Chemical Industry and Engineering Progress ›› 2022, Vol. 41 ›› Issue (7): 3624-3635.DOI: 10.16085/j.issn.1000-6613.2021-1839
• Materials science and technology • Previous Articles Next Articles
BAO Yan1,2(), ZHENG Xi1, GUO Ruyue1
Received:
2021-08-27
Revised:
2021-10-06
Online:
2022-07-23
Published:
2022-07-25
Contact:
BAO Yan
通讯作者:
鲍艳
作者简介:
鲍艳(1981—),女,教授,博士生导师,研究方向为有机/无机复合材料。E-mail:基金资助:
CLC Number:
BAO Yan, ZHENG Xi, GUO Ruyue. Recent progress of key materials for flexible degradable pressure sensors[J]. Chemical Industry and Engineering Progress, 2022, 41(7): 3624-3635.
鲍艳, 郑茜, 郭茹月. 柔性可降解压力传感器关键制备材料的研究进展[J]. 化工进展, 2022, 41(7): 3624-3635.
Add to citation manager EndNote|Ris|BibTeX
URL: https://hgjz.cip.com.cn/EN/10.16085/j.issn.1000-6613.2021-1839
导电材料 | 溶解产物 | 溶解速率/nm·h-1 | 影响因素 |
---|---|---|---|
Mg | Mg(OH)2 | 70 | 温度和pH |
Fe | Fe(OH)2/Fe(OH)3 | — | 温度和pH |
Zn | Zn(OH)2 | 7 | 温度和pH |
Mo | H2MoO4 | 0.3 | 温度和pH |
W | H2WO4 | 1.7 | 温度和pH |
Si | Si(OH)4 | 约0.04 | 晶体结构、温度和pH等 |
Ge | H2GeO3 | 约0.08 | 晶体结构、温度和pH等 |
GBMs | CO2和H2O | — | 层数、横向尺寸和C/O比 |
导电材料 | 溶解产物 | 溶解速率/nm·h-1 | 影响因素 |
---|---|---|---|
Mg | Mg(OH)2 | 70 | 温度和pH |
Fe | Fe(OH)2/Fe(OH)3 | — | 温度和pH |
Zn | Zn(OH)2 | 7 | 温度和pH |
Mo | H2MoO4 | 0.3 | 温度和pH |
W | H2WO4 | 1.7 | 温度和pH |
Si | Si(OH)4 | 约0.04 | 晶体结构、温度和pH等 |
Ge | H2GeO3 | 约0.08 | 晶体结构、温度和pH等 |
GBMs | CO2和H2O | — | 层数、横向尺寸和C/O比 |
序号 | 降解材料 | 基本性能 | 降解速率 | 应用 | 参考文献 |
---|---|---|---|---|---|
1 | 蚕丝 | 低薄层电阻(10.5Ω?m2)、高透光率(>90%)、优异稳定性(>2200次)和良好的延展性(>60%) | 浸入木瓜蛋白酶溶液中24h后,电极降解 | 可同时检测压力和应变信号,长期监测人体健康状态,如血压 | [ |
2 | β-Gly/CS | 工作范围宽(5~60kPa)、灵敏度高(2.8~2.84mV/kPa)、稳定性好(9000次) | 浸泡在PBS缓冲液中几分钟后开始降解 | 可作为一次性传感器用于体外监测,如监测压缩绷带下的压力 | [ |
3 | 纤维素 | 宽检测范围(≤40kPa)、灵敏度高(1.7~4.8kPa-1)、稳定性好(>900次)、快速响应(22ms) | — | 检测各种人体生理信号如呼吸、脉搏、语音识别等 | [ |
4 | 蛋白质 | 宽传感范围(高达39.3kPa)、高灵敏度(298.4kPa-1)、快速响应(7ms)、透气性好、稳定性好(10000次) | 浸泡在NaOH溶液中9天后,降解率达到50%,28天完全降解 | 监测人体各种生理信号,如脉搏、声音、膝盖弯曲 | [ |
5 | 纤维素和明胶 | 宽应变范围(0~140%)、高灵敏度(GF=12.5)、稳定性好(3000次) | — | 检测人体各种运动,如呼吸、脉搏、手指弯曲等,具有人机界面交互特点 | [ |
序号 | 降解材料 | 基本性能 | 降解速率 | 应用 | 参考文献 |
---|---|---|---|---|---|
1 | 蚕丝 | 低薄层电阻(10.5Ω?m2)、高透光率(>90%)、优异稳定性(>2200次)和良好的延展性(>60%) | 浸入木瓜蛋白酶溶液中24h后,电极降解 | 可同时检测压力和应变信号,长期监测人体健康状态,如血压 | [ |
2 | β-Gly/CS | 工作范围宽(5~60kPa)、灵敏度高(2.8~2.84mV/kPa)、稳定性好(9000次) | 浸泡在PBS缓冲液中几分钟后开始降解 | 可作为一次性传感器用于体外监测,如监测压缩绷带下的压力 | [ |
3 | 纤维素 | 宽检测范围(≤40kPa)、灵敏度高(1.7~4.8kPa-1)、稳定性好(>900次)、快速响应(22ms) | — | 检测各种人体生理信号如呼吸、脉搏、语音识别等 | [ |
4 | 蛋白质 | 宽传感范围(高达39.3kPa)、高灵敏度(298.4kPa-1)、快速响应(7ms)、透气性好、稳定性好(10000次) | 浸泡在NaOH溶液中9天后,降解率达到50%,28天完全降解 | 监测人体各种生理信号,如脉搏、声音、膝盖弯曲 | [ |
5 | 纤维素和明胶 | 宽应变范围(0~140%)、高灵敏度(GF=12.5)、稳定性好(3000次) | — | 检测人体各种运动,如呼吸、脉搏、手指弯曲等,具有人机界面交互特点 | [ |
序号 | 降解材料 | 基本性能 | 降解速率 | 应用 | 参考文献 |
---|---|---|---|---|---|
1 | PGS | 灵敏度高(0.09~8.2kPa-1),检测限低(100Pa),稳定性好(>200000次)、响应时间短(≤20ms) | 浸入PBS缓冲液后8周完全降解 | 可用于人工智能、个性化医疗和康复设备、人体状况监控设备 | [ |
2 | PLA | 灵敏度高、检测限低(10.2Pa)、工作范围宽(<30kPa)、响应时间短(11ms)、功耗低(8~10W)、稳定性好(10000次) | 浸入PBS溶液中1天后开始降解,14天降解完成 | 可用于预测患者的健康状态,且可作为电子皮肤来映射触觉刺激 | [ |
3 | PVA | 高灵敏度度[5.5kPa-1 (0~30kPa)和1.5kPa-1(30~250kPa)]、响应时间快(70.4ms)、稳定性高(20000次) | — | 临床可穿戴设备和人造电子皮肤 | [ |
4 | 聚丙烯酸(PAA) | 高度拉伸(断裂伸长率450%)、响应时间快(20ms)、快速自愈性(0.2s)及良好降解性 | 室温下浸泡在磷酸PBS缓冲盐溶液中65天降解 | 检测人体运动,且可无线监测电生理信号,如肌电图和心电图信号 | [ |
序号 | 降解材料 | 基本性能 | 降解速率 | 应用 | 参考文献 |
---|---|---|---|---|---|
1 | PGS | 灵敏度高(0.09~8.2kPa-1),检测限低(100Pa),稳定性好(>200000次)、响应时间短(≤20ms) | 浸入PBS缓冲液后8周完全降解 | 可用于人工智能、个性化医疗和康复设备、人体状况监控设备 | [ |
2 | PLA | 灵敏度高、检测限低(10.2Pa)、工作范围宽(<30kPa)、响应时间短(11ms)、功耗低(8~10W)、稳定性好(10000次) | 浸入PBS溶液中1天后开始降解,14天降解完成 | 可用于预测患者的健康状态,且可作为电子皮肤来映射触觉刺激 | [ |
3 | PVA | 高灵敏度度[5.5kPa-1 (0~30kPa)和1.5kPa-1(30~250kPa)]、响应时间快(70.4ms)、稳定性高(20000次) | — | 临床可穿戴设备和人造电子皮肤 | [ |
4 | 聚丙烯酸(PAA) | 高度拉伸(断裂伸长率450%)、响应时间快(20ms)、快速自愈性(0.2s)及良好降解性 | 室温下浸泡在磷酸PBS缓冲盐溶液中65天降解 | 检测人体运动,且可无线监测电生理信号,如肌电图和心电图信号 | [ |
序号 | 降解材料 | 基本性能 | 降解速率 | 应用 | 参考文献 |
---|---|---|---|---|---|
1 | PGS、Mg、Fe | 工作压力范围宽(0~10kPa)、高灵敏度(0.04~0.9kPa-1)、稳定性好(8000次) | 浸泡在PBS溶液中发生降解 | 可用于人体健康监测,如心血管、脉搏、心脏 | [ |
2 | PGS、POMaC、PLLA及Mg电极 | 稳定性好(30000次)、低压灵敏度好(0.3~0.16kPa-1) | 浸泡在PBS后2~3周发生降解 | 检测小压力和应变,应用于生物医学,实时检测体内血压 | [ |
3 | MPF、GO | 拉伸强度高、稳定性好(20000次)、检测限低(<0.1%) | — | 检测人体微小表情及运动,例如,皱眉、眨眼等表情,手指、肘部、膝盖弯曲和跳跃 | [ |
4 | 纤维素、rGO | 宽工作压力范围(0.005~40kPa)、高灵敏度(143.41kPa-1)、快速响应时间和优异的耐久性(5000次)、且对氨气具有线性响应(灵敏度为0.036×106)、降解性 | 浸泡在0.5mol/L NaOH溶液中60天降解 | 用于监测各种人类活动,且可用作氨气传感器,监测周围环境 | [ |
序号 | 降解材料 | 基本性能 | 降解速率 | 应用 | 参考文献 |
---|---|---|---|---|---|
1 | PGS、Mg、Fe | 工作压力范围宽(0~10kPa)、高灵敏度(0.04~0.9kPa-1)、稳定性好(8000次) | 浸泡在PBS溶液中发生降解 | 可用于人体健康监测,如心血管、脉搏、心脏 | [ |
2 | PGS、POMaC、PLLA及Mg电极 | 稳定性好(30000次)、低压灵敏度好(0.3~0.16kPa-1) | 浸泡在PBS后2~3周发生降解 | 检测小压力和应变,应用于生物医学,实时检测体内血压 | [ |
3 | MPF、GO | 拉伸强度高、稳定性好(20000次)、检测限低(<0.1%) | — | 检测人体微小表情及运动,例如,皱眉、眨眼等表情,手指、肘部、膝盖弯曲和跳跃 | [ |
4 | 纤维素、rGO | 宽工作压力范围(0.005~40kPa)、高灵敏度(143.41kPa-1)、快速响应时间和优异的耐久性(5000次)、且对氨气具有线性响应(灵敏度为0.036×106)、降解性 | 浸泡在0.5mol/L NaOH溶液中60天降解 | 用于监测各种人类活动,且可用作氨气传感器,监测周围环境 | [ |
1 | 尹锐, 张瑞明, 张均, 等. 碳基柔性压阻式压力传感器研究进展[J]. 化工新型材料, 2021, 49(12): 223-226. |
YIN Rui, ZHANG Ruiming, ZHANG Jun, et al. Research progress on carbon-based flexible dielectric piezoresistive pressure sensor[J]. New Chemical Materials, 2021, 49(12): 223-226. | |
2 | 李凤超, 孔振, 吴锦华, 等. 柔性压阻式压力传感器的研究进展[J]. 物理学报, 2021, 70(10): 7-24. |
LI Fengchao, KONG Zhen, WU Jinhua, et al. Advances in flexible piezoresistive pressure sensor[J]. Acta Physica Sinica, 2021, 70(10): 7-24. | |
3 | 郭茹月, 鲍艳. 二维导电材料/柔性聚合物复合材料基可穿戴压阻式应变传感器的研究进展[J]. 精细化工, 2021, 38(4): 649-661, 859. |
GUO Ruyue, BAO Yan. Research progress on wearable piezoresistive strain sensors based on two-dimensional conductive materials/flexible polymer composites[J]. Fine Chemicals, 2021, 38(4): 649-661, 859. | |
4 | 梁立容, 李宁, 魏爱香. 柔性可穿戴压力传感器的研究进展[J]. 应用化工, 2020, 49(10): 2645-2648. |
LIANG Lirong, LI Ning, WEI Aixiang. Progress in the research of flexible pressure sensor[J]. Applied Chemical Industry, 2020, 49(10): 2645-2648. | |
5 | 潘朝莹, 马建中, 张文博, 等. 柔性导电高分子复合材料在应变传感器中的应用[J]. 化学进展, 2020, 32(10): 1592-1607. |
PAN Zhaoying, MA Jianzhong, ZHANG Wenbo, et al. Flexible conductive polymer composites in strain sensors[J]. Progress in Chemistry, 2020, 32(10): 1592-1607. | |
6 | 董点点, 张静雯, 唐杰, 等. 基于天然高分子的导电材料制备及其在柔性传感器件中的应用[J]. 高分子学报, 2020, 51(8): 864-879. |
DONG Diandian, ZHANG Jingwen, TANG Jie, et al. Fabrication of conductive materials based on natural polymers and their application in flexible sensors[J]. Acta Polymerica Sinica, 2020, 51(8): 864-879. | |
7 | DAI Y, WU X Y, LIU Z S, et al. Highly sensitive, robust and anisotropic MXene aerogels for efficient broadband microwave absorption[J]. Composites B: Engineering, 2020, 200: 108263. |
8 | ZHAO Y, REN M N, SHANG Y, et al. Ultra-sensitive and durable strain sensor with sandwich structure and excellent anti-interference ability for wearable electronic skins[J]. Composites Science and Technology, 2020, 200: 108448. |
9 | IRIMIA-VLADU M. “Green” electronics: biodegradable and biocompatible materials and devices for sustainable future[J]. Chemical Society Reviews, 2014, 43(2): 588-610. |
10 | BALDO T A, DE LIMA L F, MENDES L F, et al. Wearable and biodegradable sensors for clinical and environmental applications[J]. ACS Applied Electronic Materials, 2021, 3(1): 68-100. |
11 | KALAMBATE P K, RAO Z X, DHANJAI, et al. Electrochemical (bio) sensors go green[J]. Biosensors and Bioelectronics, 2020, 163: 112270. |
12 | LI G L, WEN D. Wearable biochemical sensors for human health monitoring: sensing materials and manufacturing technologies[J]. Journal of Materials Chemistry B, 2020, 8(16): 3423-3436. |
13 | 杨菊香, 张雅欣, 贾园, 等. 可降解高分子材料的制备及其降解机理[J]. 塑料, 2021, 50(2): 108-113. |
YANG Juxiang, ZHANG Yaxin, JIA Yuan, et al. Preparation of degradable composite and its application development[J]. Plastics, 2021, 50(2): 108-113. | |
14 | 孙飞. 生物降解高分子材料的研究和发展[J]. 中国石油和化工标准与质量, 2021, 41(2): 124-126. |
SUN Fei. Research and development of biodegradable polymer materials[J]. China Petroleum and Chemical Standard and Quality, 2021, 41(2): 124-126. | |
15 | LI Y, CHEN W H, LU L H. Wearable and biodegradable sensors for human health monitoring[J]. ACS Applied Bio Materials, 2021, 4(1): 122-139. |
16 | HOSSEINI E S, DERVIN S, GANGULY P, et al. Biodegradable materials for sustainable health monitoring devices[J]. ACS Applied Bio Materials, 2021, 4(1): 163-194. |
17 | YU X W, SHOU W, MAHAJAN B K, et al. Materials, processes, and facile manufacturing for bioresorbable electronics: a review[J]. Advanced Materials, 2018, 30(28): 1707624. |
18 | PAL R K, FARGHALY A A, WANG C Z, et al. Conducting polymer-silk biocomposites for flexible and biodegradable electrochemical sensors[J]. Biosensors and Bioelectronics, 2016, 81: 294-302. |
19 | BARI S S, CHATTERJEE A, MISHRA S. Biodegradable polymer nanocomposites: an overview[J]. Polymer Reviews, 2016, 56(2): 287-328. |
20 | BEKER L, MATSUHISA N, YOU I, et al. A bioinspired stretchable membrane-based compliance sensor[J]. PNAS, 2020, 117(21): 11314-11320. |
21 | CHOI Y S, KOO J, LEE Y J, et al. Biodegradable polyanhydrides as encapsulation layers for transient electronics[J]. Advanced Functional Materials, 2020, 30(31): 2000941. |
22 | TEODORESCU M, BERCEA M, MORARIU S. Biomaterials of poly(vinyl alcohol) and natural polymers[J]. Polymer Reviews, 2018, 58(2): 247-287. |
23 | MCMAHON S, BERTOLLO N, CEARBHAILL E D O, et al. Bio-resorbable polymer stents: a review of material progress and prospects[J]. Progress in Polymer Science, 2018, 83: 79-96. |
24 | 杨可欣, 张辉, 马博谋, 等. 天然高分子化合物与聚乳酸复合材料进展[J]. 塑料, 2021, 50(2): 93-98. |
YANG Kexin, ZHANG Hui, MA Bomou, et al. Progress in natural polymer/PLA composite[J]. Plastics, 2021, 50(2): 93-98. | |
25 | 张花. 基于天然高分子的柔性电子材料的制备与应用[D]. 西安: 西北大学, 2019. |
ZHANG Hua. Preparation and applications of flexible electronic materials based on natural polymers[D]. Xi'an: Northwest University, 2019. | |
26 | BOUTRY C M, BEKER L, KAIZAWA Y, et al. Biodegradable and flexible arterial-pulse sensor for the wireless monitoring of blood flow[J]. Nature Biomedical Engineering, 2019, 3(1): 47-57. |
27 | LI C M, GUO C C, FITZPATRICK V, et al. Design of biodegradable, implantable devices towards clinical translation[J]. Nature Reviews Materials, 2020, 5(1): 61-81. |
28 | GAO W, OTA H, KIRIYA D, et al. Flexible electronics toward wearable sensing[J]. Accounts of Chemical Research, 2019, 52(3): 523-533. |
29 | WU W W, HAICK H. Materials and wearable devices for autonomous monitoring of physiological markers[J]. Advanced Materials, 2018, 30(41): 1705024. |
30 | HAN W B, LEE J H, SHIN J W, et al. Advanced materials and systems for biodegradable, transient electronics[J]. Advanced Materials, 2020, 32(51): 2002211. |
31 | YIN L, CHENG H Y, MAO S M, et al. Transient electronics: dissolvable metals for transient electronics[J]. Advanced Functional Materials, 2014, 24(5): 644. |
32 | WANG L, GAO Y, DAI F Q, et al. Geometrical and chemical-dependent hydrolysis mechanisms of silicon nanomembranes for biodegradable electronics[J]. ACS Applied Materials & Interfaces, 2019, 11(19): 18013-18023. |
33 | HUANG S Y, ZHANG B C, SHAO Z B, et al. Ultraminiaturized stretchable strain sensors based on single silicon nanowires for imperceptible electronic skins[J]. Nano Letters, 2020, 20(4): 2478-2485. |
34 | MARTÍN C, KOSTARELOS K, PRATO M, et al. Biocompatibility and biodegradability of 2D materials: graphene and beyond[J]. Chemical Communications, 2019, 55(39): 5540-5546. |
35 | MA B J, MARTÍN C, KURAPATI R, et al. Degradation-by-design: how chemical functionalization enhances the biodegradability and safety of 2D materials[J]. Chemical Society Reviews, 2020, 49(17): 6224-6247. |
36 | CHEN X, AHN J H. Biodegradable and bioabsorbable sensors based on two-dimensional materials[J]. Journal of Materials Chemistry B, 2020, 8(6): 1082-1092. |
37 | FEIG V R, TRAN H, BAO Z N. Biodegradable polymeric materials in degradable electronic devices[J]. ACS Central Science, 2018, 4(3): 337-348. |
38 | WANG X W, LIU Z, ZHANG T. Flexible sensing electronics for wearable/attachable health monitoring[J]. Small, 2017, 13(25): 1602790. |
39 | MANJAKKAL L, DERVIN S, DAHIYA R. Correction: flexible potentiometric pH sensors for wearable systems[J]. RSC Advances, 2020, 10(22): 12734. |
40 | LI R F, WANG L, YIN L. Materials and devices for biodegradable and soft biomedical electronics[J]. Materials, 2018, 11(11): 2108. |
41 | LIU Q, LI K Q, ZHAO H, et al. The global challenge of electronic waste management[J]. Environmental Science and Pollution Research, 2009, 16(3): 248-249. |
42 | HWANG S W, SONG J K, HUANG X, et al. High-performance biodegradable/transient electronics on biodegradable polymers[J]. Advanced Materials, 2014, 26(23): 3905-3911. |
43 | LEI T, GUAN M, LIU J, et al. Biocompatible and totally disintegrable semiconducting polymer for ultrathin and ultralightweight transient electronics[J]. PNAS, 2017, 114(20): 5107-5112. |
44 | ZHANG S, ZHOU Z T, ZHONG J J, et al. Body-integrated, enzyme-triggered degradable, silk-based mechanical sensors for customized health/fitness monitoring and in situ treatment[J]. Advanced Science, 2020, 7(13): 1903802. |
45 | KOH L D, YEO J, LEE Y Y, et al. Advancing the frontiers of silk fibroin protein-based materials for futuristic electronics and clinical wound-healing[J]. Materials Science and Engineering: C, 2018, 86: 151-172. |
46 | PAL R K, FARGHALY A A, COLLINSON M M, et al. Photolithographic micropatterning of conducting polymers on flexible silk matrices[J]. Advanced Materials, 2016, 28(7): 1406-1412. |
47 | LI S Y, LIU J R, WEN H, et al. Recent advances in silk-based wearable sensors[J]. Acta Physica Sinica, 2020, 69(17): 178703. |
48 | 李胜优, 刘镓榕, 文豪, 等. 蚕丝基可穿戴传感器的研究进展[J]. 物理学报, 2020, 69(17): 178703. |
LI Shengyou, LIU Jiarong, WEN Hao, et al. Recent advances in silk-based wearable sensors[J]. Acta Physica Sinica, 2020, 69(17): 178703. | |
49 | HOU C, XU Z J, QIU W, et al. A biodegradable and stretchable protein-based sensor as artificial electronic skin for human motion detection[J]. Small, 2019, 15(11): 1805084. |
50 | HOSSEINI E S, MANJAKKAL L, SHAKTHIVEL D, et al. Glycine-chitosan-based flexible biodegradable piezoelectric pressure sensor[J]. ACS Applied Materials & Interfaces, 2020, 12(8): 9008-9016. |
51 | ELIEH-ALI-KOMI D, HAMBLIN M R. Chitin and chitosan: production and application of versatile biomedical nanomaterials[J]. International Journal of Advanced Research, 2016, 4(3): 411-427. |
52 | NAIR L S, LAURENCIN C T. Biodegradable polymers as biomaterials[J]. Progress in Polymer Science, 2007, 32(8/9): 762-798. |
53 | NEGM N A, ABUBSHAIT H A, ABUBSHAIT S A, et al. Performance of chitosan polymer as platform during sensors fabrication and sensing applications[J]. International Journal of Biological Macromolecules, 2020, 165: 402-435. |
54 | ZHANG N D, YIN X S, GONG H. Highly conductive and flexible transparent films based on silver nanowire/chitosan composite[J]. RSC Advances, 2016, 6(53): 47552-47561. |
55 | MIAO J L, LIU H H, LI Y B, et al. Biodegradable transparent substrate based on edible starch–chitosan embedded with nature-inspired three-dimensionally interconnected conductive nanocomposites for wearable green electronics[J]. ACS Applied Materials & Interfaces, 2018, 10(27): 23037-23047. |
56 | ZHU H L, XIAO Z G, LIU D T, et al. Biodegradable transparent substrates for flexible organic-light-emitting diodes[J]. Energy & Environmental Science, 2013, 6(7): 2105. |
57 | 刘佳璇, 李群. 利用植物纤维制备生物可降解高分子复合材料的应用研究[J]. 天津造纸, 2020, 42(3): 22-26. |
LIU Jiaxuan, LI Qun. Application of biodegradable polymer composite materials made from plant fibers[J]. Tianjin Paper Making, 2020, 42(3): 22-26. | |
58 | LIU L P, JIAO Z B, ZHANG J Q, et al. Bioinspired, superhydrophobic, and paper-based strain sensors for wearable and underwater applications[J]. ACS Applied Materials & Interfaces, 2021, 13(1): 1967-1978. |
59 | ZHAO P F, ZHANG R M, TONG Y H, et al. All-paper, all-organic, cuttable, and foldable pressure sensor with tuneable conductivity polypyrrole[J]. Advanced Electronic Materials, 2020, 6(8): 1901426. |
60 | PARRILLA M, GUINOVART T, FERRÉ J, et al. A wearable paper-based sweat sensor for human perspiration monitoring[J]. Advanced Healthcare Materials, 2019, 8(16): 1900342. |
61 | GAO L, ZHU C X, LI L, et al. All paper-based flexible and wearable piezoresistive pressure sensor[J]. ACS Applied Materials & Interfaces, 2019, 11(28): 25034-25042. |
62 | LI W H, LIU Q, ZHANG Y N, et al. Biodegradable materials and green processing for green electronics[J]. Advanced Materials, 2020, 32(33): e2001591. |
63 | SONG R, MURPHY M, LI C S, et al. Current development of biodegradable polymeric materials for biomedical applications[J]. Drug Design, Development and Therapy, 2018, 12: 3117-3145. |
64 | CHAO M, HE L, GONG M, et al. Breathable Ti3C2T x MXene/protein nanocomposites for ultrasensitive medical pressure sensor with degradability in solvents[J]. ACS Nano, 2021, 15(6): 9746-9758. |
65 | MENG J J, PAN P, YANG Z C, et al. Degradable and highly sensitive CB-based pressure sensor with applications for speech recognition and human motion monitoring[J]. Journal of Materials Science, 2020, 55(23): 10084-10094. |
66 | LING H, CHEN R W, HUANG Q B, et al. Transparent, flexible and recyclable nanopaper-based touch sensors fabricated via inkjet-printing[J]. Green Chemistry, 2020, 22(10): 3208-3215. |
67 | SCHAUMANN E N, TIAN B Z. Biological interfaces, modulation, and sensing with inorganic nano-bioelectronic materials[J]. Small Methods, 2020, 4(5): 1900868. |
68 | GUO Y, ZHONG M J, FANG Z W, et al. A wearable transient pressure sensor made with MXene nanosheets for sensitive broad-range human-machine interfacing[J]. Nano Letters, 2019, 19(2): 1143-1150. |
69 | SENCADAS V, TAWK C, ALICI G. Environmentally friendly and biodegradable ultrasensitive piezoresistive sensors for wearable electronics applications[J]. ACS Applied Materials & Interfaces, 2020, 12(7): 8761-8772. |
70 | SHARMA S, CHHETRY A, ZHANG S, et al. Hydrogen-bond-triggered hybrid nanofibrous membrane-based wearable pressure sensor with ultrahigh sensitivity over a broad pressure range[J]. ACS Nano, 2021, 15(3): 4380-4393. |
71 | LI X, HE L, LI Y, CHAO M, et al. Healable, degradable, and conductive MXene nanocomposite hydrogel for multifunctional epidermal sensors[J]. ACS Nano, 2021, 15(4): 7765-7773. |
72 | NAJAFABADI A H, TAMAYOL A, ANNABI N, et al. Biodegradable nanofibrous polymeric substrates for generating elastic and flexible electronics[J]. Advanced Materials, 2014, 26(33): 5823-5830. |
73 | JUNG Y H, ZHANG H L, GONG S Q, et al. High-performance green semiconductor devices: materials, designs, and fabrication[J]. Semiconductor Science and Technology, 2017, 32(6): 063002. |
74 | KENRY, LIU B. Recent advances in biodegradable conducting polymers and their biomedical applications[J]. Biomacromolecules, 2018, 19(6): 1783-1803. |
75 | BOUTRY C M, KAIZAWA Y, SCHROEDER B C, et al. A stretchable and biodegradable strain and pressure sensor for orthopaedic application[J]. Nature Electronics, 2018, 1(5): 314-321. |
76 | BOUTRY C M, NGUYEN A, LAWAL Q O, et al. A sensitive and biodegradable pressure sensor array for cardiovascular monitoring[J]. Advanced Materials, 2015, 27(43): 6954-6961. |
77 | LYU Z, LIU J Z, YANG X, et al. Naturally derived wearable strain sensors with enhanced mechanical properties and high sensitivity[J]. ACS Applied Materials & Interfaces, 2020, 12(19): 22163-22169. |
78 | ZHENG Shaodi, DU Ronghuan, WANG Ning, et al. Construction of dual conductive network in paper-based composites towards flexible degradable dual-mode sensor[J]. Composites Part A: Applied Science and Manufacturing, 2021, 151: 106649. |
[1] | LYU Xuedong, LUO Faliang, LIN Haitao, SONG Danqing, LIU Yi, NIU Ruixue, ZHENG Liuchun. Recent progress of synthesis technology and gas barrier research of poly(butylene succinate) [J]. Chemical Industry and Engineering Progress, 2023, 42(5): 2546-2554. |
[2] | ZHU Jiaxin, ZHU Wenzhe, XU Jun, XIE Jing, WANG Wenbiao, XIE Li. Enhancement of anaerobic digestion under antibiotics stress via conductive materials application: A review [J]. Chemical Industry and Engineering Progress, 2023, 42(2): 1008-1019. |
[3] | ZHANG Dazhou, LU Wenxin, SHANG Kuanxiang, HU Yuan, ZHU Fan, ZHANG Zongfei. Reaction network analysis of dimethyl oxalate hydrogenation to methyl glycolate and recent progress in the heterogeneous catalysts [J]. Chemical Industry and Engineering Progress, 2023, 42(1): 204-214. |
[4] | YIN Shuang, LIANG Weijie, CHEN Peijia, ZHANG Zhicong, GE Jianfang. Research progress on modification of PBAT-base biodegradable plastics [J]. Chemical Industry and Engineering Progress, 2022, 41(S1): 307-317. |
[5] | LYU Ying, HU Xuewu, CHEN Susu, LIU Xingyu, CHEN Bowei, ZHANG Mingjiang. Advances in microbial remediation of soils polluted by polycyclic aromatic hydrocarbons [J]. Chemical Industry and Engineering Progress, 2022, 41(6): 3249-3262. |
[6] | FU Kaimei, WANG Hongqiu, MU Yanjun, HOU Yuxuan, SONG Qianqian, WANG Chunjiao. Status and research development of PBAT production technology [J]. Chemical Industry and Engineering Progress, 2021, 40(11): 6173-6180. |
[7] | Xiaoqi LIN, Weisheng CHEN, Qinqin ZHANG. Research progress of polyurethanes in the biomedical field [J]. Chemical Industry and Engineering Progress, 2020, 39(S1): 212-218. |
[8] | Qun LIU, Yucang ZHANG. Progress of modified starch-based biodegradable plastics [J]. Chemical Industry and Engineering Progress, 2020, 39(8): 3124-3134. |
[9] | XU Chong, ZHANG Xiaolin, CONG Longkang, DENG Xiangsheng, JIN Xiao, NIE Sunjian. Progress of natural fiber reinforced polylactic acid biodegradable composites [J]. Chemical Industry and Engineering Progress, 2017, 36(10): 3751-3756. |
[10] | Lü Shanshan,TAN Haiyan,ZUO Yingfeng,GU Jiyou,ZHANG Yanhua. Progress of biodegradable polylactic acid based composite material [J]. Chemical Industry and Engineering Progree, 2014, 33(11): 2975-2981. |
[11] | LU Kangwei,YIN Fanghua,CUI Aijun,GAO Jian,YUAN Ximeng,YE Dongwei,CHEN Qun. Process research on ring-opening polymerization of glycolide by bismuth(Ⅲ) acetate [J]. Chemical Industry and Engineering Progree, 2014, 33(02): 395-399. |
[12] | YUE Hangbo1,DOU Yao1,HE Ming1,YIN Guoqiang2,CUI Yingde1,3 . Improvement of mechanical properties of protein-based bioplastics [J]. Chemical Industry and Engineering Progree, 2013, 32(07): 1591-1597. |
[13] | LU Weiliang,CUI Aijun,WANG Zeyun,TIAN Junkai,CHEN Qun,HE Mingyang. Research on the suspension polymerization of polyglycolic acid [J]. Chemical Industry and Engineering Progree, 2013, 32(03): 652-656. |
[14] | WANG Zeyun,CUI Aijun,LU Weiliang,CHEN Qun,HE Mingyang. Optimization on the synthesis process of polymethyl glycolate via melt/solid polycondensation [J]. Chemical Industry and Engineering Progree, 2012, 31(12): 2771-2774. |
[15] | HUANG Jinbiao1,SHANG Long’an2. Advance in biosynthesis of polyhydroxyalkanoate [J]. Chemical Industry and Engineering Progree, 2011, 30(9): 2041-. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||
京ICP备12046843号-2;京公网安备 11010102001994号 Copyright © Chemical Industry and Engineering Progress, All Rights Reserved. E-mail: hgjz@cip.com.cn Powered by Beijing Magtech Co. Ltd |