS Applied Materials & Interfaces, 2014, 6(4): 2819-2829. |
23 | SUZAIMI Nur Diyana, Pei Sean GOH, WONG Kar Chun, et al. Tailoring the substrate of thin film reverse osmosis membrane through a novel β-FeOOH nanorods templating strategy: An insight into the effects on interfacial polymerization of polyamide[J]. Journal of Membrane Science, 2022, 657: 120706. |
24 | QIAN Qihui, ASINGER Patrick A, LEE Moon Joo, et al. MOF-based membranes for gas separations[J]. Chemical Reviews, 2020, 120(16): 8161-8266. |
25 | ZHAO Yangying, LIU Yanling, WANG Xiaomao, et al. Impacts of metal-organic frameworks on structure and performance of polyamide thin-film nanocomposite membranes[J]. ACS Applied Materials & Interfaces, 2019, 11(14): 13724-13734. |
26 | BANO Saira, MAHMOOD Asif, KIM Seong-Joong, et al. Graphene oxide modified polyamide nanofiltration membrane with improved flux and antifouling properties[J]. Journal of Materials Chemistry A, 2015, 3(5): 2065-2071. |
27 | AN Xinghai, INGOLE Pravin G, CHOI Won Kil, et al. Enhancement of water vapor separation using ETS-4 incorporated thin film nanocomposite membranes prepared by interfacial polymerization[J]. Journal of Membrane Science, 2017, 531: 77-85. |
28 | BAIG Muhammad Irshad, INGOLE Pravin G, JEON Jae-deok, et al. Water vapor selective thin film nanocomposite membranes prepared by functionalized Silicon nanoparticles[J]. Desalination, 2019, 451: 59-71. |
29 | INGOLE Pravin G, PAWAR Radheshyam R, BAIG Muhammad Irshad, et al. Thin film nanocomposite (TFN) hollow fiber membranes incorporated with functionalized acid-activated bentonite (ABn-NH) clay: Towards enhancement of water vapor permeance and selectivity[J]. Journal of Materials Chemistry A, 2017, 5(39): 20947-20958. |
30 | SHAHABI Soulmaz Seyyed, AZIZI Najmedin, VATANPOUR Vahid, et al. Novel functionalized graphitic carbon nitride incorporated thin film nanocomposite membranes for high-performance reverse osmosis desalination[J]. Separation and Purification Technology, 2020, 235: 116134. |
31 | HUO Guolong, XU Shan, WU Lei, et al. Structural engineering on copolyimide membranes for improved gas separation performance[J]. Journal of Membrane Science, 2022, 643: 119989. |
32 | XU Zhixiao, ZHUANG Xiaodong, YANG Chongqing, et al. Nitrogen-doped porous carbon superstructures derived from hierarchical assembly of polyimide nanosheets[J]. Advanced Materials, 2016, 28(10): 1981-1987. |
33 | WANG Yao, LU Yunhua, ZHANG Jianhua, et al. Enhanced toughness and gas permeabilities of polyimide composites derived from polyimide matrix and flower-like polyimide microparticles[J]. Polymer Composites, 2021, 42(8): 3870-3881. |
34 | 曹阳, 王立峰, 袁涛. GB/T 21087—2020《热回收新风机组》修订解析[J]. 建筑节能(中英文), 2021, 49(2): 30-35. |
CAO Yang, WANG Lifeng, YUAN Tao. Revision and analysis of “energy recovery ventilators for outdoor air handing”(GB/T 21087—2020)[J] Building Energy Efficiency, 2021, 49(2): 30-35. | |
35 | SHAN Meixia, XUE Qingzhong, JING Nuannuan, et al. Influence of chemical functionalization on the CO2/N2 separation performance of porous graphene membranes[J]. Nanoscale, 2012, 4(17): 5477-5482. |
36 | SINGH Swati, VARGHESE Anish Mathai, REINALDA Donald, et al. Graphene-based membranes for carbon dioxide separation[J]. Journal of CO2 Utilization, 2021, 49: 101544. |
37 | SONG Yujun, SUN Patricia, HENRY Laurence L, et al. Mechanisms of structure and performance controlled thin film composite membrane formation via interfacial polymerization process[J]. Journal of Membrane Science, 2005, 251(1/2): 67-79. |
[1] | HE Meijin. Application and development trend of molecular management in separation technology in petrochemical field [J]. Chemical Industry and Engineering Progress, 2023, 42(S1): 260-266. |
[2] | WANG Jiaqing, SONG Guangwei, LI Qiang, GUO Shuaicheng, DAI Qingli. Rubber-concrete interface modification method and performance enhancement path [J]. Chemical Industry and Engineering Progress, 2023, 42(S1): 328-343. |
[3] | ZHANG Zuoqun, GAO Yang, BAI Chaojie, XUE Lixin. Thin-film nanocomposite (TFN) mixed matrix reverse osmosis (MMRO) membranes from secondary interface polymerization containing in situ grown ZIF-8 nano-particles [J]. Chemical Industry and Engineering Progress, 2023, 42(S1): 364-373. |
[4] | CUI Shoucheng, XU Hongbo, PENG Nan. Simulation analysis of two MOFs materials for O2/He adsorption separation [J]. Chemical Industry and Engineering Progress, 2023, 42(S1): 382-390. |
[5] | LI Shilin, HU Jingze, WANG Yilin, WANG Qingji, SHAO Lei. Research progress in separation and extraction of high value components by electrodialysis [J]. Chemical Industry and Engineering Progress, 2023, 42(S1): 420-429. |
[6] | GUO Qiang, ZHAO Wenkai, XIAO Yonghou. Numerical simulation of enhancing fluid perturbation to improve separation of dimethyl sulfide/nitrogen via pressure swing adsorption [J]. Chemical Industry and Engineering Progress, 2023, 42(S1): 64-72. |
[7] | LIAO Zhixin, LUO Tao, WANG Hong, KONG Jiajun, SHEN Haiping, GUAN Cuishi, WANG Cuihong, SHE Yucheng. Application and progress of solvent deasphalting technology [J]. Chemical Industry and Engineering Progress, 2023, 42(9): 4573-4586. |
[8] | PAN Yichang, ZHOU Rongfei, XING Weihong. Advanced microporous membranes for efficient separation of same-carbon-number hydrocarbon mixtures: State-of-the-art and challenges [J]. Chemical Industry and Engineering Progress, 2023, 42(8): 3926-3942. |
[9] | ZHOU Longda, ZHAO Lixin, XU Baorui, ZHANG Shuang, LIU Lin. Advances in electrostatic-cyclonic coupling enhanced multiphase media separation research [J]. Chemical Industry and Engineering Progress, 2023, 42(7): 3443-3456. |
[10] | CHEN Xiangli, LI Qianqian, ZHANG Tian, LI Biao, LI Kangkang. Research progress on self-healing oil/water separation membranes [J]. Chemical Industry and Engineering Progress, 2023, 42(7): 3600-3610. |
[11] | LOU Baohui, WU Xianhao, ZHANG Chi, CHEN Zhen, FENG Xiangdong. Advances in nanofluid for CO2 absorption and separation [J]. Chemical Industry and Engineering Progress, 2023, 42(7): 3802-3815. |
[12] | LI Ruidong, HUANG Hui, TONG Guohu, WANG Yueshe. Hygroscopic properties and corrosion behavior of ammonium salt in a crude oil distillation column [J]. Chemical Industry and Engineering Progress, 2023, 42(6): 2809-2818. |
[13] | ZHOU Lei, SUN Xiaoyan, TAO Shaohui, CHEN Yushi, XIANG Shuguang. Development and application of refinery short-cut column model [J]. Chemical Industry and Engineering Progress, 2023, 42(6): 2819-2827. |
[14] | WU Heping, CAO Ning, XU Yuanyuan, CAO Yunbo, LI Yudong, YANG Qiang, LU Hao. Rapid separation of hydrofluoric acid and alkylated oil [J]. Chemical Industry and Engineering Progress, 2023, 42(6): 2845-2853. |
[15] | SUN Luqin, LU Huixia, WANG Jianyou. Separation of lysozyme from egg white by electrodialysis with ultrafiltration membrane(EDUF) process [J]. Chemical Industry and Engineering Progress, 2023, 42(5): 2262-2271. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||
京ICP备12046843号-2;京公网安备 11010102001994号 Copyright © Chemical Industry and Engineering Progress, All Rights Reserved. E-mail: hgjz@cip.com.cn Powered by Beijing Magtech Co. Ltd |