Chemical Industry and Engineering Progress ›› 2020, Vol. 39 ›› Issue (S1): 212-218.DOI: 10.16085/j.issn.1000-6613.2019-1914
• Biochemical and pharmaceutical engineering • Previous Articles Next Articles
Xiaoqi LIN(), Weisheng CHEN, Qinqin ZHANG()
Received:
2019-11-18
Online:
2020-06-29
Published:
2020-05-20
Contact:
Qinqin ZHANG
通讯作者:
张芹芹
作者简介:
林晓琪(2019—),女,硕士研究生,研究方向为生物质资源化工。E-mail:基金资助:
CLC Number:
Xiaoqi LIN, Weisheng CHEN, Qinqin ZHANG. Research progress of polyurethanes in the biomedical field[J]. Chemical Industry and Engineering Progress, 2020, 39(S1): 212-218.
林晓琪, 陈维胜, 张芹芹. 聚氨酯在生物医学领域的研究进展[J]. 化工进展, 2020, 39(S1): 212-218.
Add to citation manager EndNote|Ris|BibTeX
URL: https://hgjz.cip.com.cn/EN/10.16085/j.issn.1000-6613.2019-1914
1 | 王 强,李瑞欣,封严,等. 医用聚氨酯的改性及其在生物医学中的应用进展[J]. 塑料科技, 2010, 38(9): 91-96. |
WANG Qiang, LI Ruixin, FENG Yan,et al. Research progress on modification and its application of medical polyurethane in biomedicine[J]. Plastics Science and Technology, 2010, 38(9): 91-96. | |
2 | AKUTSU T, DREYER B, KOLFF W J. Polyurethane artificial heart valves in animals[J]. Journal of Applied Physiology, 1959, 14: 1045-1048. |
3 | BERNACCA G M, MACKAY T G, WILKINSON R, et al. Calcification and fatigue failure in a polyurethane heart valve[J]. Biomaterials, 1995, 16(4): 279-285. |
4 | BORETOS J W, PIERCE W S. Segmented polyurethane: a new elastomer for biomedical applications[J]. Science, 1967, 158(3807): 1481-1482. |
5 | BERNACCA G M, O′CONNOR B, WILLIAMS D F, et al. Hydrodynamic function of polyurethane prosthetic heart valves: influences of Young's modulus and leaflet thickness[J]. Biomaterials, 2002, 23(1): 45-50. |
6 | GALLOCHER S L, AGUIRRE A F, KASYANOV V, et al. A novel polymer for potential use in a trileaflet heart valve[J]. Journal of Biomedical Materials Research B: Applied Biomaterials, 2006, 79(2): 325-334. |
7 | WHEATLEY D. Polyurethane: material for the next generation of heart valve prostheses?[J]. European Journal of Cardio-Thoracic Surgery, 2000, 17(4): 440-448. |
8 | PROKOPOVICH P, PERNI S, PICCIRILLO C, et al. Frictional properties of light-activated antimicrobial polymers in blood vessels[J]. Journal of Materials Science: Materials in Medicine, 2010, 21(2): 815-821. |
9 | BELANGER M C, MAROIS Y, ROY R, et al. Selection of a polyurethane membrane for the manufacture of ventricles for a totally implantable artificial heart: blood compatibility and biocompatibility studies[J]. Artificial Organs, 2000, 24(11): 879-888. |
10 | WANG X, WU P, HU X, et al. Polyurethane membrane/knitted mesh-reinforced collagen-chitosan bilayer dermal substitute for the repair of full-thickness skin defects via a two-step procedure[J]. Journal of the Mechanical Behavior of Biomedical Materials, 2016, 56: 120-133. |
11 | WANG X, LI Q, HU X, et al. Fabrication and characterization of poly(L-lactide-co-glycolide) knitted mesh-reinforced collagen-chitosan hybrid scaffolds for dermal tissue engineering[J]. Journal of the Mechanical Behavior of Biomedical Materials, 2012, 8: 204-215. |
12 | SINGH A K, MEHRA D S, NIYOGI U K, et al. Breathability studies of electron beam curable polyurethane pressure sensitive adhesive for bio-medical application[J]. Radiation Physics and Chemistry, 2014, 103: 75-83. |
13 | SAMPATH KUMAR N, SANTHOSH C, VATHALURU SUDAKARAN S, et al. Electrospun polyurethane and soy protein nanofibres for wound dressing applications[J]. IET Nanobiotechnology, 2018, 12(2): 94-98. |
14 | UNNITHAN A R, GNANASEKARAN G, SATHISHKUMAR Y, et al. Electrospun antibacterial polyurethane-cellulose acetate-zein composite mats for wound dressing[J]. Carbohydr. Polym., 2014, 102: 884-892. |
15 | JUNG Y C, CHO J W. Application of shape memory polyurethane in orthodontic[J]. Journal of Materials Science: Materials in Medicine, 2010, 21(10): 2881-2886. |
16 | KIM S Y, LEE S H, CHO S K, et al. Comparison of the accuracy of digitally fabricated polyurethane model and conventional gypsum model[J]. Journal of Advanced Prosthodontics, 2014, 6(1): 1-7. |
17 | DUNNILL M S. Fibrinoid necrosis in the branches of the pulmonary artery in chronic non-specific lung disease[J]. British Journal of Diseases of the Chest, 1960, 54(4): 355-358. |
18 | SACHWEH J S, DAEBRITZ S H. Novel "biomechanical" polymeric valve prostheses with special design for aortic and mitral position: a future option for pediatric patients?[J]. ASAIO Journal, 2006, 52(5): 575-580. |
19 | THOMAS V, JAYABALAN M. A new generation of high flex life polyurethane urea for polymer heart valve: studies on in vivo biocompatibility and biodurability[J]. Journal of Biomedical Materials Research, Part A, 2009, 89(1): 192-205. |
20 | ANDERHEIDEN D, KLEE D, HCKER H, et al. Surface modification of a biocompatible polymer based on polyurethane for artificial blood vessels[J]. Journal of Materials Science: Materials in Medicine, 1992, 3(1): 1-4. |
21 | GUELCHER S A. Biodegradable polyurethanes: synthesis and applications in regenerative medicine[J]. Tissue Engineering B: Reviews, 2008, 14(1): 3-17. |
22 | FREED L E, VUNJAK-NOVAKOVIC G. Culture of organized cell communities[J]. Advanced Drug Delivery Reviews, 1998, 33(1/2): 15-30. |
23 | LI M, MONDRINOS M J, GANDHI M R, et al. Electrospun protein fibers as matrices for tissue engineering[J]. Biomaterials, 2005, 26(30): 5999-6008. |
24 | MATSUDA T, IHARA M, INOGUCHI H, et al. Mechano-active scaffold design of small-diameter artificial graft made of electrospun segmented polyurethane fabrics[J]. Journal of Biomedical Materials Research Part A, 2005, 73A(1): 125-131. |
25 | STANKUS J J, SOLETTI L, FUJIMOTO K, et al. Fabrication of cell microintegrated blood vessel constructs through electrohydrodynamic atomization[J]. Biomaterials, 2007, 28(17): 2738-2746. |
26 | SHIN J W, LEE Y J, HEO S J, et al. Manufacturing of multi-layered nanofibrous structures composed of polyurethane and poly(ethylene oxide) as potential blood vessel scaffolds[J]. Journal of Biomaterials Science Polymer Edition, 2009, 20(5/6): 757-771. |
27 | DETTA N, ERRICO C, DINUCCI D, et al. Novel electrospun polyurethane/gelatin composite meshes for vascular grafts[J]. Journal of Materials Science: Materials in Medicine, 2010, 21(5): 1761-1769. |
28 | HUANG Y, HE K, WANG X. Rapid prototyping of a hybrid hierarchical polyurethane-cell/hydrogel construct for regenerative medicine[J]. Materials Science & Engineering C: Materials for Biological Applications, 2013, 33(6): 3220-3229. |
29 | HEINLIN J, SCHREML S, BABILAS P, et al. Cutaneous wound healing therapeutic interventions[J]. Der Hautarzt, 2010, 61(7): 611-626. |
30 | BALASUBRAMANI M, KUMAR T R, BABU M. Skin substitutes: a review[J]. Burns, 2001, 27(5): 534-544. |
31 | BUCHANAN P J, KUNG T A, CEDERNA P S. Evidence-based medicine[J]. Plastic and Reconstructive Surgery, 2014, 134(6): 1391-1404. |
32 | BÖTTCHER-HABERZETH S, BIEDERMANN T, REICHMANN E. Tissue engineering of skin[J]. Burns, 2010, 36(4): 450-460. |
33 | BANYARD D A, BOURGEOIS J M, WIDGEROW A D, et al. Regenerative biomaterials[J]. Plastic and Reconstructive Surgery, 2015, 135(6): 1740-1748. |
34 | PHILANDRIANOS C, ANDRAC-MEYER L, MORDON S, et al. Comparison of five dermal substitutes in full-thickness skin wound healing in a porcine model[J]. Burns, 2012, 38(6): 820-829. |
35 | O’BRIEN F J, HARLEY B A, YANNAS I V, et al. The effect of pore size on cell adhesion in collagen—GAG scaffolds[J]. Biomaterials, 2005, 26(4): 433-441. |
36 | ZHONG S P, ZHANG Y Z, LIM C T. Tissue scaffolds for skin wound healing and dermal reconstruction[J]. Wiley Interdisciplinary Reviews: Nanomedicine and Nanobiotechnology, 2010, 2(5): 510-525. |
37 | MA L. Collagen/chitosan porous scaffolds with improved biostability for skin tissue engineering[J]. Biomaterials, 2003, 24(26): 4833-4841. |
38 | HARLEY B, LEUNG J, SILVA E, et al. Mechanical characterization of collagen-glycosaminoglycan scaffolds[J]. Acta Biomaterialia, 2007, 3(4): 463-474. |
39 | FIROOZI N, REZAYAN A H, TABATABAEI REZAEI S J, et al. Synthesis of poly(ε-caprolactone)-based polyurethane semi-interpenetrating polymer networks as scaffolds for skin tissue regeneration[J]. International Journal of Polymeric Materials and Polymeric Biomaterials, 2017, 66(16): 805-811. |
40 | NIKJE M M A, GARMARUDI A B. Application of SiO2 nanoparticles for thermophysical improvement of integral skin polyurethane elastomers[J]. Advanced Composite Materials, 2011, 20(1): 79-89. |
41 | YOO H J, KIM H D. Characteristics of waterborne polyurethane/poly(N-vinylpyrrolidone) composite films for wound-healing dressings[J]. Journal of Applied Polymer Science, 2008, 107(1): 331-338. |
42 | YOO H J, KIM H D. Synthesis and properties of waterborne polyurethane hydrogels for wound healing dressings[J]. Journal of Biomedical Materials Research Part B: Applied Biomaterials, 2008, 85B(2): 326-333. |
43 | HERGENROTHER R W, XUE-HAI Y, COOPER S L. Blood-contacting properties of polydimethylsiloxane polyureaurethanes[J]. Biomaterials, 1994, 15(8): 635-640. |
44 | CHUN Y C, KIM K S, SHIN J S, et al. Synthesis and characterization of poly(siloxane-urethane)s[J]. Polymer International, 1992, 27(2): 177-185. |
45 | KAJIYAMA M, KAKIMOTO M, IMAI Y. Synthesis and properties of new multiblock copolymers based on dimethyl siloxane and N-phenylated polyureas[J]. Macromolecules, 1990, 23(5): 1244-1248. |
46 | YILGÖR E, BURGAZ E, YURTSEVER E, et al. Comparison of hydrogen bonding in polydimethylsiloxane and polyether based urethane and urea copolymers[J]. Polymer, 2000, 41(3): 849-857. |
47 | KHIL M S, CHA D I, KIM H Y, et al. Electrospun nanofibrous polyurethane membrane as wound dressing[J]. Journal of Biomedical Materials Research, 2003, 67B(2): 675-679. |
48 | YARI A, YEGANEH H, BAKHSHI H. Synthesis and evaluation of novel absorptive and antibacterial polyurethane membranes as wound dressing[J]. Journal of Materials Science: Materials in Medicine, 2012, 23(9): 2187-2202. |
49 | SHAMS E, YEGANEH H, NADERI-MANESH H, et al. Polyurethane/siloxane membranes containing graphene oxide nanoplatelets as antimicrobial wound dressings: in vitro and in vivo evaluations[J]. Journal of Materials Science: Materials in Medicine, 2017, 28(5). |
50 | CHOI S J, LEE J H, LEE Y H, et al. Synthesis and properties of polyurethane-urea-based liquid bandage materials[J]. Journal of Applied Polymer Science, 2011, 121(6): 3516-3524. |
51 | LENDLEIN A, LANGER R. Biodegradable, elastic shape-memory polymers for potential biomedical applications[J]. Science, 2002, 296(5573): 1673-1676. |
52 | PRISACARIU C. Polyurethane elastomers[M]. Berlin: Springer-Verlag Wien, 2011: 61-66. |
53 | FARZANEH S, FITOUSSI J, LUCAS A, et al. Shape memory effect and properties memory effect of polyurethane[J]. Journal of Applied Polymer Science, 2013, 128(5): 3240-3249. |
54 | MENG Q, HU J, ZHU Y. Properties of shape memory polyurethane used as a low-temperature thermoplastic biomedical orthotic material: influence of hard segment content[J]. Journal of Biomaterials Science, Polymer Edition, 2008, 19(11): 1437-1454. |
55 | AHMAD M, LUO J, MIRAFTAB M. Feasibility study of polyurethane shape-memory polymer actuators for pressure bandage application[J]. Science and Technology of Advanced Materials, 2012, 13(1): 015006. |
56 | ROBERTS A P, HUGHES A W. Complications with antibiotics used prophylactically in joint replacement surgery: a case report of cephradine-induced pseudomembranous colitis[J]. International orthopaedics, 1985, 8(4): 299-302. |
57 | SPRINGER B D, SCOTT R D, SAH A P, et al. McKeever hemiarthroplasty of the knee in patients less than sixty years old[J]. Journal of Bone and Joint Surgery, American Volume, 2006, 88(2): 366-371. |
58 | HALLOCK R H, FELL B M. Unicompartmental tibial hemiarthroplasty: early results of the UniSpacer knee[J]. Clinical Orthopaedics and Related Research, 2003, 416: 154-163. |
59 | SISTO D J, MITCHELL I L. UniSpacer arthroplasty of the knee[J]. Journal of Bone and Joint Surgery, 2005, 87(8): 1706-1711. |
60 | MEDLEY J B, PILLIAR R M, WONG E W, et al. Hydrophilic polyurethane elastomers for hemiarthroplasty: a preliminary invitro wear study[J]. Engineering in Medicine, 2016, 9(2): 59-65. |
61 | DOWSON D, FISHER J, JIN Z M, et al. Design considerations for cushion form bearings in artificial hip joints[J]. Proceedings of the Institution of Mechanical Engineers Part H: Journal of Engineering in Medicine, 1991, 205(2): 59-68. |
62 | AUGER D D, DOWSON D, FISHER J, et al. Friction and lubrication in cushion form bearings for artificial hip joints[J]. Proceedings of the Institution of Mechanical Engineers Part H: Journal of Engineering in Medicine, 1993, 207(1): 25-33. |
63 | LUO Y, MCCANN L, INGHAM E, et al. Polyurethane as a potential knee hemiarthroplasty biomaterial: an in-vitro simulation of its tribological performance[J]. Proceedings of the Institution of Mechanical Engineers H: Journal of Engineering in Medicine, 2010, 224(3): 415-425. |
64 | DHOLLANDER A, VERDONK P, VERDONK R. Treatment of painful, irreparable partial meniscal defects with a polyurethane scaffold: midterm clinical outcomes and survival analysis[J]. The American Journal of Sports Medicine, 2016, 44(10): 2615-2621. |
65 | OKADA M. Chemical syntheses of biodegradable polymers[J]. Progress in Polymer Science, 2002, 27(1): 87-133. |
66 | GUAN J, SACKS M S, BECKMAN E J, et al. Biodegradable poly(ether ester urethane)urea elastomers based on poly(ether ester) triblock copolymers and putrescine: synthesis, characterization and cytocompatibility[J]. Biomaterials, 2004, 25(1): 85-96. |
67 | COHN D, HOTOVELY-SALOMON A. Biodegradable multiblock PEO/PLA thermoplastic elastomers: molecular design and properties[J]. Polymer, 2005, 46(7): 2068-2075. |
68 | ZHANG J, WU M, YANG J, et al. Anionic poly(lactic acid)-polyurethane micelles as potential biodegradable drug delivery carriers[J]. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2009, 337(1/2/3): 200-204. |
69 | STOREY R F, WIGGINS J S, PUCKETT A D. Hydrolyzable poly(ester-urethane) networks from L-lysine diisocyanate and D,L-lactide/ε-caprolactone homo- and copolyester triols[J]. Journal of Polymer Science A: Polymer Chemistry, 1994, 32(12): 2345-2363. |
70 | MARCOS-FERNáNDEZ A, ABRAHAM G A, VALENTíN J L, et al. Synthesis and characterization of biodegradable non-toxic poly(ester-urethane-urea)s based on poly( ε-caprolactone) and amino acid derivatives[J]. Polymer, 2006, 47(3): 785-798. |
71 | PARAMONOV S E, BACHELDER E M, BEAUDETTE T T, et al. Fully acid-degradable biocompatible polyacetal microparticles for drug delivery[J]. Bioconjugate Chemistry, 2008, 19(4): 911-919. |
72 | DUARAH R, SINGH Y P, GUPTA P, et al. Smart self-tightening surgical suture from a tough bio-based hyperbranched polyurethane/reduced carbon dot nanocomposite[J]. Biomedical Materials, 2018, 13(4): 045004. |
73 | SUN P, ZHOU D, GAN Z. Novel reduction-sensitive micelles for triggered intracellular drug release[J]. Journal of Controlled Release, 2011, 155(1): 96-103. |
74 | MATHESON L A, SANTERRE J P, LABOW R S. Changes in macrophage function and morphology due to biomedical polyurethane surfaces undergoing biodegradation[J]. Journal of Cellular Physiology, 2004, 199(1): 8-19. |
75 | WAGNER H, BELLER F K, PFAUTSCH M. Electron and light microscopy examination of capsules around breast implants[J]. Plastic and Reconstructive Surgery, 1977, 60(1): 49-55. |
76 | BUCKY L P, EHRLICH H P, SOHONI S, et al. The capsule quality of saline-filled smooth silicone, textured silicone, and polyurethane implants in rabbits: a long-term study[J] Plastic and Reconstructive Surgery, 1994, 93(6): 1123-1131. |
77 | SZYCHER M, SICILIANO A A. An assessment of 2,4-TDA formation from Surgitek polyurethane foam under simulated physiological conditions[J]. Journal of Biomaterials Applications, 1991, 5(4): 323-336. |
[1] | LYU Xuedong, LUO Faliang, LIN Haitao, SONG Danqing, LIU Yi, NIU Ruixue, ZHENG Liuchun. Recent progress of synthesis technology and gas barrier research of poly(butylene succinate) [J]. Chemical Industry and Engineering Progress, 2023, 42(5): 2546-2554. |
[2] | XI Huimin, QIAN Kun, YU Kejing, LI Jie, ZHANG Zhongwei, XIONG Ziming, ZHANG Yaoliang. Preparation, modification and application of self-healing polyurethane elastomers based on disulfide and hydrogen bonds [J]. Chemical Industry and Engineering Progress, 2023, 42(2): 934-943. |
[3] | XIN Hua, PENG Qi, LI Yangfan, ZHANG Yan, CHEN Yue, LI Xinqi. Preparation and self-repairing performance of microcapsules with fluoropolyurethane dimethacrylate as the core [J]. Chemical Industry and Engineering Progress, 2023, 42(10): 5406-5413. |
[4] | ZHANG Dazhou, LU Wenxin, SHANG Kuanxiang, HU Yuan, ZHU Fan, ZHANG Zongfei. Reaction network analysis of dimethyl oxalate hydrogenation to methyl glycolate and recent progress in the heterogeneous catalysts [J]. Chemical Industry and Engineering Progress, 2023, 42(1): 204-214. |
[5] | HU Yaoyao, WEI Ming, LI Boshen, DONG Yuelin, DONG Qunfeng, LIU Chuanqi. Preparation and properties of silicon and sulfhydryl compound modified UV-curable WPUA coating [J]. Chemical Industry and Engineering Progress, 2022, 41(6): 3186-3193. |
[6] | LI Boshen, WEI Ming, HU Yaoyao, DONG Yuelin, DONG Qunfeng, YANG Lifeng. Preparation and performance of modified h-BN/polyurethane acrylic coatings [J]. Chemical Industry and Engineering Progress, 2022, 41(6): 3194-3202. |
[7] | LU Shaofeng, CUI Shanshan, SHI Wenzhao, LI Susong, XIE Yan, YANG Qiancheng. Preparation and properties of cross-linked waterborne polyurethane solid-solid phase change material [J]. Chemical Industry and Engineering Progress, 2022, 41(5): 2574-2581. |
[8] | SHI Muyang, LU Bohui, WANG Jinkang, JIN Yang, GE Mingqiao. Preparation and property of dye-doped luminescent polyurethane composite [J]. Chemical Industry and Engineering Progress, 2022, 41(4): 2029-2037. |
[9] | YAN Chengfei, YU Caili, ZHANG Fa’ai. Preparation and properties of rosin based fluorescent waterborne polyurethane [J]. Chemical Industry and Engineering Progress, 2022, 41(11): 6061-6067. |
[10] | LI Ting, DU Shaohui, CUI Jinfeng, WANG Yanghui, LI Hulin, GUO Runlan, WANG Peng, WANG Zhenjun, GUO Junhong, YANG Baoping. Preparation and properties of waterborne polyurethane paper sizing agents with phosphorus-boron hybrid prepolymer blocks [J]. Chemical Industry and Engineering Progress, 2022, 41(10): 5549-5557. |
[11] | QIAO Liangzhi, DU Kaifeng. Fabrication and application of polysaccharide microspheres [J]. Chemical Industry and Engineering Progress, 2021, 40(8): 4305-4313. |
[12] | DANG Haichun, LIU Zhanzhou, LEI Chunxing, XU Zhaozan, LI Zhenzhong. Preparation and properties of branched polyurethane elastomer via bulk prepolymerization [J]. Chemical Industry and Engineering Progress, 2021, 40(6): 3380-3388. |
[13] | LI Gen, LI Jidong. Preparation and characterization of injectable nHA/PU composite porous scaffolds for bone repair [J]. Chemical Industry and Engineering Progress, 2021, 40(12): 6800-6806. |
[14] | Dandan LI, Jihuai TAN, Dinggen HU, Jianbin CHEN, Zhulan LIU, Yunfeng CAO. Recent development of waterborne polyurethane as surface sizing agent: preparation, modification and application [J]. Chemical Industry and Engineering Progress, 2021, 40(1): 366-377. |
[15] | Jiyong LUO, Daohai ZHANG, Mi ZHOU, Qin TIAN, Shuhao QIN. Preparation and properties of PBT/TPU/DOPO-MA flame retardant composites [J]. Chemical Industry and Engineering Progress, 2020, 39(8): 3221-3229. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||
京ICP备12046843号-2;京公网安备 11010102001994号 Copyright © Chemical Industry and Engineering Progress, All Rights Reserved. E-mail: hgjz@cip.com.cn Powered by Beijing Magtech Co. Ltd |