Chemical Industry and Engineering Progress ›› 2021, Vol. 40 ›› Issue (11): 6173-6180.DOI: 10.16085/j.issn.1000-6613.2021-0419
• Materials science and technology • Previous Articles Next Articles
FU Kaimei(), WANG Hongqiu(), MU Yanjun, HOU Yuxuan, SONG Qianqian, WANG Chunjiao
Received:
2021-03-02
Revised:
2021-05-25
Online:
2021-11-19
Published:
2021-11-05
Contact:
WANG Hongqiu
付凯妹(), 王红秋(), 慕彦君, 侯雨璇, 宋倩倩, 王春娇
通讯作者:
王红秋
作者简介:
付凯妹(1988—),女,硕士,工程师,研究方向为炼油化工战略信息。E-mail:CLC Number:
FU Kaimei, WANG Hongqiu, MU Yanjun, HOU Yuxuan, SONG Qianqian, WANG Chunjiao. Status and research development of PBAT production technology[J]. Chemical Industry and Engineering Progress, 2021, 40(11): 6173-6180.
付凯妹, 王红秋, 慕彦君, 侯雨璇, 宋倩倩, 王春娇. 聚(己二酸丁二醇酯-对苯二甲酸丁二醇酯)生产技术现状及其研究进展[J]. 化工进展, 2021, 40(11): 6173-6180.
Add to citation manager EndNote|Ris|BibTeX
URL: https://hgjz.cip.com.cn/EN/10.16085/j.issn.1000-6613.2021-0419
企业 | 产品 | 产能×104/t·a-1 | 商品名 | 技术来源 |
---|---|---|---|---|
BASF | PBAT | 7.1 | Ecoflex | 自主研发 |
Novarnont | PBAT | 10 | Origo-Bi | 收购了美国伊士曼公司Eastar-Bio可降解塑料业务 |
金发科技 | PBSA/PBAT | 6 | ECOPOND | 自主研发,采用聚友化工工艺装置 |
新疆蓝山屯河 | PBS/PBAT/PBSA | 13 | TUNHE | 基于清华大学,后自主优化,采用聚友化工工艺装置 |
金晖兆隆 | PBAT | 2 | Ecoworld | 中科院理化所 |
杭州鑫富 | PBS/PBAT | 1.3 | Biocosafe | 中科院理化所 |
中国石化仪征化纤 | PBAT/PBST/PBSA | 3 | TA | 自主研发,针对现有PBT装置进行改造 |
企业 | 产品 | 产能×104/t·a-1 | 商品名 | 技术来源 |
---|---|---|---|---|
BASF | PBAT | 7.1 | Ecoflex | 自主研发 |
Novarnont | PBAT | 10 | Origo-Bi | 收购了美国伊士曼公司Eastar-Bio可降解塑料业务 |
金发科技 | PBSA/PBAT | 6 | ECOPOND | 自主研发,采用聚友化工工艺装置 |
新疆蓝山屯河 | PBS/PBAT/PBSA | 13 | TUNHE | 基于清华大学,后自主优化,采用聚友化工工艺装置 |
金晖兆隆 | PBAT | 2 | Ecoworld | 中科院理化所 |
杭州鑫富 | PBS/PBAT | 1.3 | Biocosafe | 中科院理化所 |
中国石化仪征化纤 | PBAT/PBST/PBSA | 3 | TA | 自主研发,针对现有PBT装置进行改造 |
产品 | 熔点 /℃ | 拉伸强度 /MPa | 延伸率 /% | 弹性模量 | 氧气 阻隔性 | 水汽 阻隔性 | 降解 速率 | 价格×104 /CNY·t-1 |
---|---|---|---|---|---|---|---|---|
PBAT | 120 | 32~36 | 750 | 140 | 差 | 差 | 适中 | 2~3 |
LDPE | 110 | 12 | 148 | >200 | 差 | 高 | 不 | 0.5~1 |
产品 | 熔点 /℃ | 拉伸强度 /MPa | 延伸率 /% | 弹性模量 | 氧气 阻隔性 | 水汽 阻隔性 | 降解 速率 | 价格×104 /CNY·t-1 |
---|---|---|---|---|---|---|---|---|
PBAT | 120 | 32~36 | 750 | 140 | 差 | 差 | 适中 | 2~3 |
LDPE | 110 | 12 | 148 | >200 | 差 | 高 | 不 | 0.5~1 |
填料 | 制备方法 | 提升的性能 | 研究发表时间/年 | 参考文献 |
---|---|---|---|---|
PLA | 熔融混合 | 屈服应力、模量、相容性 | 2020 | [ |
PLA[聚碳酸亚丙酯聚氨酯 (PPCU)、氮化硼(BN)改性] | 熔融混合 | 相容性、导热性能 | 2020 | [ |
PLA(ADR4370F为扩链剂) | — | 水气阻隔性 | 2018 | [ |
PVA(增塑改性) | 熔融混合 | 拉伸强度、断裂伸长率 | 2021 | [ |
PPC | 熔融混合 | 热稳定性、结晶能力 | 2020 | [ |
PBS | 熔融混合 | 弹性模量,断裂伸长率 | 2020 | [ |
PGA | 熔融混合 | 耐热性能、力学性能和水气阻隔性 | 2020 | [ |
CNC | 原位聚合 | 杨氏模量提高了26%,拉伸强度提高了27%,断裂伸长率提高了37%,韧性提高了56% | 2020 | [ |
改性纤维素纳米晶 | 熔融混合 | 增加相容性,改善复合材料的力学性能和流变性能 | 2017 | [ |
CNC,十八烷基异氰酸酯官能化 | 熔融混合 | 增强的热、流变和机械性能 | 2019 | [ |
4-苯基丁基异氰酸酯改性CNC | 溶剂浇铸 | 弹性模量 | 2016 | [ |
乙酸酐改性CNC | 熔融混合 | 热稳定性和力学性有不同程度的提升 | 2016 | [ |
CNCs并用己二酸官能化 | 溶液浇铸 | 结晶度从51%增加到56%,良好分散,储能模量提高 | 2019 | [ |
MMT、SEP和TiO2 | 熔融混合 | 氧气和水蒸气的渗透系数降低,减少紫外线和可见光透射 | 2020 | [ |
MMT | 熔融混合 | 改善了PBAT的热性能 | 2017 | [ |
MMT | 熔融混合 | 较好的热稳定性和力学性能 | 2015 | [ |
黏土纳米颗粒 (海泡石、蒙脱土和氟累托石) | 熔融混合 | 弹性模量和硬度,提高聚合物结晶度 | 2012 | [ |
淀粉 | 熔融混合 | 拉伸强度显著提高了50%,断裂伸长率提高了18%。增强的机械性能表明相容性得到改善 | 2020 | [ |
淀粉(质量分数0.5%TA改性) | 熔融混合 | 显著改善商业应用的机械、光学和空气阻隔性能 | 2019 | [ |
利用丙三醇和纳米SiO2首先对 淀粉进行改性 | 熔融混合 | 良好的机械性能、热稳定性和相容性 | 2019 | [ |
乙酰化绿竹纤维 | 熔融混合 | 弹性模量有所提高 | 2014 | [ |
木质素 | 熔融混合 | 延展性和机械强度 | 2020 | [ |
填料 | 制备方法 | 提升的性能 | 研究发表时间/年 | 参考文献 |
---|---|---|---|---|
PLA | 熔融混合 | 屈服应力、模量、相容性 | 2020 | [ |
PLA[聚碳酸亚丙酯聚氨酯 (PPCU)、氮化硼(BN)改性] | 熔融混合 | 相容性、导热性能 | 2020 | [ |
PLA(ADR4370F为扩链剂) | — | 水气阻隔性 | 2018 | [ |
PVA(增塑改性) | 熔融混合 | 拉伸强度、断裂伸长率 | 2021 | [ |
PPC | 熔融混合 | 热稳定性、结晶能力 | 2020 | [ |
PBS | 熔融混合 | 弹性模量,断裂伸长率 | 2020 | [ |
PGA | 熔融混合 | 耐热性能、力学性能和水气阻隔性 | 2020 | [ |
CNC | 原位聚合 | 杨氏模量提高了26%,拉伸强度提高了27%,断裂伸长率提高了37%,韧性提高了56% | 2020 | [ |
改性纤维素纳米晶 | 熔融混合 | 增加相容性,改善复合材料的力学性能和流变性能 | 2017 | [ |
CNC,十八烷基异氰酸酯官能化 | 熔融混合 | 增强的热、流变和机械性能 | 2019 | [ |
4-苯基丁基异氰酸酯改性CNC | 溶剂浇铸 | 弹性模量 | 2016 | [ |
乙酸酐改性CNC | 熔融混合 | 热稳定性和力学性有不同程度的提升 | 2016 | [ |
CNCs并用己二酸官能化 | 溶液浇铸 | 结晶度从51%增加到56%,良好分散,储能模量提高 | 2019 | [ |
MMT、SEP和TiO2 | 熔融混合 | 氧气和水蒸气的渗透系数降低,减少紫外线和可见光透射 | 2020 | [ |
MMT | 熔融混合 | 改善了PBAT的热性能 | 2017 | [ |
MMT | 熔融混合 | 较好的热稳定性和力学性能 | 2015 | [ |
黏土纳米颗粒 (海泡石、蒙脱土和氟累托石) | 熔融混合 | 弹性模量和硬度,提高聚合物结晶度 | 2012 | [ |
淀粉 | 熔融混合 | 拉伸强度显著提高了50%,断裂伸长率提高了18%。增强的机械性能表明相容性得到改善 | 2020 | [ |
淀粉(质量分数0.5%TA改性) | 熔融混合 | 显著改善商业应用的机械、光学和空气阻隔性能 | 2019 | [ |
利用丙三醇和纳米SiO2首先对 淀粉进行改性 | 熔融混合 | 良好的机械性能、热稳定性和相容性 | 2019 | [ |
乙酰化绿竹纤维 | 熔融混合 | 弹性模量有所提高 | 2014 | [ |
木质素 | 熔融混合 | 延展性和机械强度 | 2020 | [ |
1 | 上海聚友化工有限公司. PBAT及其共聚物成套技术[EB/OL]. . |
Joyou Chemical Technology and Engineering Co., Ltd. PBAT and its copolymer technology[EB/OL]. . | |
2 | 全生物降解塑料聚丁二酸丁二醇酯(PBS)类聚酯研制产业化及应用[J]. 中国科学院院刊, 2016, 31(S1): 82. |
Industrial production and application of fully biodegradable PBS plastic[J]. Bulletin of Chinese Academy of Sciences, 2016, 31(S1): 82. | |
3 | 中石化仪征化纤公司. 生物可降解PBAT、PBST工业化生产[EB/OL]. . |
Sinopec Yizheng Chemical Fiber Co., Ltd. Industrial production of biodegradable PBAT/PBST[EB/OL]. . | |
4 | 谢鸿洲, 卢文新, 商宽祥. 几种可生物降解塑料的性能与应用比较研究[J]. 化肥设计, 2020, 58(4): 1-3, 7. |
XIE Hongzhou, LU Wenxin, SHANG Kuanxiang. Comparative study on the properties and application of several biodegradable plastics[J]. Chemical Fertilizer Design, 2020, 58(4): 1-3, 7. | |
5 | 应宗荣. 高分子材料成形工艺学[M]. 北京: 高等教育出版社, 2010: 504. |
YING Zongrong. Polymer material forming process[M]. Beijing: Higher Education Press, 2010: 504. | |
6 | MARIANO M, CHIRAT C, KISSI N EL, et al. Impact of cellulose nanocrystal aspect ratio on crystallization and reinforcement of poly(butylene adipate-co-terephthalate)[J]. Journal of Polymer Science Part B: Polymer Physics, 2016, 54(22): 2284-2297. |
7 | 田民波. 材料学概论[M]. 北京: 清华大学出版社, 2015: 430. |
TIAN Minbo. Introduction to materials[M]. Beijing: Tsinghua University Press, 2015: 430. | |
8 | MITTAL G, DHAND V, RHEE K Y, et al. A review on carbon nanotubes and graphene as fillers in reinforced polymer nanocomposites[J]. Journal of Industrial and Engineering Chemistry, 2015, 21: 11-25. |
9 | COLEMAN J N, KHAN U, BLAU W J, et al. Small but strong: a review of the mechanical properties of carbon nanotube-polymer composites[J]. Carbon, 2006, 44(9): 1624-1652. |
10 | ZHAO H W, LIU H, LIU Y Q, et al. Blends of poly(butylene adipate-co-terephthalate)(PBAT) and stereocomplex polylactide with improved rheological and mechanical properties[J]. RSC Advances, 2020, 10(18): 10482-10490. |
11 | LULE Z C, OH H, KIM J. Enhanced directional thermal conductivity of polylactic acid/polybutylene adipate terephthalate ternary composite filled with oriented and surface treated boron nitride[J]. Polymer Testing, 2020, 86: 106495. |
12 | LI X, AI X, PAN H W, et al. The morphological, mechanical, rheological, and thermal properties of PLA/PBAT blown films with chain extender[J]. Polymers for Advanced Technologies, 2018, 29(6): 1706-1717. |
13 | 李发勇, 陈骏佳, 谢东. 聚乙烯醇/聚己二酸对苯二甲酸丁二酯复合材料的制备与性能[J]. 塑料科技, 2021, 49(2): 5-8. |
LI Fayong, CHEN Junjia, XIE Dong. Preparation and properties of poly(vinyl alcohol)/poly(butyleneadipate-co-terephthalate) composites[J]. Plastics Science and Technology, 2021, 49(2): 5-8. | |
14 | JIANG G, WANG F, ZHANG S D, et al. Structure and improved properties of PPC/PBAT blends via controlling phase morphology based on melt viscosity[J]. Journal of Applied Polymer Science, 2020, 137(31): 48924. |
15 | DE MATOS COSTA A R, CROCITTI A, HECKER DE CARVALHO L, et al. Properties of biodegradable films based on poly(butylene succinate) (PBS) and poly(butylene adipate-co-terephthalate) (PBAT) blends[J]. Polymers, 2020, 12(10): 2317. |
16 | 冯申, 温亮, 孙朝阳, 等. PGA/PBAT复合材料的性能及应用研究[J]. 中国塑料, 2020, 34(11): 36-40. |
FENG Shen, WEN Liang, SUN Zhaoyang, et al. Properties and applications of PGA/PBAT composites[J]. China Plastics, 2020, 34(11): 36-40. | |
17 | LAI L, WANG S L, LI J X, et al. Stiffening, strengthening, and toughening of biodegradable poly(butylene adipate-co-terephthalate) with a low nanoinclusion usage[J]. Carbohydrate Polymers, 2020, 247: 116687. |
18 | PINHEIRO I F, FERREIRA F V, SOUZA D H S, et al. Mechanical, rheological and degradation properties of PBAT nanocomposites reinforced by functionalized cellulose nanocrystals[J]. European Polymer Journal, 2017, 97: 356-365. |
19 | PINHEIRO I F, FERREIRA F V, ALVES G F, et al. Biodegradable PBAT-based nanocomposites reinforced with functionalized cellulose nanocrystals from Pseudobombax munguba: rheological, thermal, mechanical and biodegradability properties[J]. Journal of Polymers and the Environment, 2019, 27(4): 757-766. |
20 | MORELLI C L, BELGACEM M N, BRANCIFORTI M C, et al. Nanocomposites of PBAT and cellulose nanocrystals modified by in situ polymerization and melt extrusion[J]. Polymer Engineering & Science, 2016, 56(12): 1339-1348. |
21 | ZHANG X Z, MA P M, ZHANG Y. Structure and properties of surface-acetylated cellulose nanocrystal/poly(butylene adipate-co-terephthalate) composites[J]. Polymer Bulletin, 2016, 73(7): 2073-2085. |
22 | FERREIRA F V, MARIANO M, PINHEIRO I F, et al. Cellulose nanocrystal-based poly(butylene adipate-co-terephthalate) nanocomposites covered with antimicrobial silver thin films[J]. Polymer Engineering & Science, 2019, 59(S2): E356-E365. |
23 | CALDERARO M P, DE LUCA SARANTOPÓULOS C I G, SANCHEZ E M S, et al. PBAT/hybrid nanofillers composites—Part 1: Oxygen and water vapor permeabilities, UV barrier and mechanical properties[J]. Journal of Applied Polymer Science, 2020, 137(46): 49522. |
24 | RASYIDA A, FUKUSHIMA K, YANG M C. Structure and properties of organically modified poly(butylene adipate-co-terephthalate) based nanocomposites[J]. IOP Conference Series: Materials Science and Engineering, 2017, 223: 012023. |
25 | CHEN J H, YANG M C. Preparation and characterization of nanocomposite of maleated poly(butylene adipate-co-terephthalate) with organoclay[J]. Materials Science and Engineering C, 2015, 46: 301-308. |
26 | FUKUSHIMA K, WU M H, BOCCHINI S, et al. PBAT based nanocomposites for medical and industrial applications[J]. Materials Science and Engineering C, 2012, 32(6): 1331-1351. |
27 | LIU W Y, LIU S G, WANG Z J, et al. Preparation and characterization of compatibilized composites of poly(butylene adipate-co-terephthalate) and thermoplastic starch by two-stage extrusion[J]. European Polymer Journal, 2020, 122: 109369. |
28 | LIU W Y, LIU S G, WANG Z J, et al. Preparation and characterization of reinforced starch-based composites with compatibilizer by simple extrusion[J]. Carbohydrate Polymers, 2019, 223: 115122. |
29 | ZHANG S D, LIN Z S, LI J, et al. Elevated ductility, optical, and air barrier properties of poly (butyleneadipate-co-terephthalate) bio-based films via novel thermoplastic starch feature[J]. Polymers for Advanced Technologies, 2019, 30(4): 852-862. |
30 | PINHEIRO I F, MORALES A R, MEI L H. Polymeric biocomposites of poly(butylene adipate-co-terephthalate) reinforced with natural Munguba fibers[J]. Cellulose, 2014, 21(6): 4381-4391. |
31 | XIONG S J, PANG B, ZHOU S J, et al. Economically competitive biodegradable PBAT/lignin composites: effect of lignin methylation and compatibilizer[J]. ACS Sustainable Chemistry & Engineering, 2020, 8(13): 5338-5346. |
32 | ŠERÁ J, SERBRUYNS L, DE WILDE B, et al. Accelerated biodegradation testing of slowly degradable polyesters in soil[J]. Polymer Degradation and Stability, 2020, 171: 109031. |
33 | MOHANTY S, NAYAK S K. Biodegradable nanocomposites of poly(butylene adipate-co-terephthalate) (PBAT) and organically modified layered silicates[J]. Journal of Polymers and the Environment, 2012, 20(1): 195-207. |
34 | SOMEYA Y, KONDO N, SHIBATA M. Biodegradation of poly(butylene adipate-co-butylene terephthalate)/layered-silicate nanocomposites[J]. Journal of Applied Polymer Science, 2007, 106(2): 730-736. |
35 | Standard test method for determining aerobic biodegradation of plastic materials in soil: [S]. West Conshohocken, PA: ASTM International, 2012. |
36 | DÍAZ A, KATSARAVA R, PUIGGALÍ J. Synthesis, properties and applications of biodegradable polymers derived from diols and dicarboxylic acids: from polyesters to poly(ester amide)s[J]. International Journal of Molecular Sciences, 2014, 15(5): 7064-7123. |
37 | AL-ITRY R, LAMNAWAR K, MAAZOUZ A. Improvement of thermal stability, rheological and mechanical properties of PLA, PBAT and their blends by reactive extrusion with functionalized epoxy[J]. Polymer Degradation and Stability, 2012, 97(10): 1898-1914. |
38 | EUBELER J P, ZOK S, BERNHARD M, et al. Environmental biodegradation of synthetic polymers I. Test methodologies and procedures[J]. TrAC Trends in Analytical Chemistry, 2009, 28(9): 1057-1072. |
[1] | WANG Jiaqing, SONG Guangwei, LI Qiang, GUO Shuaicheng, DAI Qingli. Rubber-concrete interface modification method and performance enhancement path [J]. Chemical Industry and Engineering Progress, 2023, 42(S1): 328-343. |
[2] | CHEN Chongming, CHEN Qiu, GONG Yunqian, CHE Kai, YU Jinxing, SUN Nannan. Research progresses on zeolite-based CO2 adsorbents [J]. Chemical Industry and Engineering Progress, 2023, 42(S1): 411-419. |
[3] | ZHU Jie, JIN Jing, DING Zhenghao, YANG Huipan, HOU Fengxiao. Modification of CaSO4 oxygen carrier by Zhundong coal ash in chemical looping gasification and its mechanism [J]. Chemical Industry and Engineering Progress, 2023, 42(9): 4628-4635. |
[4] | WANG Jingang, ZHANG Jianbo, TANG Xuejiao, LIU Jinpeng, JU Meiting. Research progress on modification of Cu-SSZ-13 catalyst for denitration of automobile exhaust gas [J]. Chemical Industry and Engineering Progress, 2023, 42(9): 4636-4648. |
[5] | GE Quanqian, XU Mai, LIANG Xian, WANG Fengwu. Research progress on the application of MOFs in photoelectrocatalysis [J]. Chemical Industry and Engineering Progress, 2023, 42(9): 4692-4705. |
[6] | LI Xuejia, LI Peng, LI Zhixia, JIN Dunshang, GUO Qiang, SONG Xufeng, SONG Peng, PENG Yuelian. Experimental comparation on anti-scaling and anti-wetting ability of hydrophilic and hydrophobic modified membranes [J]. Chemical Industry and Engineering Progress, 2023, 42(8): 4458-4464. |
[7] | CHEN Junjun, FEI Chang’en, DUAN Jintang, GU Xueping, FENG Lianfang, ZHANG Cailiang. Research progress on chemical modification of polyether ether ketone for the high bioactivity [J]. Chemical Industry and Engineering Progress, 2023, 42(8): 4015-4028. |
[8] | CHU Tiantian, LIU Runzhu, DU Gaohua, MA Jiahao, ZHANG Xiao’a, WANG Chengzhong, ZHANG Junying. Preparation and chemical degradability of organoguanidine-catalyzed dehydrogenation type RTV silicone rubbers [J]. Chemical Industry and Engineering Progress, 2023, 42(7): 3664-3673. |
[9] | TAN Lipeng, SHEN Jun, WANG Yugao, LIU Gang, XU Qingbai. Research progress on blending modification of coal tar pitch and petroleum asphalt [J]. Chemical Industry and Engineering Progress, 2023, 42(7): 3749-3759. |
[10] | GONG Pengcheng, YAN Qun, CHEN Jinfu, WEN Junyu, SU Xiaojie. Properties and mechanism of eriochrome black T degradation by carbon nanotube-cobalt ferrite composites activated persulfate [J]. Chemical Industry and Engineering Progress, 2023, 42(7): 3572-3581. |
[11] | XU Wei, LI Kaijun, SONG Linye, ZHANG Xinghui, YAO Shunhua. Research progress of photocatalysis and co-electrochemical degradation of VOCs [J]. Chemical Industry and Engineering Progress, 2023, 42(7): 3520-3531. |
[12] | YANG Hongmei, GAO Tao, YU Tao, QU Chengtun, GAO Jiapeng. Treatment of refractory organics sulfonated phenolic resin with ferrate [J]. Chemical Industry and Engineering Progress, 2023, 42(6): 3302-3308. |
[13] | WU Fengzhen, LIU Zhiwei, XIE Wenjie, YOU Yating, LAI Rouqiong, CHEN Yandan, LIN Guanfeng, LU Beili. Preparation of biomass derived Fe/N co-doped porous carbon and its application for catalytic degradation of Rhodamine B via peroxymonosulfate activation [J]. Chemical Industry and Engineering Progress, 2023, 42(6): 3292-3301. |
[14] | YIN Chengyang, HOU Ming, YANG Shuang, MAO Di, LIU Junyan. Research progress in transition metals modified Cu-SSZ-13 zeolite denitration catalysts [J]. Chemical Industry and Engineering Progress, 2023, 42(6): 2963-2974. |
[15] | CHEN Mingxing, WANG Xinya, ZHANG Wei, XIAO Changfa. Development of thermally stable fiber-based air filter materials [J]. Chemical Industry and Engineering Progress, 2023, 42(5): 2439-2453. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||
京ICP备12046843号-2;京公网安备 11010102001994号 Copyright © Chemical Industry and Engineering Progress, All Rights Reserved. E-mail: hgjz@cip.com.cn Powered by Beijing Magtech Co. Ltd |