Chemical Industry and Engineering Progress ›› 2018, Vol. 37 ›› Issue (08): 3179-3187.DOI: 10.16085/j.issn.1000-6613.2017-2096
Previous Articles Next Articles
LIANG Yaqin, ZHANG Shuping, LI Hui, MAO Xiaoming, LI Yan, ZHOU Lihua, YANG Wenzhuo
Received:
2017-10-12
Revised:
2017-12-25
Online:
2018-08-05
Published:
2018-08-05
梁亚琴, 张淑萍, 李慧, 毛晓明, 李燕, 周立华, 杨文卓
通讯作者:
李燕,教授,主要从事胶体和界面化学方面的研究。
作者简介:
梁亚琴(1980-),女,副教授,主要从事环境功能材料的研究。E-mail:liangyaqinfaye@126.com
基金资助:
CLC Number:
LIANG Yaqin, ZHANG Shuping, LI Hui, MAO Xiaoming, LI Yan, ZHOU Lihua, YANG Wenzhuo. Progress in development of modified montmorillonite for adsorption of heavy metal ions[J]. Chemical Industry and Engineering Progress, 2018, 37(08): 3179-3187.
梁亚琴, 张淑萍, 李慧, 毛晓明, 李燕, 周立华, 杨文卓. 改性蒙脱土去除水中重金属离子研究新进展[J]. 化工进展, 2018, 37(08): 3179-3187.
[1] GUPTA V K, CARROTT P J M, RIBEIRO C M M L, et al. Low-cost adsorbents:growing approach to wastewater treatment-a review[J]. Crit. Environ. Rev. Sci. Technol., 2009, 39:783-842. [2] UDDIN M K. A review on the adsorption of heavy metals by clay minerals with special focus on the past decade[J]. Chem. Eng. J., 2016, 308:438-462. [3] 金山.蒙脱石的钠化改性[J]. 矿产保护与利用, 2008(3):54. JIN S. Research on sodium-modified of montmorillonite[J]. Conservat. Util. Mine. Resour., 2008(3):54. [4] 谢友利, 张猛, 周永红. 蒙脱土的有机改性研究进展[J]. 化工进展, 2012, 31(4):844-851. XIE Y L, ZHANG M, ZHOU Y H. Progress in the organic modification of montmorillonite[J]. Chem. Ind. Eng. Prog., 2012, 31(4):844-851. [5] 向莹, 刘全校, 张勇, 等. 蒙脱土的改性方法及应用现状[J]. 北京印刷学院学报, 2007, 15(4):30-33. XIANG Y, LIU Q X, ZHANG Y, et al. Modifying methods of montmorillonites and their applications[J]. J. Beijing Inst. Grap. Commun., 2007, 15(4):30-33. [6] 陈培榕, 吴耀国, 刘保超. 膨润土的改性及其在重金属吸附中的研究进展[J]. 化工进展, 2009, 28(9):1647-1651. CHEN P R, WU Y G, LIU B C. Progress in the modification of bentonite-based heavy metal adsorbent[J].Chem. Ind. Eng. Prog., 2009, 28(9):1647-1651. [7] MA B, OH S, SHIN W S, et al. Removal of Co2+, Sr2+ and Cs+ from aqueous solution by phosphate-modified montmorillonite(PMM)[J]. Desalin., 2011, 276:336-346. [8] 唐好庆.改性蒙脱土的重金属离子吸附性能研究[D]. 西安:陕西师范大学, 2012. TANG H Q. Study on the modified montmorillonite for adsorption of heavy metal ions[D].Xi'an:Shaanxi Normal University, 2012. [9] SCHUTZ T, DOLINSKA S, MOCKOVCIAKOVA A. Characterization of bentonite modified by manganese oxides[J]. Univ. J. Geosci., 2013, 1(2):114-119. [10] CHEN C, LIU H, CHEN T, et al. An insight into the removal of Pb(Ⅱ), Cu(Ⅱ), Co(Ⅱ), Cd(Ⅱ), Zn(Ⅱ), Ag(Ⅰ), Hg(Ⅰ), Cr(Ⅵ) by Na(Ⅰ)-montmorillonite and Ca(Ⅱ)-montmorillonite[J]. Appl. Surf. Sci., 2015, 118:239-247. [11] HASHEMIAN S, SAFFARI H, RAGABION S. Adsorption of cobalt(Ⅱ) from aqueous solutions by Fe3O4/bentonite nanocomposite[J]. Water Air Soil Pollut., 2015, 226:2212-2216. [12] LI Z, DONG H, ZHANG Y, et al. Enhanced removal of Ni (Ⅱ) by nanoscale zero valent iron supported on Na-saturated bentonite[J]. J. Colloid Interface Sci., 2017, 497:43-49. [13] KUMARARAJA P, MANJAIAH K M, DATTA S C, et al. Remediation of metal contaminated soil by aluminium pillared bentonite:synthesis characterisation, equilibrium study and plant growth experiment[J]. Appl. Surf. Sci., 2017, 137:115-122. [14] KARAMANIS D, ASSIMAKOPOULOS P A. Efficiency of aluminum-pillared montmorillonite on the removal of cesium and copper from aqueous solutions[J]. Water Res., 2007, 41:1897-1906. [15] YU R, WANG S, WANG D, et al. Removal of Cd2+ from aqueous solution with carbon modified aluminum-pillared montmorillonite[J]. Catal. Today, 2008, 139:135-139. [16] USMAN A, YAKOV K, STAHR K. Effect of clay minerals on immobilization of heavy metals and microbial activity in a sewage sludge-contaminated soil[J]. Soils and Sediment, 2005, 69:245-252. [17] 孙长顺, 金奇庭, 郭新超, 等. 无机柱撑膨润土对有机锡废水中锡的吸附研究[J]. 环境污染与防治, 2007, 29:749-753. SUN C S, JIN Q T, GUO X C, et al. Adsorptive capacities of natural and pillared bentonites for tin in an organotin wastewater[J]. Environ. Pollut. Control, 2007, 29:749-753. [18] CHOUDHURY P R, MONDAL P, MAJUMDAR S. Synthesis of bentonite clay based hydroxyapatite nanocomposites cross-linked by glutaraldehyde and optimization by response surface methodology for lead removal from aqueous solution[J]. RSC Adv., 2015, 5:100838-100848. [19] ABOU E, SHERBINI K, HASSANIEN M M. Study of organically-modified montmorillonite clay for the removal of copper(Ⅱ)[J]. J. Hazard. Mater., 2010, 184:654-661. [20] MA L, CHEN Q, ZHU J, et al. Adsorption of phenol and Cu(Ⅱ) onto cationic and zwitterionic surfactant modified montmorillonite in single and binary systems[J]. Chem. Eng. J., 2016, 283:880-888. [21] AZAR M T, LEILI M, TAHERKHANI F, et al. A comparative study for the removal of aniline from aqueous solutions using modified bentonite and activated carbon[J]. Desalin. Water Treat., 2016, 57:1-14. [22] KUMAR W, YUYAN H, XIN S, et al. Cr(Ⅵ) adsorption by montmorillonite nanocomposites[J]. Appl. Surf. Sci., 2016, 125:111-118. [23] HU B, LUO H. Adsorption of hexavalent chromium onto montmorillonite modified with hydroxyaluminum and cetyltrimethylammonium bromide[J]. Appl. Surf. Sci., 2010, 257:769-775. [24] LIANG Y Q, LI H. A comparison of trimeric surfactant intercalated montmorillonite with its gemini modified one:characterization and application in methyl orange removal[J]. J. Mol. Liq., 2017, 227:139-146. [25] LIN S H, JUANG R S. Heavy metal removal from water by sorption using surfactant modified montmorillonite[J]. J. Hazard. Mater., 2002, B92:315-326. [26] LIU C, WU P, ZHU Y, et al. Simultaneous adsorption of Cd2+ and BPA on amphoteric surfactant activated montmorillonite[J]. Chemosphere, 2016, 144:1026-1032. [27] SANDY G G, MRAMIS V, KURNIAWAN A A, et al. Removal of copper ions from aqueous solution by adsorption using LABORATORIES-modified bentonite (organo-bentonite)[J]. Front. Chem. Sci. Eng., 2012, 6(1):58-66. [28] OZDEMIR G, YAPAR S. Adsorption and desorption behavior of copper ions on Na-montmorillonite:effect of rhamnolipids and pH[J]. J. Hazard. Mater., 2009, 166:1307-1313.s [29] CRUZ G M, CELIS R, HERMOSINA M C, et al. Heavy metal adsorption by montmorillonites modified with natural organic cations[J]. Soil Sci. Soc. Am., 2006, 70:215-221. [30] HE Y F, LI F R, WANG R M, et al. Preparation of xanthated bentonite and its removal behavior for Pb(Ⅱ) ions[J]. Water Sci. Technol., 2010, 61:1235-1243. [31] JIN X, ZHENG M, SARKAR B, et al. Characterization of bentonite modified with humic acid for the removal of Cu(Ⅱ) and 2,4-dichlorophenol from aqueous solution[J]. Appl. Clay Sci., 2016, 134:89-94. [32] SU L, TAO Q, HE H, et al. Silylation of montmorillonite surfaces:dependence on solvent nature[J]. J. Colloid Interface Sci., 2013, 391:16-20. [33] HAO C, YAN Q, QIN L, et al. Fast removal of Hg(Ⅱ) ions from aqueous solution by amine-modified attapulgite[J]. Appl. Surf. Sci., 2013, 72:84-90. [34] GUERRA D J L, MELLO I, RESENDE R, et al. Application as absorbents of natural and functionalized Brazilian bentonitein Pb2+ adsorption:equilibrium, kinetic, pH, and thermodynamic effects[J]. Water Resour. Ind., 2013, 4:32-50. [35] ZHU K, DUAN Y, WAND F, et al. Silane-modified halloysite/Fe3O4 nanocomposites:simultaneous removal of Cr(Ⅵ) and Sb(Ⅴ) and positive effects of Cr(Ⅵ) on Sb(Ⅴ) adsorption[J]. Chem. Eng. J., 2017, 311:236-246. [36] KALIDHASAN S, SANTHANA K K A, RAJESH V, et al. Ultrasound-assisted preparation and characterization of crystalline cellulose ionic liquid blend polymeric material a prelude to the study of its application toward the effective adsorption of chromium[J]. J. Colloid Interface Sci., 2012, 367:398-408. [37] LUO X, LEI X, XIE X, et al. Adsorptive removal of lead from water by the effective and reusable magnetic cellulose nanocomposite beads entrapping activated bentonite[J]. Carbohydr. Polym., 2016, 151:640-648. [38] PEREIRA F A R, SOUSA K S, CAVALCANTI G R S, et al. Chitosan-montmorillonite biocomposite as an adsorbent for copper(Ⅱ) cations from aqueous solutions[J]. Int. J. Biol. Macromol., 2013, 61:471-478. [39] RIJITH S, ANIRUDHAN T S, SUMI V S, et al. Carboxylate functionalized chitosan/bentonite composite matrix as a cation exchanger for the removal of Pb(Ⅱ) from aqueousmedia:kinetic and equilibrium studies[J]. Orient. J. Chem., 2015, 31(2):1113-1120. [40] GRISDANURAK N, AKEWARAUGULSIRI S, FUTALAN C M, et al. The study of copper adsorption from aqueous solution using crosslinked chitosan immobilized on bentonite[J]. J. Appl. Polym. Sci., 2012, 125:132-142. [41] SALVATORE C A, NICOLA M A, SANTINO O B, et al. Enhancement of adsorption ability of calcium alginate gel beads towards Pd(Ⅱ) ion. A kinetic and equilibrium study on hybrid Laponite and Montmorillonite-alginate gel beads[J]. Appl. Surf. Sci., 2015, 118:162-170. [42] 马萍, 祝力, 孙淑英, 等. 海藻酸钙凝胶微球的制备和pH依赖性溶胀[J]. 中国海洋药物, 2003, 29(5):35-37. MA P, ZHU L, SUN S Y, et al. Preparation and pH-sensitive reswelling of calcium alginate gel beads[J]. Chin. J. Mar. Drugs, 2003, 29(5):35-37. [43] TAN W S, TING A S Y. Alginate-immobilized bentonite clay:adsorption efficacy and reusability for Cu(Ⅱ) removal from aqueous solution[J]. Bioresour. Technol., 2014, 160:115-118. [44] GOPALAKANNAN V, PERIYASAMY S, VISWANATHAN N. Synthesis of assorted metal ions anchored alginate bentonite biocomposites for Cr(Ⅵ) sorption[J]. Carbohydr. Polym., 2016, 151:1100-1109. [45] ANA C S A, MARGARITA D, PILAR A, et al. Polysaccharide-fibrous clay bionanocomposites[J]. Appl. Surf. Sci., 2014, 96:2-8. [46] RAFIEI H R, SHIRVANI M, OGUNSEITAN O A. Removal of lead from aqueous solutions by a poly(acrylic acid)/bentonite nanocomposite[J]. Appl. Water Sci., 2014, 8:1-8. [47] GONCHARUK V V, PUZYRNAYA L N, PSHINKO G N, et al. The removal of heavy metals from aqueous solutions by montmorillonite modified with polyethylenimine[J]. Water Chem Technol., 2010, 32:67-72. [48] SHOKRI E, YEGAN R, POURABBAS B, et al. Preparation and characterization of polysulfone organoclay adsorptive nanocomposite membrane for arsenic removal from contaminated water[J]. Appl. Surf. Sci., 2016, 132:611-620. [49] QIN Z H, YUAN P, YANF S Q, et al. Silylation of Al-13-intercalated montmorillonite with trimethylchlorosilane and their adsorption for Orange Ⅱ[J]. Appl. Surf. Sci., 2014, 99:229-236. [50] RATHNAYKER S I, MATTENS W N, XI Y F, et al. Remediation of Cr(Ⅵ) by inorganic-organic clay[J]. J. Colloid Interface Sci., 2017, 490:163-173. |
[1] | CUI Shoucheng, XU Hongbo, PENG Nan. Simulation analysis of two MOFs materials for O2/He adsorption separation [J]. Chemical Industry and Engineering Progress, 2023, 42(S1): 382-390. |
[2] | CHEN Chongming, CHEN Qiu, GONG Yunqian, CHE Kai, YU Jinxing, SUN Nannan. Research progresses on zeolite-based CO2 adsorbents [J]. Chemical Industry and Engineering Progress, 2023, 42(S1): 411-419. |
[3] | LI Shilin, HU Jingze, WANG Yilin, WANG Qingji, SHAO Lei. Research progress in separation and extraction of high value components by electrodialysis [J]. Chemical Industry and Engineering Progress, 2023, 42(S1): 420-429. |
[4] | XU Chunshu, YAO Qingda, LIANG Yongxian, ZHOU Hualong. Research progress on functionalization strategies of covalent organic frame materials and its adsorption properties for Hg(Ⅱ) and Cr(Ⅵ) [J]. Chemical Industry and Engineering Progress, 2023, 42(S1): 461-478. |
[5] | GU Yongzheng, ZHANG Yongsheng. Dynamic behavior and kinetic model of Hg0 adsorption by HBr-modified fly ash [J]. Chemical Industry and Engineering Progress, 2023, 42(S1): 498-509. |
[6] | GUO Qiang, ZHAO Wenkai, XIAO Yonghou. Numerical simulation of enhancing fluid perturbation to improve separation of dimethyl sulfide/nitrogen via pressure swing adsorption [J]. Chemical Industry and Engineering Progress, 2023, 42(S1): 64-72. |
[7] | WANG Shengyan, DENG Shuai, ZHAO Ruikai. Research progress on carbon dioxide capture technology based on electric swing adsorption [J]. Chemical Industry and Engineering Progress, 2023, 42(S1): 233-245. |
[8] | GE Yafen, SUN Yu, XIAO Peng, LIU Qi, LIU Bo, SUN Chengying, GONG Yanjun. Research progress of zeolite for VOCs removal [J]. Chemical Industry and Engineering Progress, 2023, 42(9): 4716-4730. |
[9] | LI Zhiyuan, HUANG Yaji, ZHAO Jiaqi, YU Mengzhu, ZHU Zhicheng, CHENG Haoqiang, SHI Hao, WANG Sheng. Characterization of heavy metals during co-pyrolysis of sludge with PVC [J]. Chemical Industry and Engineering Progress, 2023, 42(9): 4947-4956. |
[10] | YANG Ying, HOU Haojie, HUANG Rui, CUI Yu, WANG Bing, LIU Jian, BAO Weiren, CHANG Liping, WANG Jiancheng, HAN Lina. Coal tar phenol-based carbon nanosphere prepared by Stöber method for adsorption of CO2 [J]. Chemical Industry and Engineering Progress, 2023, 42(9): 5011-5018. |
[11] | ZHANG Zhen, LI Dan, CHEN Chen, WU Jinglan, YING Hanjie, QIAO Hao. Separation and purification of salivary acids with adsorption resin [J]. Chemical Industry and Engineering Progress, 2023, 42(8): 4153-4158. |
[12] | JIANG Jing, CHEN Xiaoyu, ZHANG Ruiyan, SHENG Guangyao. Research progress of manganese-loaded biochar preparation and its application in environmental remediation [J]. Chemical Industry and Engineering Progress, 2023, 42(8): 4385-4397. |
[13] | YU Jingwen, SONG Luna, LIU Yanchao, LYU Ruidong, WU Mengmeng, FENG Yu, LI Zhong, MI Jie. An indole-bearing hypercrosslinked polymer In-HCP for iodine adsorption from water [J]. Chemical Industry and Engineering Progress, 2023, 42(7): 3674-3683. |
[14] | LI Yanling, ZHUO Zhen, CHI Liang, CHEN Xi, SUN Tanglei, LIU Peng, LEI Tingzhou. Research progress on preparation and application of nitrogen-doped biochar [J]. Chemical Industry and Engineering Progress, 2023, 42(7): 3720-3735. |
[15] | BAI Yadi, DENG Shuai, ZHAO Ruikai, ZHAO Li, YANG Yingxia. Exploration on standardized test scheme and experimental performance of temperature swing adsorption carbon capture unit [J]. Chemical Industry and Engineering Progress, 2023, 42(7): 3834-3846. |
Viewed | ||||||||||||||||||||||||||||||||||||||||||||||||||
Full text 1068
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||
Abstract 322
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||
京ICP备12046843号-2;京公网安备 11010102001994号 Copyright © Chemical Industry and Engineering Progress, All Rights Reserved. E-mail: hgjz@cip.com.cn Powered by Beijing Magtech Co. Ltd |