Chemical Industry and Engineering Progress ›› 2022, Vol. 41 ›› Issue (7): 3615-3623.DOI: 10.16085/j.issn.1000-6613.2021-1888
• Industrial catalysis • Previous Articles Next Articles
ZHOU Jiali1(), MA Ziran1(), ZHAO Junping2, MA Jing1, ZHAO Chunlin1, LI Ge1, WANG Hongyan1, WANG Baodong1()
Received:
2021-09-03
Revised:
2021-11-18
Online:
2022-07-23
Published:
2022-07-25
Contact:
MA Ziran,WANG Baodong
周佳丽1(), 马子然1(), 赵俊平2, 马静1, 赵春林1, 李歌1, 王红妍1, 王宝冬1()
通讯作者:
马子然,王宝冬
作者简介:
周佳丽(1992—),女,硕士,工程师,研究方向为环境催化。E-mail:基金资助:
CLC Number:
ZHOU Jiali, MA Ziran, ZHAO Junping, MA Jing, ZHAO Chunlin, LI Ge, WANG Hongyan, WANG Baodong. HPAs-modified V-Mo/Ti-W catalysts for the selective catalytic reduction of NO x over a wide temperature range[J]. Chemical Industry and Engineering Progress, 2022, 41(7): 3615-3623.
周佳丽, 马子然, 赵俊平, 马静, 赵春林, 李歌, 王红妍, 王宝冬. 杂多酸改性V-Mo/Ti-W催化剂的宽温SCR脱硝性能[J]. 化工进展, 2022, 41(7): 3615-3623.
Add to citation manager EndNote|Ris|BibTeX
URL: https://hgjz.cip.com.cn/EN/10.16085/j.issn.1000-6613.2021-1888
键 | 波数/cm-1 | |
---|---|---|
W系 | Mo系 | |
P—Oa | 约1079 | 约1064 |
Si—Oa | 约950 | |
M | 约983 | 约964 |
M—Ob—M | 890~850 | |
M—Oc—M | 800~760 |
键 | 波数/cm-1 | |
---|---|---|
W系 | Mo系 | |
P—Oa | 约1079 | 约1064 |
Si—Oa | 约950 | |
M | 约983 | 约964 |
M—Ob—M | 890~850 | |
M—Oc—M | 800~760 |
样品 | BET比表面积/m2·g-1 | 孔容/cm3·g-1 | 平均孔径/nm |
---|---|---|---|
V-Mo/Ti-W | 82.7 | 0.35 | 13.0 |
HPMo-V/Ti-W | 83.2 | 0.42 | 16.0 |
HPW-V-Mo/Ti | 78.4 | 0.34 | 14.0 |
HSiW-V-Mo/Ti | 78.9 | 0.35 | 14.2 |
Ti-W粉 | 94.0 | 0.39 | 14.7 |
TiO2粉 | 89.5 | 0.42 | 13.2 |
样品 | BET比表面积/m2·g-1 | 孔容/cm3·g-1 | 平均孔径/nm |
---|---|---|---|
V-Mo/Ti-W | 82.7 | 0.35 | 13.0 |
HPMo-V/Ti-W | 83.2 | 0.42 | 16.0 |
HPW-V-Mo/Ti | 78.4 | 0.34 | 14.0 |
HSiW-V-Mo/Ti | 78.9 | 0.35 | 14.2 |
Ti-W粉 | 94.0 | 0.39 | 14.7 |
TiO2粉 | 89.5 | 0.42 | 13.2 |
样品 | Oα/(Oα+Oβ) | V4+/(V4++V5+) |
---|---|---|
V-Mo/Ti-W | 13.90 | 0.28 |
HPMo-V/Ti-W | 27.01 | 0.32 |
HPW-V-Mo/Ti | 25.00 | 0.32 |
HSiW-V- Mo/Ti | 21.88 | 0.31 |
样品 | Oα/(Oα+Oβ) | V4+/(V4++V5+) |
---|---|---|
V-Mo/Ti-W | 13.90 | 0.28 |
HPMo-V/Ti-W | 27.01 | 0.32 |
HPW-V-Mo/Ti | 25.00 | 0.32 |
HSiW-V- Mo/Ti | 21.88 | 0.31 |
样品 | NH3脱附量 /μmol·g-1 | 低温 | 中温 | 高温 | |||
---|---|---|---|---|---|---|---|
温度/℃ | NH3脱附量/μmol·g-1 | 温度/℃ | NH3脱附量/μmol·g-1 | 温度/℃ | NH3脱附量/μmol·g-1 | ||
V-Mo/Ti-W | 318.4 | 174 | 86.9 | 285 | 231.5 | ||
HPMo-V/Ti-W | 342.7 | 163 | 72.4 | 237 | 167.4 | 353 | 103.0 |
HPW-V-Mo/Ti | 320.5 | 160 | 68.5 | 207 | 106.5 | 288 | 145.5 |
HSiW-V-Mo/Ti | 337.5 | 160 | 63.8 | 222 | 117 | 336 | 156.7 |
样品 | NH3脱附量 /μmol·g-1 | 低温 | 中温 | 高温 | |||
---|---|---|---|---|---|---|---|
温度/℃ | NH3脱附量/μmol·g-1 | 温度/℃ | NH3脱附量/μmol·g-1 | 温度/℃ | NH3脱附量/μmol·g-1 | ||
V-Mo/Ti-W | 318.4 | 174 | 86.9 | 285 | 231.5 | ||
HPMo-V/Ti-W | 342.7 | 163 | 72.4 | 237 | 167.4 | 353 | 103.0 |
HPW-V-Mo/Ti | 320.5 | 160 | 68.5 | 207 | 106.5 | 288 | 145.5 |
HSiW-V-Mo/Ti | 337.5 | 160 | 63.8 | 222 | 117 | 336 | 156.7 |
1 | 朱法华, 许月阳, 孙尊强, 等. 中国燃煤电厂超低排放和节能改造的实践与启示[J]. 中国电力, 2021, 54(4): 1-8. |
ZHU Fahua, XU Yueyang, SUN Zunqiang, et al. Practice and enlightenment of ultra-low emission and energy-saving retrofits of coal-fired power plants in China[J]. Electric Power, 2021, 54(4): 1-8. | |
2 | 张巨莉. 风光储联合发电系统与控制分析[J]. 电力设备管理, 2021(5): 136-138. |
ZHANG Juli. Wind-solar-storage combined power generation system and control analysis[J]. Electric Power Equipment Management, 2021(5): 136-138. | |
3 | 罗盾. 为什么煤电不可缺失(上): 灵活性煤电的必要性[J]. 能源, 2021(6): 50-54. |
LUO Dun. Why coal power is indispensable (Part 1): The necessity of flexible coal power[J]. Energy, 2021(6): 50-54. | |
4 | 唐昊, 李文艳, 王琦, 等. 商用选择性催化还原催化剂SO2氧化率控制研究进展[J]. 化工进展, 2017, 36(6): 2143-2149. |
TANG Hao, LI Wenyan, WANG Qi, et al. Research progress of the control of SO2 oxidation by commercial SCR catalyst[J]. Chemical Industry and Engineering Progress, 2017, 36(6): 2143-2149. | |
5 | DU Xuesen, GAO Xiang, FU Yincheng, et al. The co-effect of Sb and Nb on the SCR performance of the V2O5/TiO2 catalyst[J]. Journal of colloid and interface science, 2012, 368(1): 406-412. |
6 | PHIL Ha Heon, REDDY Maddigapu Pratap, KUMAR Pullur Anil, et al. SO2 resistant antimony promoted V2O5/TiO2 catalyst for NH3-SCR of NO x at low temperatures[J]. Applied Catalysis B: Environmental, 2008, 78(3/4): 301-308. |
7 | XU Tengfei, WU Xiaodong, GAO Yuxi, et al. Comparative study on sulfur poisoning of V2O5-Sb2O3/TiO2 and V2O5-WO3/TiO2 monolithic catalysts for low-temperature NH3-SCR[J]. Catalysis Communications, 2017, 93: 33-36. |
8 | 张铁军, 李坚, 何洪, 等. 锑掺杂对钒钛系催化剂低温脱硝活性的影响[J]. 燃料化学学报, 2017, 45(6): 740-746. |
ZHANG Tiejun, LI Jian, HE Hong, et al. Effect of antimony doped on vanadium-titanium on low-temperature NH3-SCR activity[J]. Journal of Fuel Chemistry and Technology, 2017, 45(6): 740-746. | |
9 | 窦生平, 赵炜, 张凯, 等. Nd掺杂V2O5/TiO2低温NH3选择性催化还原NO x 性能研究[J]. 分子催化, 2019, 33(1): 50-57. |
DOU Shengping, ZHAO Wei, ZHANG Kai, et al. Catalytic performance research of Nd-doped V2O5/TiO2 for low temperature selective catalytic reduction of NO x with NH3 [J]. Journal of Molecular Catalysis, 2019, 33(1): 50-57. | |
10 | MA Ziran, WU Xiaodong, FENG Ya, et al. Low-temperature SCR activity and SO2 deactivation mechanism of Ce-modified V2O5-WO3/TiO2 catalyst[J]. Progress in Natural Science: Materials International, 2015, 25(4): 342-352. |
11 | CEHNG Kai, LIU Jian, ZHANG Tao, et al. Effect of Ce doping of TiO2 support on NH3-SCR activity over V2O5-WO3/CeO2-TiO2 catalyst[J]. Journal of Environmental Sciences, 2014, 26(10): 2106-2113. |
12 | LIU Zhong, HAN Jian, ZHAO Li, et al. Effects of Se and SeO2 on the denitrification performance of V2O5-WO3/TiO2 SCR catalyst[J]. Applied Catalysis A: General, 2019, 587: 117263. |
13 | 李航航, 赵炜, 王谦, 等. B改性钒钛催化剂低温NH3-SCR还原NO x [J]. 分子催化, 2021, 35(2): 121-129. |
LI Hanghang, ZHAO Wei, WANG Qian, et al. Boron-modified vanadia/titania catalyst for low-temperature NH3-SCR of NO x [J]. Journal of Molecular Catalysis, 2021, 35(2): 121-129. | |
14 | PAN Yanxiao, ZHAO Wei, ZHONG Qin, et al. Promotional effect of Si-doped V2O5/TiO2 for selective catalytic reduction of NO x by NH3 [J]. Journal of Environmental Sciences, 2013, 25(8): 1703-1711. |
15 | ZHANG Shule, LI Hongyu, ZHONG Qin. Promotional effect of F-doped V2O5-WO3/TiO2 catalyst for NH3-SCR of NO at low-temperature[J]. Applied Catalysis A: General, 2012, 435: 156-162. |
16 | 王德胜, 闫亮, 王晓来. 杂多酸催化剂研究进展[J]. 分子催化, 2012, 26(4): 366-375. |
WANG Desheng, YAN Liang, WANG Xiaolai. Research progress of heteropoly acid catalysts[J]. Journal of Molecular Catalysis, 2012, 26(4): 366-375. | |
17 | PUTLURU Siva Sankar Reddy, JENSEN Anker Degn, RIISAGER Anders, et al. Heteropoly acid promoted V2O5/TiO2 catalysts for NO abatement with ammonia in alkali containing flue gases[J]. Catalysis Science & Technology, 2011, 1(4): 631-637. |
18 | MA Zhudong, LI Jian, ZHANG Ling, et al. Denitrification activities of Mo-V-Ti catalysts prepared by dipping method at low temperature[J]. Materials Science Forum, 2018, 913: 893-899 |
19 | WANG Jinxiu, MIAO Jifa, YU Weijia, et al. Study on the local difference of monolithic honeycomb V2O5-WO3/TiO2 denitration catalyst[J]. Materials Chemistry and Physics, 2017, 198: 193-199. |
20 | 潘胜节. Keggin型杂多酸(盐)催化剂的制备表征及其催化性能的研究[D]. 兰州: 兰州理工大学, 2016. |
PAN Shengjie. Preparation, characterization and catalytic performance of Keggin type heteropoly acids(salts) catalysts[D]. Lanzhou: Lanzhou University of Technology,2016. | |
21 | MOFFAT J B. A comparison of the catalytic and structural properties of heteropoly compounds: semi-empirical calculations[J]. Journal of Molecular Catalysis[J]. 1984, 26(3): 385-396. |
22 | KWON Dong Wook, PARK Hee Kwang, HONG Sung Chang. Enhancement of SCR activity and SO2 resistance on VO x /TiO2 catalyst by addition of molybdenum[J]. Chemical Engineering Journal, 2016, 284: 315-324. |
23 | 郭家秀, 史雪珂, 范爱东, 等. Ce改性锰酸镧催化剂的制备及脱硝性能研究[J]. 工程科学与技术, 2021, 53(4): 233-239. |
GUO Jiaxiu, SHI Xueke, FAN Aidong, et al. Study on the preparation and denitration performance of Ce modified La-Mn perovskite catalyst[J]. Advanced Engineering Sciences, 2021, 53(4): 233-239. | |
24 | ARFAOUI Jihene, GHORBEL Abdelhamid, PETITTO Carolina, et al. Novel V2O5-CeO2-TiO2-SO4 2- nanostructured aerogel catalyst for the low temperature selective catalytic reduction of NO by NH3 in excess O2 [J]. Applied Catalysis B: Environmental, 2018, 224: 264-275. |
25 | LIU Zhiming, ZHANG Shaoxuan, LI Junhua, et al. Novel V2O5-CeO2/TiO2 catalyst with low vanadium loading for the selective catalytic reduction of NO x by NH3 [J]. Applied Catalysis B: Environmental, 2014, 158: 11-19. |
26 | CHEN Ziyi, WU Xiaomin, NI Kaiwen, et al. Molybdenum-decorated V2O5-WO3/TiO2: surface engineering toward boosting the acid cycle and redox cycle of NH3-SCR[J]. Catalysis Science & Technology, 2021, 11(5): 1746-1757. |
27 | ZHAO Xin, HUANG Lei, LI Hongrui, et al. Highly dispersed V2O5/TiO2 modified with transition metals (Cu, Fe, Mn, Co) as efficient catalysts for the selective reduction of NO with NH3 [J]. Chinese Journal of Catalysis, 2015, 36(11): 1886-1899. |
28 | YU Wenchao, WU Xiaodong, SI Zhichun, et al. Influences of impregnation procedure on the SCR activity and alkali resistance of V2O5-WO3/TiO2 catalyst[J]. Applied Surface Science, 2013, 283: 209-214. |
29 | ZHU Lin, ZHONG Zhaoping, YANG Han, et al. Effect of MoO3 on vanadium based catalysts for the selective catalytic reduction of NO x with NH3 at low temperature[J]. Journal of Environmental Sciences, 2017, 56: 169-179. |
30 | JIANG Haoxi, ZHOU Jiali, WANG Ccaixia, et al. Effect of cosolvent and temperature on the structures and properties of Cu-MOF-74 in low-temperature NH3-SCR[J]. Industrial & Engineering Chemistry Research, 2017, 56(13): 3542-3550. |
31 | 白洋. V2O5(MO x )/TiO2脱硝催化剂表面V4+(3+)/V5+比值与活性关系[D]. 哈尔滨: 哈尔滨工程大学, 2016. |
BAI Yang. Relationship between the denitration activity and the V4+(3+)/V5+ ratio of V2O5(MO x )/TiO2 catalyst[D]. Harbin: Harbin Engineering University, 2016. | |
32 | SEO Choong Kil, CHOI Byungchul. Physicochemical characteristics according to aging of Fe-zeolite and V2O5-WO3-TiO2 SCR for diesel engines[J]. Journal of Industrial and Engineering Chemistry, 2015, 25: 239-249. |
[1] | ZHANG Mingyan, LIU Yan, ZHANG Xueting, LIU Yake, LI Congju, ZHANG Xiuling. Research progress of non-noble metal bifunctional catalysts in zinc-air batteries [J]. Chemical Industry and Engineering Progress, 2023, 42(S1): 276-286. |
[2] | SHI Yongxing, LIN Gang, SUN Xiaohang, JIANG Weigeng, QIAO Dawei, YAN Binhang. Research progress on active sites in Cu-based catalysts for CO2 hydrogenation to methanol [J]. Chemical Industry and Engineering Progress, 2023, 42(S1): 287-298. |
[3] | XIE Luyao, CHEN Songzhe, WANG Laijun, ZHANG Ping. Platinum-based catalysts for SO2 depolarized electrolysis [J]. Chemical Industry and Engineering Progress, 2023, 42(S1): 299-309. |
[4] | YANG Xiazhen, PENG Yifan, LIU Huazhang, HUO Chao. Regulation of active phase of fused iron catalyst and its catalytic performance of Fischer-Tropsch synthesis [J]. Chemical Industry and Engineering Progress, 2023, 42(S1): 310-318. |
[5] | WANG Lele, YANG Wanrong, YAO Yan, LIU Tao, HE Chuan, LIU Xiao, SU Sheng, KONG Fanhai, ZHU Canghai, XIANG Jun. Influence of spent SCR catalyst blending on the characteristics and deNO x performance for new SCR catalyst [J]. Chemical Industry and Engineering Progress, 2023, 42(S1): 489-497. |
[6] | DENG Liping, SHI Haoyu, LIU Xiaolong, CHEN Yaoji, YAN Jingying. Non-noble metal modified vanadium titanium-based catalyst for NH3-SCR denitrification simultaneous control VOCs [J]. Chemical Industry and Engineering Progress, 2023, 42(S1): 542-548. |
[7] | CHENG Tao, CUI Ruili, SONG Junnan, ZHANG Tianqi, ZHANG Yunhe, LIANG Shijie, PU Shi. Analysis of impurity deposition and pressure drop increase mechanisms in residue hydrotreating unit [J]. Chemical Industry and Engineering Progress, 2023, 42(9): 4616-4627. |
[8] | WANG Peng, SHI Huibing, ZHAO Deming, FENG Baolin, CHEN Qian, YANG Da. Recent advances on transition metal catalyzed carbonylation of chlorinated compounds [J]. Chemical Industry and Engineering Progress, 2023, 42(9): 4649-4666. |
[9] | ZHANG Qi, ZHAO Hong, RONG Junfeng. Research progress of anti-toxicity electrocatalysts for oxygen reduction reaction in PEMFC [J]. Chemical Industry and Engineering Progress, 2023, 42(9): 4677-4691. |
[10] | GE Quanqian, XU Mai, LIANG Xian, WANG Fengwu. Research progress on the application of MOFs in photoelectrocatalysis [J]. Chemical Industry and Engineering Progress, 2023, 42(9): 4692-4705. |
[11] | WANG Weitao, BAO Tingyu, JIANG Xulu, HE Zhenhong, WANG Kuan, YANG Yang, LIU Zhaotie. Oxidation of benzene to phenol over aldehyde-ketone resin based metal-free catalyst [J]. Chemical Industry and Engineering Progress, 2023, 42(9): 4706-4715. |
[12] | GE Yafen, SUN Yu, XIAO Peng, LIU Qi, LIU Bo, SUN Chengying, GONG Yanjun. Research progress of zeolite for VOCs removal [J]. Chemical Industry and Engineering Progress, 2023, 42(9): 4716-4730. |
[13] | WU Haibo, WANG Xilun, FANG Yanxiong, JI Hongbing. Progress of the development and application of 3D printing catalyst [J]. Chemical Industry and Engineering Progress, 2023, 42(8): 3956-3964. |
[14] | XIANG Yang, HUANG Xun, WEI Zidong. Recent progresses in the activity and selectivity improvement of electrocatalytic organic synthesis [J]. Chemical Industry and Engineering Progress, 2023, 42(8): 4005-4014. |
[15] | WANG Yaogang, HAN Zishan, GAO Jiachen, WANG Xinyu, LI Siqi, YANG Quanhong, WENG Zhe. Strategies for regulating product selectivity of copper-based catalysts in electrochemical CO2 reduction [J]. Chemical Industry and Engineering Progress, 2023, 42(8): 4043-4057. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||
京ICP备12046843号-2;京公网安备 11010102001994号 Copyright © Chemical Industry and Engineering Progress, All Rights Reserved. E-mail: hgjz@cip.com.cn Powered by Beijing Magtech Co. Ltd |