Chemical Industry and Engineering Progress ›› 2022, Vol. 41 ›› Issue (S1): 536-544.DOI: 10.16085/j.issn.1000-6613.2022-0890
• Resources and environmental engineering • Previous Articles Next Articles
WANG Yiru1,2(), SONG Xiaosan1,2(), SHUI Boyang1,2, WANG Sanfan1,2
Received:
2022-05-13
Revised:
2022-06-29
Online:
2022-11-10
Published:
2022-10-20
Contact:
SONG Xiaosan
王一茹1,2(), 宋小三1,2(), 水博阳1,2, 王三反1,2
通讯作者:
宋小三
作者简介:
王一茹(1998—),女,硕士研究生,研究方向为二氧化碳的吸附与转化。E-mail:1271625818@qq.com。
基金资助:
CLC Number:
WANG Yiru, SONG Xiaosan, SHUI Boyang, WANG Sanfan. Progress in amine-functionalized mesoporous silica for CO2 capture[J]. Chemical Industry and Engineering Progress, 2022, 41(S1): 536-544.
王一茹, 宋小三, 水博阳, 王三反. 胺功能化介孔二氧化硅捕集CO2的研究进展[J]. 化工进展, 2022, 41(S1): 536-544.
Add to citation manager EndNote|Ris|BibTeX
URL: https://hgjz.cip.com.cn/EN/10.16085/j.issn.1000-6613.2022-0890
介孔 SiO2 | 胺功能化 (胺类别,与载体重量比) | 吸附条件 | 吸附容量 /mmol·(gCO2)-1 | 解吸条件 | 循环能力 (吸附容量的损失率,总循环次数) | 参考文献 |
---|---|---|---|---|---|---|
MCM-41 | — | 10%CO2/N2,75℃ | 0.66 | — | — | [ |
MCM-41 | TEPA,60% | 12%CO2/N2,75℃ | 2.80 | N2,100℃ | 7.8%,5 | [ |
MCM-41 | PEI,50% | 100%CO2,25℃ | 3.53 | 真空,100℃ | 14.22%,5 | [ |
MCM-48 | — | 100%CO2,25℃ | 0.64 | — | — | [ |
MCM-48 | AEEA,30% | 100%CO2,25℃ | 3.33 | — | — | [ |
SBA-15 | PEI,70% | 20%CO2/N2,75℃ | 3.71 | — | — | [ |
SBA-15 | PEI,30%+DEA,40% | 20%CO2/N2,75℃ | 4.64 | N2,105℃ | 13.36%,15 | [ |
SBA-15 | TEPA,50% | 400ppmCO2/N2,35℃ | 2.30 | N2,110℃ | —,10 | [ |
SBA-16 | PEHA,30% | 15%CO2/He,70℃ | 2.1 | He,120℃ | 6.2%,20 | [ |
SBA-16 | TEPA,30% | 10%CO2/N2,60℃ | 0.97 | N2,110℃ | — | [ |
KIT-6 | 3N +TETA,30% | 15%CO2/N2,60℃ | 2.06 | N2,110℃ | 2.5%,20 | [ |
KIT-6 | APTES | 100%CO2,30℃ | 1.56 | He,120℃ | 0,10 | [ |
MCF | DAEAPTS,35% | 15%CO2/N2,25℃ | 2.07 | N2,110℃ | 0,50 | [ |
MSN | PEI,65% | 15%CO2/N2,80℃ | 4.07 | N2,100℃ | 19%,5 | [ |
HMS | PEI,50% | 100%CO2,45℃ | 2.40 | —,110℃ | 0,4 | [ |
介孔 SiO2 | 胺功能化 (胺类别,与载体重量比) | 吸附条件 | 吸附容量 /mmol·(gCO2)-1 | 解吸条件 | 循环能力 (吸附容量的损失率,总循环次数) | 参考文献 |
---|---|---|---|---|---|---|
MCM-41 | — | 10%CO2/N2,75℃ | 0.66 | — | — | [ |
MCM-41 | TEPA,60% | 12%CO2/N2,75℃ | 2.80 | N2,100℃ | 7.8%,5 | [ |
MCM-41 | PEI,50% | 100%CO2,25℃ | 3.53 | 真空,100℃ | 14.22%,5 | [ |
MCM-48 | — | 100%CO2,25℃ | 0.64 | — | — | [ |
MCM-48 | AEEA,30% | 100%CO2,25℃ | 3.33 | — | — | [ |
SBA-15 | PEI,70% | 20%CO2/N2,75℃ | 3.71 | — | — | [ |
SBA-15 | PEI,30%+DEA,40% | 20%CO2/N2,75℃ | 4.64 | N2,105℃ | 13.36%,15 | [ |
SBA-15 | TEPA,50% | 400ppmCO2/N2,35℃ | 2.30 | N2,110℃ | —,10 | [ |
SBA-16 | PEHA,30% | 15%CO2/He,70℃ | 2.1 | He,120℃ | 6.2%,20 | [ |
SBA-16 | TEPA,30% | 10%CO2/N2,60℃ | 0.97 | N2,110℃ | — | [ |
KIT-6 | 3N +TETA,30% | 15%CO2/N2,60℃ | 2.06 | N2,110℃ | 2.5%,20 | [ |
KIT-6 | APTES | 100%CO2,30℃ | 1.56 | He,120℃ | 0,10 | [ |
MCF | DAEAPTS,35% | 15%CO2/N2,25℃ | 2.07 | N2,110℃ | 0,50 | [ |
MSN | PEI,65% | 15%CO2/N2,80℃ | 4.07 | N2,100℃ | 19%,5 | [ |
HMS | PEI,50% | 100%CO2,45℃ | 2.40 | —,110℃ | 0,4 | [ |
名称 | 化学式 | 分子结构 | 分子量 |
---|---|---|---|
聚乙烯亚胺(PEI) | (C2H5N) n NH3 | 600~5000 | |
二乙烯三胺(DETA) | C4H13N3 | 103.17 | |
三乙烯四胺(TETA) | C6H18N4 | 146.23 | |
四乙烯五胺(TEPA) | C8H23N5 | 189.30 | |
五乙烯六胺(PEHA) | C10H28N6 | 232.37 | |
单乙醇胺(MEA) | C2H7NO | 61.08 | |
二乙醇胺(DEA) | C4H11NO2 | 105.14 | |
乙二胺(EDA) | C2H8N2 | 60.10 |
名称 | 化学式 | 分子结构 | 分子量 |
---|---|---|---|
聚乙烯亚胺(PEI) | (C2H5N) n NH3 | 600~5000 | |
二乙烯三胺(DETA) | C4H13N3 | 103.17 | |
三乙烯四胺(TETA) | C6H18N4 | 146.23 | |
四乙烯五胺(TEPA) | C8H23N5 | 189.30 | |
五乙烯六胺(PEHA) | C10H28N6 | 232.37 | |
单乙醇胺(MEA) | C2H7NO | 61.08 | |
二乙醇胺(DEA) | C4H11NO2 | 105.14 | |
乙二胺(EDA) | C2H8N2 | 60.10 |
硅源 | 提取方法 | SiO2含量/% | 结构特征 | 参考文献 | ||
---|---|---|---|---|---|---|
表面积/m2·g-1 | 孔体积/cm3·g-1 | 孔径/nm | ||||
石英砂 | NaOH提取法 | 99.99 | 1028 | 0.907 | 3.04 | [ |
粉煤灰 | NaOH提取法 | 44.41 | 115 | 0.13 | 3 | [ |
稻壳灰 | 碳化法 | 81.72 | — | — | 40~50 | [ |
电子废物 | 酸浸法 | — | 1033 | 0.887 | 2.73 | [ |
小麦秸秆灰 | NaOH提取法 | 90.00 | 1312 | 1.053 | 3.656 | [ |
甘蔗渣 | NaOH提取法 | 81.60 | 265 | 0.425 | 6.25 | [ |
竹叶灰 | NaOH提取法 | 83.30 | 1096 | 0.51 | 2.14 | [ |
高岭土 | NaOH提取法 | 60.00~61.00 | 637 | 0.682 | 4.3 | [ |
铜尾矿 | 碱熔法 | 68.23~96.82 | 946.68 | 0.76 | 3.24 | [ |
硅源 | 提取方法 | SiO2含量/% | 结构特征 | 参考文献 | ||
---|---|---|---|---|---|---|
表面积/m2·g-1 | 孔体积/cm3·g-1 | 孔径/nm | ||||
石英砂 | NaOH提取法 | 99.99 | 1028 | 0.907 | 3.04 | [ |
粉煤灰 | NaOH提取法 | 44.41 | 115 | 0.13 | 3 | [ |
稻壳灰 | 碳化法 | 81.72 | — | — | 40~50 | [ |
电子废物 | 酸浸法 | — | 1033 | 0.887 | 2.73 | [ |
小麦秸秆灰 | NaOH提取法 | 90.00 | 1312 | 1.053 | 3.656 | [ |
甘蔗渣 | NaOH提取法 | 81.60 | 265 | 0.425 | 6.25 | [ |
竹叶灰 | NaOH提取法 | 83.30 | 1096 | 0.51 | 2.14 | [ |
高岭土 | NaOH提取法 | 60.00~61.00 | 637 | 0.682 | 4.3 | [ |
铜尾矿 | 碱熔法 | 68.23~96.82 | 946.68 | 0.76 | 3.24 | [ |
1 | RIDUAN S N, ZHANG Y. Recent developments in carbon dioxide utilization under mild conditions[J]. Dalton Trans., 2010, 39(14): 3347-3357. |
2 | EDENHOFER O. Climate change 2014: Mitigation of climate change[M]. UK: Cambridge University Press, 2015. |
3 | OBERGASSEL W, ARENS C, HERMWILLE L, et al. Phoenix from the ashes—An analysis of the Paris agreement to the United Nations framework convention on climate change[J]. Wuppertal Institute for Climate, Environment and Energy, 2016, 1: 1-54. |
4 | WANG M, LAWAL A, STEPHENSON P, et al. Post-combustion CO2 capture with chemical absorption: a state-of-the-art review[J]. Chemical Engineering Research and Design, 2011, 89(9): 1609-1624. |
5 | 彭召静, 赵彦杰, 黄成德, 等. 用于燃烧后 CO2 捕集系统的胺基固态吸附材料研究进展[J]. 化工进展, 2018, 37(2): 610-620. |
PENG Zhaojing, ZHAO Yanjie, HUANG Chengde, et al. Recent advances in amine-based solid sorbents for post-combustion CO2 capture[J]. Chemical Industry and Engineering Progress, 2018, 37(2): 610-620. | |
6 | BEN-MANSOUR R, HABIB M A, BAMIDELE O E, et al. Carbon capture by physical adsorption: Materials, experimental investigations and numerical modeling and simulations—A review[J]. Applied Energy, 2016, 161: 225-255. |
7 | OSCHATZ M, ANTONIETTI M. A search for selectivity to enable CO2 capture with porous adsorbents[J]. Energy & Environmental Science, 2018, 11(1): 57-70. |
8 | XU X, SONG C, ANDRESEN J M, et al. Novel polyethylenimine-modified mesoporous molecular sieve of MCM-41 type as high-capacity adsorbent for CO2 capture[J]. Energy & Fuels, 2002, 16(6): 1463-1469. |
9 | MCCUSKER L, LIEBAU F, ENGELHARDT G. Nomenclature of structural and compositional characteristics of ordered microporous and mesoporous materials with inorganic hosts (IUPAC Recommendations 2001)[J]. Pure and Applied Chemistry, 2001, 73(2): 381-394. |
10 | RAO N, WANG M, SHANG Z, et al. CO2 adsorption by amine-functionalized MCM-41: A comparison between impregnation and grafting modification methods[J]. Energy & Fuels, 2018, 32(1): 670-677. |
11 | HU X E, LIU L, LUO X, et al. A review of N-functionalized solid adsorbents for post-combustion CO2 capture[J]. Applied Energy, 2020, 260: 114244. |
12 | COSTA J A S, PARANHOS C M. Mitigation of silica-rich wastes: An alternative to the synthesis eco-friendly silica-based mesoporous materials[J]. Microporous and Mesoporous Materials, 2020, 309: 110570. |
13 | SELVAM P, BHATIA S K, SONWANE C G. Recent advances in processing and characterization of periodic mesoporous MCM-41 silicate molecular sieves[J]. Industrial & Engineering Chemistry Research, 2001, 40(15): 3237-3261. |
14 | BECK J S, VARTULI J C, ROTH W J, et al. A new family of mesoporous molecular sieves prepared with liquid crystal templates[J]. Journal of the American Chemical Society, 1992, 114(27): 10834-10843. |
15 | 丁明月, 刘梦龙, 岳海荣, 等.TEPA/MCM-41固体胺吸附剂的制备及其CO2吸附性能研究[J]. 应用化工, 2019, 48(11): 2533-2537. |
DING Mingyue, LIU Menglong, YUE Hairong, et al. Preparation and performance of TEPA /MCM-41 solid amine adsorbents for CO2 adsorption[J]. Applied Chemical Industry, 2019, 48(11): 2533-2537. | |
16 | COSTA J A S, DE JESUS R A, SANTOS D O, et al. Synthesis, functionalization, and environmental application of silica-based mesoporous materials of the M41S and SBA-n families: A review[J]. Journal of Environmental Chemical Engineering, 2021, 9(3): 105259. |
17 | TERRAB I, OUARGLI R, BOUKOUSSA B, et al. Assessment of the intrinsic interactions of mesoporous silica with carbon dioxide[J]. Research on Chemical Intermediates, 2017, 43(7): 3775-3786. |
18 | MIAO Y, HE Z, ZHU X, et al. Operating temperatures affect direct air capture of CO2 in polyamine-loaded mesoporous silica[J]. Chemical Engineering Journal, 2021, 426: 131875. |
19 | 饶娜. 介孔MCM-41结构调控及其氨功能化对CO2吸附性能影响的研究[D]. 武汉: 武汉轻工大学, 2019. |
RAO Na. Study on structure regulation and effect of amine functionalization of mesoporous MCM-41 on CO2 adsorption performance[D]. Wuhan: Wuhan Polytechnic University, 2019. | |
20 | MUKHERJEE S, SAMANTA A N. Low to high-pressure CO2 separation using amine-functionalized mobile composite matter, isotherm modelling and heat of adsorption study[J]. Separation Science and Technology, 2021, 57(2): 209-224. |
21 | ZHAO P, ZHANG G, HAO L. A novel blended amine functionalized porous silica adsorbent for carbon dioxide capture[J]. Adsorption, 2020, 26(5): 749-764. |
22 | LIU Y, LIN X, WU X, et al. Pentaethylenehexamine loaded SBA-16 for CO2 capture from simulated flue gas[J]. Powder Technology, 2017, 318: 186-192. |
23 | 史晶金, 刘亚敏, 陈杰, 等. 氨基功能化SBA-16对CO2的动态吸附特性[J]. 物理化学学报, 2010, 26(11): 3023-3029. |
SHI Jingjin, LIU Yamin, CHEN Jie, et al. Dynamic performance of CO2 adsorption with amine-modified SBA-16[J]. Acta Physico-Chimica Sinica, 2010, 26(11): 3023-3029. | |
24 | MEI D, GENG L, LIN Z, et al. CO2 adsorption properties of mixed-amine functionalized mesoporous molecular sieve KIT-6[J]. Materials Research Express, 2018, 5(6): 065520. |
25 | KISHOR R, GHOSHAL A K. APTES grafted ordered mesoporous silica KIT-6 for CO2 adsorption[J]. Chemical Engineering Journal, 2015, 262: 882-890. |
26 | BAI F, LIU X, SANI S, et al. Amine functionalized mesocellular silica foam as highly efficient sorbents for CO2 capture[J]. Separation and Purification Technology, 2022: 121539. |
27 | LOU F, ZHANG A, ZHANG G, et al. Enhanced kinetics for CO2 sorption in amine-functionalized mesoporous silica nanosphere with inverted cone-shaped pore structure[J]. Applied Energy, 2020, 264: 11467. |
28 | SANZ-PéREZ E S, ARENCIBIA A, CALLEJA G, et al. Tuning the textural properties of HMS mesoporous silica. Functionalization towards CO2 adsorption[J]. Microporous and Mesoporous Materials, 2018, 260: 235-244. |
29 | DIDAS S A. Structural properties of aminosilica materials for CO2 capture[D]. USA: Georgia Institute of Technology, 2014. |
30 | CHAIKITTISILP W, KHUNSUPAT R, CHEN T T, et al. Poly(allylamine)-mesoporous silica composite materials for CO2 capture from simulated flue gas or ambient air[J]. Industrial & Engineering Chemistry Research, 2011, 50(24): 14203-14210. |
31 | AHMED S, RAMLI A, YUSUP S, et al. Adsorption behavior of tetraethylenepentamine-functionalized Si-MCM-41 for CO2 adsorption[J]. Chemical Engineering Research and Design, 2017, 122: 33-42. |
32 | CAPLOW M. Kinetics of carbamate formation and breakdown[J]. Journal of the American Chemical Society, 1968, 90(24): 6795-6803. |
33 | DANCKWERTS P. The reaction of CO2 with ethanolamines[J]. Chemical Engineering Science, 1979, 34(4): 443-446. |
34 | YANG Z Z, HE L N, ZHAO Y N, et al. CO2 capture and activation by superbase/polyethylene glycol and its subsequent conversion[J]. Energy & Environmental Science, 2011, 4(10): 3971-3975. |
35 | JAHANDAR LASHAKI M, SAYARI A. CO2 capture using triamine-grafted SBA-15: The impact of the support pore structure[J]. Chemical Engineering Journal, 2018, 334: 1260-1269. |
36 | HEYDARI-GORJI A, YANG Y, SAYARI A. Effect of the pore length on CO2 adsorption over amine-modified mesoporous silicas[J]. Energy & Fuels, 2011, 25(9): 4206-4210. |
37 | QI G, WANG Y, ESTEVEZ L, et al. High efficiency nanocomposite sorbents for CO2 capture based on amine-functionalized mesoporous capsules[J]. Energy Environ. Sci., 2011, 4(2): 444-452. |
38 | SAMANTA A, ZHAO A, SHIMIZU G K, et al. Post-combustion CO2 capture using solid sorbents: a review[J]. Industrial & Engineering Chemistry Research, 2012, 51(4): 1438-1463. |
39 | SAYARI A, BELMABKHOUT Y, SERNA-GUERRERO R. Flue gas treatment via CO2 adsorption[J]. Chemical Engineering Journal, 2011, 171(3): 760-774. |
40 | SERNA-GUERRERO R, BELMABKHOUT Y, SAYARI A. Modeling CO2 adsorption on amine-functionalized mesoporous silica: 1. A semi-empirical equilibrium model[J]. Chemical Engineering Journal, 2010, 161(1/2): 173-181. |
41 | SAYARI A, HEYDARI-GORJI A, YANG Y. CO2-induced degradation of amine-containing adsorbents: Reaction products and pathways[J]. Journal of the American Chemical Society, 2012, 134(33): 13834-13842. |
42 | HIYOSHI N, YOGO K, YASHIMA T. Adsorption characteristics of carbon dioxide on organically functionalized SBA-15[J]. Microporous and Mesoporous Materials, 2005, 84(1/2/3): 357-365. |
43 | HICKS J C, DRESE J H, FAUTH D J, et al. Designing adsorbents for CO2 capture from flue gas-hyperbranched aminosilicas capable of capturing CO2 reversibly[J]. Journal of the American Chemical Society, 2008, 130(10): 2902-2903. |
44 | SU Y, PENG L, SHIUE A, et al. Carbon dioxide adsorption on amine-impregnated mesoporous materials prepared from spent quartz sand[J]. J. Air. Waste Manag. Assoc., 2014, 64(7): 827-833. |
45 | LIANG G, LI Y, YANG C, et al. Production of biosilica nanoparticles from biomass power plant fly ash[J]. Waste Manag., 2020, 105: 8-17. |
46 | 何文修. 稻壳灰基SiO2纳米流体的制备及纳米颗粒强化CO2吸收的基础研究[D]. 杭州: 浙江工业大学, 2016. |
HE Wenxiu. Synthesis of rice husk ash-based silica nanofluids for reinforcement of CO2 absorption [D]. Hangzhou: Zhejiang University of Technology, 2016. | |
47 | LIOU T H, LIU S M, CHEN G W. Utilization of e-wastes as a sustainable silica source in synthesis of ordered mesostructured titania nanocomposites with high adsorption and photoactivity[J]. Journal of Environmental Chemical Engineering, 2022, 10(2): 107283. |
48 | MA Y, CHEN H, SHI Y, et al. Low cost synthesis of mesoporous molecular sieve MCM-41 from wheat straw ash using CTAB as surfactant[J]. Materials Research Bulletin, 2016, 77: 258-264. |
49 | ALVES R H, REIS T V, ROVANI S, et al. Green synthesis and characterization of biosilica produced from sugarcane waste ash[J]. Journal of Chemistry, 2017, 2017: 1-9. |
50 | ARUMUGAM A, KARUPPASAMY G, JEGADEESAN G B. Synthesis of mesoporous materials from bamboo leaf ash and catalytic properties of immobilized lipase for hydrolysis of rubber seed oil[J]. Materials Letters, 2018, 225: 113-116. |
51 | ARASI M A, SALEM A, SALEM S. Production of mesoporous and thermally stable silica powder from low grade kaolin based on eco-friendly template free route via acidification of appropriate zeolite compound for removal of cationic dye from wastewater[J]. Sustainable Chemistry and Pharmacy, 2021, 19: 100366. |
52 | FU P, YANG T, FENG J, et al. Synthesis of mesoporous silica MCM-41 using sodium silicate derived from copper ore tailings with an alkaline molted-salt method[J]. Journal of Industrial and Engineering Chemistry, 2015, 29: 338-343. |
53 | HARLICK P J, SAYARI A. Applications of pore-expanded mesoporous silica. 5. Triamine grafted material with exceptional CO2 dynamic and equilibrium adsorption performance[J]. Industrial & Engineering Chemistry Research, 2007, 46(2): 446-458. |
54 | BELMABKHOUT Y, SAYARI A. Effect of pore expansion and amine functionalization of mesoporous silica on CO2 adsorption over a wide range of conditions[J]. Adsorption, 2009, 15(3): 318-328. |
55 | LIN K Y, PETIT C, PARK A H. Effect of SO2 on CO2 capture using liquid-like nanoparticle organic hybrid materials[J]. Energy & Fuels, 2013, 27(8): 4167-4174. |
56 | BALI S, CHEN T T, CHAIKITTISILP W, et al. Oxidative stability of amino polymer–alumina hybrid adsorbents for carbon dioxide capture[J]. Energy & Fuels, 2013, 27(3): 1547-1554. |
57 | PACIA R M, MANIANGLUNG C, KO Y S. In situ IR study on effect of alkyl chain length between amines on its stability against acidic gases[J]. Catalysts, 2019, 9(11): 910. |
58 | REZAEI F, JONES C W. Stability of supported amine adsorbents to SO2 and NO x in postcombustion CO2 capture. 1. Single-component adsorption[J]. Industrial & Engineering Chemistry Research, 2013, 52(34): 12192-12201. |
59 | LI X, HAN J, LIU Y, et al. Summary of research progress on industrial flue gas desulfurization technology[J]. Separation and Purification Technology, 2022, 281: 119849. |
60 | CHEREVOTAN A, RAJ J, PETER S C. An overview of porous silica immobilized amines for direct air CO2 capture[J]. Journal of Materials Chemistry A, 2021, 9(48): 27271-27303. |
61 | WANG J, LONG D, ZHOU H, et al. Surfactant promoted solid amine sorbents for CO2 capture[J]. Energy Environ. Sci., 2012, 5(2): 5742-5749. |
62 | WANG L, AL-AUFI M, PACHECO C N, et al. Polyethylene glycol (PEG) addition to polyethylenimine (PEI)-impregnated silica increases amine accessibility during CO2 sorption[J]. ACS Sustainable Chemistry & Engineering, 2019, 7(17): 14785-14795. |
63 | SAKWA-NOVAK M A, TAN S, JONES C W. Role of additives in composite PEI/oxide CO2 adsorbents: Enhancement in the amine efficiency of supported PEI by PEG in CO2 capture from simulated ambient air[J]. ACS Appl. Mater. Interfaces, 2015, 7(44): 24748-24759. |
64 | SRIKANTH C S, CHUANG S S. Infrared study of strongly and weakly adsorbed CO2 on fresh and oxidatively degraded amine sorbents[J]. The Journal of Physical Chemistry C, 2013, 117(18): 9196-9205. |
65 | SRIKANTH C S, CHUANG S S. Spectroscopic investigation into oxidative degradation of silica-supported amine sorbents for CO2 capture[J]. ChemSusChem, 2012, 5(8): 1435-1442. |
66 | ZHANG L, WANG X, FUJII M, et al. CO2 capture over molecular basket sorbents: Effects of SiO2 supports and PEG additive[J]. Journal of Energy Chemistry, 2017, 26(5): 1030-1038. |
67 | YUE M B, SUN L B, CAO Y, et al. Promoting the CO2 adsorption in the amine-containing SBA-15 by hydroxyl group[J]. Microporous and Mesoporous Materials, 2008, 114(1/2/3): 74-81. |
68 | 郝兰霞. 氨基修饰SBA-15原粉基吸附剂的制备及其CO2吸附性能[D]. 太原: 太原理工大学, 2017. |
HAO Lanxia. Preparation of amino -modified SBA-15(p) adsorbent and CO2 adsorption properties[D]. Taiyuan: Taiyuan University of Technology, 2017. |
[1] | CUI Shoucheng, XU Hongbo, PENG Nan. Simulation analysis of two MOFs materials for O2/He adsorption separation [J]. Chemical Industry and Engineering Progress, 2023, 42(S1): 382-390. |
[2] | CHEN Chongming, CHEN Qiu, GONG Yunqian, CHE Kai, YU Jinxing, SUN Nannan. Research progresses on zeolite-based CO2 adsorbents [J]. Chemical Industry and Engineering Progress, 2023, 42(S1): 411-419. |
[3] | XU Chunshu, YAO Qingda, LIANG Yongxian, ZHOU Hualong. Research progress on functionalization strategies of covalent organic frame materials and its adsorption properties for Hg(Ⅱ) and Cr(Ⅵ) [J]. Chemical Industry and Engineering Progress, 2023, 42(S1): 461-478. |
[4] | GU Yongzheng, ZHANG Yongsheng. Dynamic behavior and kinetic model of Hg0 adsorption by HBr-modified fly ash [J]. Chemical Industry and Engineering Progress, 2023, 42(S1): 498-509. |
[5] | GUO Qiang, ZHAO Wenkai, XIAO Yonghou. Numerical simulation of enhancing fluid perturbation to improve separation of dimethyl sulfide/nitrogen via pressure swing adsorption [J]. Chemical Industry and Engineering Progress, 2023, 42(S1): 64-72. |
[6] | WANG Shengyan, DENG Shuai, ZHAO Ruikai. Research progress on carbon dioxide capture technology based on electric swing adsorption [J]. Chemical Industry and Engineering Progress, 2023, 42(S1): 233-245. |
[7] | GE Yafen, SUN Yu, XIAO Peng, LIU Qi, LIU Bo, SUN Chengying, GONG Yanjun. Research progress of zeolite for VOCs removal [J]. Chemical Industry and Engineering Progress, 2023, 42(9): 4716-4730. |
[8] | SHI Keke, LIU Muzi, ZHAO Qiang, LI Jinping, LIU Guang. Properties and research progress of magnesium based hydrogen storage materials [J]. Chemical Industry and Engineering Progress, 2023, 42(9): 4731-4745. |
[9] | WANG Shangbin, OU Hongxiang, XUE Honglai, CAO Haizhen, WANG Junqi, BI Haipu. Effect of xanthan gum and nano silica on the properties of fluorine-free surfactant mixed solution foam [J]. Chemical Industry and Engineering Progress, 2023, 42(9): 4856-4862. |
[10] | SONG Weitao, SONG Huiping, FAN Zhenlian, FAN Biao, XUE Fangbin. Research progress of fly ash in anti-corrosion coatings [J]. Chemical Industry and Engineering Progress, 2023, 42(9): 4894-4904. |
[11] | SHAO Zhiguo, REN Wen, XU Shipei, NIE Fan, XU Yu, LIU Longjie, XIE Shuixiang, LI Xingchun, WANG Qingji, XIE Jiacai. Influence of final temperature on the distribution and characteristics of oil-based drilling cuttings pyrolysis products [J]. Chemical Industry and Engineering Progress, 2023, 42(9): 4929-4938. |
[12] | YANG Ying, HOU Haojie, HUANG Rui, CUI Yu, WANG Bing, LIU Jian, BAO Weiren, CHANG Liping, WANG Jiancheng, HAN Lina. Coal tar phenol-based carbon nanosphere prepared by Stöber method for adsorption of CO2 [J]. Chemical Industry and Engineering Progress, 2023, 42(9): 5011-5018. |
[13] | JIANG Jing, CHEN Xiaoyu, ZHANG Ruiyan, SHENG Guangyao. Research progress of manganese-loaded biochar preparation and its application in environmental remediation [J]. Chemical Industry and Engineering Progress, 2023, 42(8): 4385-4397. |
[14] | ZHANG Zhen, LI Dan, CHEN Chen, WU Jinglan, YING Hanjie, QIAO Hao. Separation and purification of salivary acids with adsorption resin [J]. Chemical Industry and Engineering Progress, 2023, 42(8): 4153-4158. |
[15] | WANG Zhicai, LIU Weiwei, ZHOU Cong, PAN Chunxiu, YAN Honglei, LI Zhanku, YAN Jingchong, REN Shibiao, LEI Zhiping, SHUI Hengfu. Synthesis and performance of a superplasticizer based on coal-based humic acid [J]. Chemical Industry and Engineering Progress, 2023, 42(7): 3634-3642. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||
京ICP备12046843号-2;京公网安备 11010102001994号 Copyright © Chemical Industry and Engineering Progress, All Rights Reserved. E-mail: hgjz@cip.com.cn Powered by Beijing Magtech Co. Ltd |