1 |
尹锐, 张瑞明, 张均, 等. 碳基柔性压阻式压力传感器研究进展[J]. 化工新型材料, 2021, 49(12): 223-226.
|
|
YIN Rui, ZHANG Ruiming, ZHANG Jun, et al. Research progress on carbon-based flexible dielectric piezoresistive pressure sensor[J]. New Chemical Materials, 2021, 49(12): 223-226.
|
2 |
李凤超, 孔振, 吴锦华, 等. 柔性压阻式压力传感器的研究进展[J]. 物理学报, 2021, 70(10): 7-24.
|
|
LI Fengchao, KONG Zhen, WU Jinhua, et al. Advances in flexible piezoresistive pressure sensor[J]. Acta Physica Sinica, 2021, 70(10): 7-24.
|
3 |
郭茹月, 鲍艳. 二维导电材料/柔性聚合物复合材料基可穿戴压阻式应变传感器的研究进展[J]. 精细化工, 2021, 38(4): 649-661, 859.
|
|
GUO Ruyue, BAO Yan. Research progress on wearable piezoresistive strain sensors based on two-dimensional conductive materials/flexible polymer composites[J]. Fine Chemicals, 2021, 38(4): 649-661, 859.
|
4 |
梁立容, 李宁, 魏爱香. 柔性可穿戴压力传感器的研究进展[J]. 应用化工, 2020, 49(10): 2645-2648.
|
|
LIANG Lirong, LI Ning, WEI Aixiang. Progress in the research of flexible pressure sensor[J]. Applied Chemical Industry, 2020, 49(10): 2645-2648.
|
5 |
潘朝莹, 马建中, 张文博, 等. 柔性导电高分子复合材料在应变传感器中的应用[J]. 化学进展, 2020, 32(10): 1592-1607.
|
|
PAN Zhaoying, MA Jianzhong, ZHANG Wenbo, et al. Flexible conductive polymer composites in strain sensors[J]. Progress in Chemistry, 2020, 32(10): 1592-1607.
|
6 |
董点点, 张静雯, 唐杰, 等. 基于天然高分子的导电材料制备及其在柔性传感器件中的应用[J]. 高分子学报, 2020, 51(8): 864-879.
|
|
DONG Diandian, ZHANG Jingwen, TANG Jie, et al. Fabrication of conductive materials based on natural polymers and their application in flexible sensors[J]. Acta Polymerica Sinica, 2020, 51(8): 864-879.
|
7 |
DAI Y, WU X Y, LIU Z S, et al. Highly sensitive, robust and anisotropic MXene aerogels for efficient broadband microwave absorption[J]. Composites B: Engineering, 2020, 200: 108263.
|
8 |
ZHAO Y, REN M N, SHANG Y, et al. Ultra-sensitive and durable strain sensor with sandwich structure and excellent anti-interference ability for wearable electronic skins[J]. Composites Science and Technology, 2020, 200: 108448.
|
9 |
IRIMIA-VLADU M. “Green” electronics: biodegradable and biocompatible materials and devices for sustainable future[J]. Chemical Society Reviews, 2014, 43(2): 588-610.
|
10 |
BALDO T A, DE LIMA L F, MENDES L F, et al. Wearable and biodegradable sensors for clinical and environmental applications[J]. ACS Applied Electronic Materials, 2021, 3(1): 68-100.
|
11 |
KALAMBATE P K, RAO Z X, DHANJAI, et al. Electrochemical (bio) sensors go green[J]. Biosensors and Bioelectronics, 2020, 163: 112270.
|
12 |
LI G L, WEN D. Wearable biochemical sensors for human health monitoring: sensing materials and manufacturing technologies[J]. Journal of Materials Chemistry B, 2020, 8(16): 3423-3436.
|
13 |
杨菊香, 张雅欣, 贾园, 等. 可降解高分子材料的制备及其降解机理[J]. 塑料, 2021, 50(2): 108-113.
|
|
YANG Juxiang, ZHANG Yaxin, JIA Yuan, et al. Preparation of degradable composite and its application development[J]. Plastics, 2021, 50(2): 108-113.
|
14 |
孙飞. 生物降解高分子材料的研究和发展[J]. 中国石油和化工标准与质量, 2021, 41(2): 124-126.
|
|
SUN Fei. Research and development of biodegradable polymer materials[J]. China Petroleum and Chemical Standard and Quality, 2021, 41(2): 124-126.
|
15 |
LI Y, CHEN W H, LU L H. Wearable and biodegradable sensors for human health monitoring[J]. ACS Applied Bio Materials, 2021, 4(1): 122-139.
|
16 |
HOSSEINI E S, DERVIN S, GANGULY P, et al. Biodegradable materials for sustainable health monitoring devices[J]. ACS Applied Bio Materials, 2021, 4(1): 163-194.
|
17 |
YU X W, SHOU W, MAHAJAN B K, et al. Materials, processes, and facile manufacturing for bioresorbable electronics: a review[J]. Advanced Materials, 2018, 30(28): 1707624.
|
18 |
PAL R K, FARGHALY A A, WANG C Z, et al. Conducting polymer-silk biocomposites for flexible and biodegradable electrochemical sensors[J]. Biosensors and Bioelectronics, 2016, 81: 294-302.
|
19 |
BARI S S, CHATTERJEE A, MISHRA S. Biodegradable polymer nanocomposites: an overview[J]. Polymer Reviews, 2016, 56(2): 287-328.
|
20 |
BEKER L, MATSUHISA N, YOU I, et al. A bioinspired stretchable membrane-based compliance sensor[J]. PNAS, 2020, 117(21): 11314-11320.
|
21 |
CHOI Y S, KOO J, LEE Y J, et al. Biodegradable polyanhydrides as encapsulation layers for transient electronics[J]. Advanced Functional Materials, 2020, 30(31): 2000941.
|
22 |
TEODORESCU M, BERCEA M, MORARIU S. Biomaterials of poly(vinyl alcohol) and natural polymers[J]. Polymer Reviews, 2018, 58(2): 247-287.
|
23 |
MCMAHON S, BERTOLLO N, CEARBHAILL E D O, et al. Bio-resorbable polymer stents: a review of material progress and prospects[J]. Progress in Polymer Science, 2018, 83: 79-96.
|
24 |
杨可欣, 张辉, 马博谋, 等. 天然高分子化合物与聚乳酸复合材料进展[J]. 塑料, 2021, 50(2): 93-98.
|
|
YANG Kexin, ZHANG Hui, MA Bomou, et al. Progress in natural polymer/PLA composite[J]. Plastics, 2021, 50(2): 93-98.
|
25 |
张花. 基于天然高分子的柔性电子材料的制备与应用[D]. 西安: 西北大学, 2019.
|
|
ZHANG Hua. Preparation and applications of flexible electronic materials based on natural polymers[D]. Xi'an: Northwest University, 2019.
|
26 |
BOUTRY C M, BEKER L, KAIZAWA Y, et al. Biodegradable and flexible arterial-pulse sensor for the wireless monitoring of blood flow[J]. Nature Biomedical Engineering, 2019, 3(1): 47-57.
|
27 |
LI C M, GUO C C, FITZPATRICK V, et al. Design of biodegradable, implantable devices towards clinical translation[J]. Nature Reviews Materials, 2020, 5(1): 61-81.
|
28 |
GAO W, OTA H, KIRIYA D, et al. Flexible electronics toward wearable sensing[J]. Accounts of Chemical Research, 2019, 52(3): 523-533.
|
29 |
WU W W, HAICK H. Materials and wearable devices for autonomous monitoring of physiological markers[J]. Advanced Materials, 2018, 30(41): 1705024.
|
30 |
HAN W B, LEE J H, SHIN J W, et al. Advanced materials and systems for biodegradable, transient electronics[J]. Advanced Materials, 2020, 32(51): 2002211.
|
31 |
YIN L, CHENG H Y, MAO S M, et al. Transient electronics: dissolvable metals for transient electronics[J]. Advanced Functional Materials, 2014, 24(5): 644.
|
32 |
WANG L, GAO Y, DAI F Q, et al. Geometrical and chemical-dependent hydrolysis mechanisms of silicon nanomembranes for biodegradable electronics[J]. ACS Applied Materials & Interfaces, 2019, 11(19): 18013-18023.
|
33 |
HUANG S Y, ZHANG B C, SHAO Z B, et al. Ultraminiaturized stretchable strain sensors based on single silicon nanowires for imperceptible electronic skins[J]. Nano Letters, 2020, 20(4): 2478-2485.
|
34 |
MARTÍN C, KOSTARELOS K, PRATO M, et al. Biocompatibility and biodegradability of 2D materials: graphene and beyond[J]. Chemical Communications, 2019, 55(39): 5540-5546.
|
35 |
MA B J, MARTÍN C, KURAPATI R, et al. Degradation-by-design: how chemical functionalization enhances the biodegradability and safety of 2D materials[J]. Chemical Society Reviews, 2020, 49(17): 6224-6247.
|
36 |
CHEN X, AHN J H. Biodegradable and bioabsorbable sensors based on two-dimensional materials[J]. Journal of Materials Chemistry B, 2020, 8(6): 1082-1092.
|
37 |
FEIG V R, TRAN H, BAO Z N. Biodegradable polymeric materials in degradable electronic devices[J]. ACS Central Science, 2018, 4(3): 337-348.
|
38 |
WANG X W, LIU Z, ZHANG T. Flexible sensing electronics for wearable/attachable health monitoring[J]. Small, 2017, 13(25): 1602790.
|
39 |
MANJAKKAL L, DERVIN S, DAHIYA R. Correction: flexible potentiometric pH sensors for wearable systems[J]. RSC Advances, 2020, 10(22): 12734.
|
40 |
LI R F, WANG L, YIN L. Materials and devices for biodegradable and soft biomedical electronics[J]. Materials, 2018, 11(11): 2108.
|
41 |
LIU Q, LI K Q, ZHAO H, et al. The global challenge of electronic waste management[J]. Environmental Science and Pollution Research, 2009, 16(3): 248-249.
|
42 |
HWANG S W, SONG J K, HUANG X, et al. High-performance biodegradable/transient electronics on biodegradable polymers[J]. Advanced Materials, 2014, 26(23): 3905-3911.
|
43 |
LEI T, GUAN M, LIU J, et al. Biocompatible and totally disintegrable semiconducting polymer for ultrathin and ultralightweight transient electronics[J]. PNAS, 2017, 114(20): 5107-5112.
|
44 |
ZHANG S, ZHOU Z T, ZHONG J J, et al. Body-integrated, enzyme-triggered degradable, silk-based mechanical sensors for customized health/fitness monitoring and in situ treatment[J]. Advanced Science, 2020, 7(13): 1903802.
|
45 |
KOH L D, YEO J, LEE Y Y, et al. Advancing the frontiers of silk fibroin protein-based materials for futuristic electronics and clinical wound-healing[J]. Materials Science and Engineering: C, 2018, 86: 151-172.
|
46 |
PAL R K, FARGHALY A A, COLLINSON M M, et al. Photolithographic micropatterning of conducting polymers on flexible silk matrices[J]. Advanced Materials, 2016, 28(7): 1406-1412.
|
47 |
LI S Y, LIU J R, WEN H, et al. Recent advances in silk-based wearable sensors[J]. Acta Physica Sinica, 2020, 69(17): 178703.
|
48 |
李胜优, 刘镓榕, 文豪, 等. 蚕丝基可穿戴传感器的研究进展[J]. 物理学报, 2020, 69(17): 178703.
|
|
LI Shengyou, LIU Jiarong, WEN Hao, et al. Recent advances in silk-based wearable sensors[J]. Acta Physica Sinica, 2020, 69(17): 178703.
|
49 |
HOU C, XU Z J, QIU W, et al. A biodegradable and stretchable protein-based sensor as artificial electronic skin for human motion detection[J]. Small, 2019, 15(11): 1805084.
|
50 |
HOSSEINI E S, MANJAKKAL L, SHAKTHIVEL D, et al. Glycine-chitosan-based flexible biodegradable piezoelectric pressure sensor[J]. ACS Applied Materials & Interfaces, 2020, 12(8): 9008-9016.
|
51 |
ELIEH-ALI-KOMI D, HAMBLIN M R. Chitin and chitosan: production and application of versatile biomedical nanomaterials[J]. International Journal of Advanced Research, 2016, 4(3): 411-427.
|
52 |
NAIR L S, LAURENCIN C T. Biodegradable polymers as biomaterials[J]. Progress in Polymer Science, 2007, 32(8/9): 762-798.
|
53 |
NEGM N A, ABUBSHAIT H A, ABUBSHAIT S A, et al. Performance of chitosan polymer as platform during sensors fabrication and sensing applications[J]. International Journal of Biological Macromolecules, 2020, 165: 402-435.
|
54 |
ZHANG N D, YIN X S, GONG H. Highly conductive and flexible transparent films based on silver nanowire/chitosan composite[J]. RSC Advances, 2016, 6(53): 47552-47561.
|
55 |
MIAO J L, LIU H H, LI Y B, et al. Biodegradable transparent substrate based on edible starch–chitosan embedded with nature-inspired three-dimensionally interconnected conductive nanocomposites for wearable green electronics[J]. ACS Applied Materials & Interfaces, 2018, 10(27): 23037-23047.
|
56 |
ZHU H L, XIAO Z G, LIU D T, et al. Biodegradable transparent substrates for flexible organic-light-emitting diodes[J]. Energy & Environmental Science, 2013, 6(7): 2105.
|
57 |
刘佳璇, 李群. 利用植物纤维制备生物可降解高分子复合材料的应用研究[J]. 天津造纸, 2020, 42(3): 22-26.
|
|
LIU Jiaxuan, LI Qun. Application of biodegradable polymer composite materials made from plant fibers[J]. Tianjin Paper Making, 2020, 42(3): 22-26.
|
58 |
LIU L P, JIAO Z B, ZHANG J Q, et al. Bioinspired, superhydrophobic, and paper-based strain sensors for wearable and underwater applications[J]. ACS Applied Materials & Interfaces, 2021, 13(1): 1967-1978.
|
59 |
ZHAO P F, ZHANG R M, TONG Y H, et al. All-paper, all-organic, cuttable, and foldable pressure sensor with tuneable conductivity polypyrrole[J]. Advanced Electronic Materials, 2020, 6(8): 1901426.
|
60 |
PARRILLA M, GUINOVART T, FERRÉ J, et al. A wearable paper-based sweat sensor for human perspiration monitoring[J]. Advanced Healthcare Materials, 2019, 8(16): 1900342.
|
61 |
GAO L, ZHU C X, LI L, et al. All paper-based flexible and wearable piezoresistive pressure sensor[J]. ACS Applied Materials & Interfaces, 2019, 11(28): 25034-25042.
|
62 |
LI W H, LIU Q, ZHANG Y N, et al. Biodegradable materials and green processing for green electronics[J]. Advanced Materials, 2020, 32(33): e2001591.
|
63 |
SONG R, MURPHY M, LI C S, et al. Current development of biodegradable polymeric materials for biomedical applications[J]. Drug Design, Development and Therapy, 2018, 12: 3117-3145.
|
64 |
CHAO M, HE L, GONG M, et al. Breathable Ti3C2T x MXene/protein nanocomposites for ultrasensitive medical pressure sensor with degradability in solvents[J]. ACS Nano, 2021, 15(6): 9746-9758.
|
65 |
MENG J J, PAN P, YANG Z C, et al. Degradable and highly sensitive CB-based pressure sensor with applications for speech recognition and human motion monitoring[J]. Journal of Materials Science, 2020, 55(23): 10084-10094.
|
66 |
LING H, CHEN R W, HUANG Q B, et al. Transparent, flexible and recyclable nanopaper-based touch sensors fabricated via inkjet-printing[J]. Green Chemistry, 2020, 22(10): 3208-3215.
|
67 |
SCHAUMANN E N, TIAN B Z. Biological interfaces, modulation, and sensing with inorganic nano-bioelectronic materials[J]. Small Methods, 2020, 4(5): 1900868.
|
68 |
GUO Y, ZHONG M J, FANG Z W, et al. A wearable transient pressure sensor made with MXene nanosheets for sensitive broad-range human-machine interfacing[J]. Nano Letters, 2019, 19(2): 1143-1150.
|
69 |
SENCADAS V, TAWK C, ALICI G. Environmentally friendly and biodegradable ultrasensitive piezoresistive sensors for wearable electronics applications[J]. ACS Applied Materials & Interfaces, 2020, 12(7): 8761-8772.
|
70 |
SHARMA S, CHHETRY A, ZHANG S, et al. Hydrogen-bond-triggered hybrid nanofibrous membrane-based wearable pressure sensor with ultrahigh sensitivity over a broad pressure range[J]. ACS Nano, 2021, 15(3): 4380-4393.
|
71 |
LI X, HE L, LI Y, CHAO M, et al. Healable, degradable, and conductive MXene nanocomposite hydrogel for multifunctional epidermal sensors[J]. ACS Nano, 2021, 15(4): 7765-7773.
|
72 |
NAJAFABADI A H, TAMAYOL A, ANNABI N, et al. Biodegradable nanofibrous polymeric substrates for generating elastic and flexible electronics[J]. Advanced Materials, 2014, 26(33): 5823-5830.
|
73 |
JUNG Y H, ZHANG H L, GONG S Q, et al. High-performance green semiconductor devices: materials, designs, and fabrication[J]. Semiconductor Science and Technology, 2017, 32(6): 063002.
|
74 |
KENRY, LIU B. Recent advances in biodegradable conducting polymers and their biomedical applications[J]. Biomacromolecules, 2018, 19(6): 1783-1803.
|
75 |
BOUTRY C M, KAIZAWA Y, SCHROEDER B C, et al. A stretchable and biodegradable strain and pressure sensor for orthopaedic application[J]. Nature Electronics, 2018, 1(5): 314-321.
|
76 |
BOUTRY C M, NGUYEN A, LAWAL Q O, et al. A sensitive and biodegradable pressure sensor array for cardiovascular monitoring[J]. Advanced Materials, 2015, 27(43): 6954-6961.
|
77 |
LYU Z, LIU J Z, YANG X, et al. Naturally derived wearable strain sensors with enhanced mechanical properties and high sensitivity[J]. ACS Applied Materials & Interfaces, 2020, 12(19): 22163-22169.
|
78 |
ZHENG Shaodi, DU Ronghuan, WANG Ning, et al. Construction of dual conductive network in paper-based composites towards flexible degradable dual-mode sensor[J]. Composites Part A: Applied Science and Manufacturing, 2021, 151: 106649.
|