Chemical Industry and Engineering Progress ›› 2018, Vol. 37 ›› Issue (08): 3188-3196.DOI: 10.16085/j.issn.1000-6613.2017-2272
Previous Articles Next Articles
WANG Yibo1,2, FENG Minquan1, LIU Yonghong2, LI Yaozhong2
Received:
2017-11-03
Revised:
2018-01-15
Online:
2018-08-05
Published:
2018-08-05
王毅博1,2, 冯民权1, 刘永红2, 李耀中2
通讯作者:
冯民权,教授,博士生导师,研究方向为污染控制。
作者简介:
王毅博(1987-),男,博士研究生,研究方向为污水处理。E-mail:357598772@qq.com。
基金资助:
CLC Number:
WANG Yibo, FENG Minquan, LIU Yonghong, LI Yaozhong. Recent advances on iron-carbon micro-electrolysis technology for refractory wastewater[J]. Chemical Industry and Engineering Progress, 2018, 37(08): 3188-3196.
王毅博, 冯民权, 刘永红, 李耀中. 铁碳微电解技术在难治理废水中的研究进展[J]. 化工进展, 2018, 37(08): 3188-3196.
Add to citation manager EndNote|Ris|BibTeX
URL: https://hgjz.cip.com.cn/EN/10.16085/j.issn.1000-6613.2017-2272
[1] SEGURA Y, MARTINEZ F, MELERO J A. Effective pharmaceutical wastewater degradation by Fenton oxidation with zero-valent iron[J]. Applied Catalysis B:Environmental, 2013, 136:64-69. [2] 刘晓冉, 李金花, 周保学, 等. 铁碳微电解处理中活性炭吸附作用及其影响[J]. 环境科学与技术, 2011, 34(1):128-131. LIU X R, LI J H, ZHOU B X, et al. Role of activated carbon adsorption in iron-carbon micro-electrolysis process for wastewater treatment[J]. Environmental Science and Technology, 2011, 34(1):128-131. [3] ZHOU H M, LV P, SHEN Y Y, et al. Identification of degradation products of ionic liquids in an ultrasound assisted zero-valent iron activated carbon micro-electrolysis system and their degradation mechanism[J]. Water Research, 2013, 47(10):3514-3522. [4] DOU X, LI R, ZHAO B, et al. Arsenate removal from water by zero-valent iron/activated carbon galvanic couples[J]. Journal of Hazardous Materials, 2010, 182(1):108-114. [5] GHAUCH A. Rapid removal of flutriafol in water by zero-valent iron powder[J]. Chemosphere, 2008, 71(5):816-826. [6] NING X A, WEN W, ZHANG Y P, et al. Enhanced dewaterability of textile dyeing sludge using micro-electrolysis pretreatment[J]. Journal of Environmental Management, 2015, 161:181-187. [7] LAI B, ZHOU Y, QIN H, et al. Pretreatment of wastewater from acrylonitrile-butadiene-styrene (ABS) resin manufacturing by micro-electrolysis[J]. Chemical Engineering Journal, 2012, 179:1-7. [8] BRILLAS E, SIRES I, OTURAN M A. Electro-Fenton process and related electrochemical technologies based on Fenton's reaction chemistry[J]. Chemical Reviews, 2009, 109(12):6570. [9] SUN Y, PIGNATELLO J J. Photochemical reactions involved in the total mineralization of 2,4-D by iron(3+)/hydrogen peroxide/UV[J]. Environmental Science and Technology, 1993, 27(2):304-310. [10] NAMKUNG K C, BURGESS A E, BREMNER D H. A Fenton-like oxidation process using corrosion of iron metal sheet surfaces in the presence of hydrogen peroxide:a batch process study using model pollutants[J]. Environmental Technology, 2005, 26(3):341. [11] YING D, PENG J, XU X, et al. Treatment of mature landfill leachate by internal micro-electrolysis integrated with coagulation:a comparative study on a novel sequencing batch reactor based on zero valent iron[J]. Journal of Hazardous Materials, 2012, 229(5):426-433. [12] JU F, HU Y Y. Removal of EDTA-chelated copper from aqueous solution by interior microelectrolysis[J]. Separation and Purification Technology, 2011, 78(1):33-41. [13] YANG D, ENGLEHARDT J D. Hydrogen peroxide-enhanced iron-mediated aeration for the treatment of mature landfill leachate[J]. Journal of Hazardous Materials, 2008, 153(1/2):293-299. [14] FATEMINIA F S, FALAMAKI C. Zero valent nano-sized iron/clinoptilolite modified with zero valent copper for reductive nitrate removal[J]. Process Safety and Environmental Protection, 2013, 91(4):304-310. [15] HUANG Y H, ZHANG T C. Effects of low pH on nitrate reduction by iron powder[J]. Water Research, 2004, 38(11):2631-2642. [16] LUO J H, SONG G Y, LIU J Y, et al. Mechanism of enhanced nitrate reduction via micro-electrolysis at the powdered zero-valent iron/activated carbon interface[J]. Journal of Colloid and Interface Science, 2014, 435:21-25. [17] WANG X Q, GONG X K, ZHANG Q X, et al. Degradation mechanism of direct pink 12B treated by iron-carbon micro-electrolysis and Fenton reaction[J]. Journal of Environmental Sciences, 2013, 25:S63-S68. [18] LAI B, ZHOU Y X, YANG P, et al. Degradation of 3,3'-iminobis-propanenitrile in aqueous solution by Fe0/GAC micro-electrolysis system[J]. Chemosphere, 2013, 90(4):1470-1477. [19] WANG L Q, YANG Q, WANG D B, et al. Advanced landfill leachate treatment using iron-carbon microelectrolysis-Fenton process:Process optimization and column experiments[J]. Journal of Hazardous Materials, 2016, 318:460-467. [20] YING D W, XU X Y, LI K, et al. Design of a novel sequencing batch internal micro-electrolysis reactor for treating mature landfill leachate[J]. Chemical Engineering Research and Design, 2012, 90(12):2278-2286. [21] 李胜海, 程谣, 许晓毅, 等. 铁碳微电解预处理含吡啶的有机废水[J]. 水处理技术, 2017, 43(2):98-101, 106. LI S H, CHENG Y, XU X Y, et al. Pretreatment of organic wastewater containing pyridines by iron-carbon micro-electrolysis[J]. Technology of Water Treatment, 2017, 43(2):98-101, 106. [22] QIN Z, LIU S, LIANG S X, et al. Advanced treatment of pharmaceutical wastewater with combined micro-electrolysis, Fenton oxidation, and coagulation sedimentation method[J]. Desalination and Water Treatment, 2016, 57(53):1-10. [23] 涂传青.金属铁与电解法还原难降解有机物反应机理和影响因素的研究[D]. 上海:同济大学, 2006. TU C Q. Study on mechanism and influencing factors of the degradation of recalcitrant organic compounds by metallic iron and electrolytic reduction[D]. Shanghai:Tongji University, 2006. [24] ZONGO I, LECLERC J P, MAIGA H A, et al. Removal of hexavalent chromium from industrial wastewater by electrocoagulation:a comprehensive comparison of aluminium and iron electrodes[J]. Separation and Purification Technology, 2009, 66(1):159-166. [25] SUN L, WANG C, JI M, et al. Treatment of mixed chemical wastewater and the agglomeration mechanism via an internal electrolysis filter[J]. Chemical Engineering Journal, 2013, 215:50-56. [26] 周伟, 庄晓伟, 陈顺伟, 等. 铁碳微电解预处理工业废水研究进展[J]. 工业水处理, 2017, 37(7):5-9. ZHOU W, ZHUANG X W, CHEN S W, et al. Research progress in the pretreatment of industrial wastewater by iron-carbon micro-electrolysis process[J]. Industrial Water Treatment, 2017, 37(7):5-9. [27] LAI B, ZHOU Y X, WANG J L, et al. Passivation process and the mechanism of packing particles in the Fe0/GAC system during the treatment of ABS resin wastewater[J]. Environmental Technology, 2014, 35(8):973-983. [28] ZHANG D, WEI S Y, KAILA C, et al. Carbon stabilized iron nanoparticles for environmental remediation[J]. Nanoscale, 2010, 2(6):917-919. [29] HUANG D Y, YUE Q Y, FU K F, et al. Application for acrylonitrile wastewater treatment by new micro-electrolysis ceramic fillers[J]. Desalination and Water Treatment, 2016, 57(10):4420-4428. [30] 刘啸乾, 李剑超, 刘琰, 等. 新型铁碳复合材料合成及其对染料废水脱色性能的试验研究[J]. 水处理技术, 2012, 38(8):43-46, 50. LIU X Q, LI J C, LIU Y, et al. Experiment on preparation and performance of iron-carbon composite material for treating dye wastewater[J]. Technology of Water Treatment, 2012, 38(8):43-46, 50. [31] WANG Y B, FENG M Q, LIU Y H. Treatment of dye wastewater by continuous iron-carbon micro-electrolysis[J]. Environmental Engineering Science, 2016, 33(5):333-340. [32] WANG Y B, LIU Y H, FU W, et al. Treatment of actual dyeing wastewater by continuous iron-carbon micro-electrolysis process[J]. Advanced Materials Research, 2014, 838:2395-2399. [33] 刘磊, 刘永红, 王利娜, 等. 微电解材料的制备及其废水连续化处理工艺研究[J]. 工业水处理, 2015, 35(2):60-63. LIU L, LIU Y H, WANG L N, et al. Preparation of iron carbon micro-electrolysis materials and research on its continuous treatment process of actual wastewater[J]. Industrial Water Treatment, 2015, 35(2):60-63. [34] ZHANG C, ZHOU M H, YU X M, et al. Modified iron-carbon as heterogeneous electro-Fenton catalyst for organic pollutant degradation in near neutral pH condition:Characterization, degradation activity and stability[J]. Electrochimica Acta, 2015, 160:254-262. [35] ZHOU H M, SHEN Y Y, LV P, et al. Degradation of 1-butyl-3-methylimidazolium chloride ionic liquid by ultrasound and zero-valent iron/activated carbon[J]. Separation and Purification Technology, 2013, 104:208-213. [36] WANG K, LIU S, ZHANG Q, et al. Pharmaceutical wastewater treatment by internal micro-electrolysis-coagulation, biological treatment and activated carbon adsorption[J]. Environmental Technology, 2009, 30(13):1469-1474. [37] 傅强根, 胡勇有. 铝炭微电解处理刚果红废水的效果及脱色机理研究[J]. 环境科学学报, 2013, 33(6):1527-1534. FU Q G, HU Y Y. Treatment effect and decolorization mechanism of Congo Red wastewater by aluminum-carbon microelectrolysis[J]. Acta Scientiae Circumstantiae, 2013, 33(6):1527-1534. [38] XIE R, WU M, QU G, et al. Treatment of coking wastewater by a novel electric assisted micro-electrolysis filter[J]. Journal of Environmental Sciences, 2017. DOI:10.1016/j.jes.2017.05.034. [39] ZHANG X, DONG W, SUN F, et al. Degradation efficiency and mechanism of azo dye RR2 by a novel ozone aerated internal micro-electrolysis filter[J]. Journal of Hazardous Materials, 2014, 276(9):77. [40] HAN Y, LI H, LIU M, et al. Purification treatment of dyes wastewater with a novel micro-electrolysis reactor[J]. Separation and Purification Technology, 2016, 170:241-247. [41] 李洵, 张万友, 苗宇, 等. 炭循环微电解反应器处理腈纶废水的Design-Expert设计优化[J]. 工业水处理, 2011, 31(10):75-78. LI X, ZAHNG W Y, MIAO Y, et al. Design-Expert software design and optimization of the treatment of acrylic fiber wastewater with the charcoal cycle micro-electrolysis reactor[J]. Industrial Water Treatment, 2011, 31(10):75-78. [42] YING D, XU X, LI K, et al. Design of a novel sequencing batch internal micro-electrolysis reactor for treating mature landfill leachate[J]. Chemical Engineering Research and Design, 2012, 90(12):2278-2286. [43] FU J, XU Z, LI Q, et al. Treatment of simulated wastewater containing reactive red 195 by zero-valent iron/activated carbon combined with microwave discharge electrodeless lamp/sodium hypochlorite[J]. Journal of Environmental Sciences, 2010, 22(4):512-518. [44] 马丹丹, 文晨, 季民. 微电解-铁碳内电解耦合预处理高浓度染料废水[J]. 化工进展, 2013, 32(1):205-208. MA D D, WEN C, JI M. Study on treatment of high concentration of dye-wastewater with coupling technique of electrochemical oxidation and internal-electrolysis[J]. Chemical Industry and Engineering Progress, 2013, 32(1):205-208. [45] YANG S Y, LIANG Z W, YU H D, et al. Chemical oxygen demand removal efficiency and limited factors study of aminosilicone polymers in a water emulsion by iron-carbon micro-electrolysis[J]. Water Environment Research, 2014, 86(2):156-162. [46] RUAN X C, LIU M Y, ZENG Q F, et al. Degradation and decolorization of reactive red X-3B aqueous solution by ozone integrated with internal micro-electrolysis[J]. Separation and Purification Technology, 2010, 74(2):195-201. [47] HUANG J G, CHEN J J, XIE Z M, et al. Treatment of nanofiltration concentrates of mature landfill leachate by a coupled process of coagulation and internal micro-electrolysis adding hydrogen peroxide[J]. Environmental Technology, 2015, 36(8):1001-1007. [48] WANG L Q, YANG Q, WANG D B, et al. Advanced landfill leachate treatment using iron-carbon microelectrolysis-Fenton process:Process optimization and column experiments[J]. Journal of Hazardous Materials, 2016, 318:460-467. [49] 于昕, 林庚. 微电解-UASB组合工艺处理城市垃圾渗滤液[J]. 工业水处理, 2011, 31(3):30-32. YU X, LIN G. Urban landfill leachate treatment by microelectrolysis-UASB[J]. Industrial Water Treatment, 2011, 31(3):30-32. [50] ZHOU J, DUAN S H, CHEN Y, et al. Nitrogen removal efficiency of iron-carbon micro-electrolysis system treating high nitrate nitrogen organic pharmaceutical wastewater[J]. J. Cent. S. Univ., Tech, 2009, 16(1):368-373. [51] WU S Q, QI Y F, FAN C Z, et al. Improvement of anaerobic biological treatment effect by catalytic micro-electrolysis for monensin production wastewater[J]. Chemical Engineering Journal, 2016, 296:260-267. [52] QI Y F, HE S B, WU S Q, et al. Utilization of micro-electrolysis, up-flow anaerobic sludge bed, anoxic/oxic-activated sludge process, and biological aerated filter in penicillin G wastewater treatment[J]. Desalination and Water Treatment, 2015, 55(6):1480-1487. [53] 张帆, 李菁, 谭建华, 等. 吸附法处理重金属废水的研究进展[J]. 化工进展, 2013, 32(11):2749-2756. ZAHNG F, LI J, DAN J H, et al. Advance of the treatment of heavy metal wastewater by adsorption[J]. Chemical Industry and Engineering Progress, 2013, 32(11):2749-2756. [54] WU L M, LIAO L B, LV G C, et al. Micro-electrolysis of Cr(Ⅵ) in the nanoscale zero-valent iron loaded activated carbon[J]. Journal of Hazardous Materials, 2013, 254:277-283. [55] JU F, HU Y Y, CHENG J H. Removal of chelated Cu(Ⅱ) from aqueous solution by adsorption-coprecipitation with iron hydroxides prepared from micro-electrolysis process[J]. Desalination, 2011, 274:130-135. [56] LI T C, JIANG B, FENG X, et al. Purification of organic wastewater containing Cu2+ and Cr3+ by a combined process of micro electrolysis and biofilm[J].Chinese Journal of Chemical Engineering, 2003, 11(6):146-150. [57] 陈晓鸿, 李天国, 徐晓军, 等. 曝气微电解-曝气絮凝法处理高铅锌含量冶炼废水[J]. 水处理技术, 2013, 39(6):99-104. CHEN X H, LI T G, XU X J, et al. Treatment of high concentrations of lead and zinc smelting wastewater by micro-electrolysis and aerated flocculation[J]. Technology of Water Treatment, 2013, 39(6):99-104. |
[1] | SHENG Weiwu, CHENG Yongpan, CHEN Qiang, LI Xiaoting, WEI Jia, LI Linge, CHEN Xianfeng. Operating condition analysis of the microbubble and microdroplet dual-enhanced desulfurization reactor [J]. Chemical Industry and Engineering Progress, 2023, 42(S1): 142-147. |
[2] | HUANG Yiping, LI Ting, ZHENG Longyun, QI Ao, CHEN Zhenglin, SHI Tianhao, ZHANG Xinyu, GUO Kai, HU Meng, NI Zeyu, LIU Hui, XIA Miao, ZHU Kai, LIU Chunjiang. Hydrodynamics and mass transfer characteristics of a three-stage internal loop airlift reactor [J]. Chemical Industry and Engineering Progress, 2023, 42(S1): 175-188. |
[3] | MA Yi, CAO Shiwei, WANG Jiajun, LIN Liqun, XING Yan, CAO Tengliang, LU Feng, ZHAO Zhenlun, ZHANG Zhijun. Research progress in recovery of spent cathode materials for lithium-ion batteries using deep eutectic solvents [J]. Chemical Industry and Engineering Progress, 2023, 42(S1): 219-232. |
[4] | XIE Luyao, CHEN Songzhe, WANG Laijun, ZHANG Ping. Platinum-based catalysts for SO2 depolarized electrolysis [J]. Chemical Industry and Engineering Progress, 2023, 42(S1): 299-309. |
[5] | ZHANG Jie, BAI Zhongbo, FENG Baoxin, PENG Xiaolin, REN Weiwei, ZHANG Jingli, LIU Eryong. Effect of PEG and its compound additives on post-treatment of electrolytic copper foils [J]. Chemical Industry and Engineering Progress, 2023, 42(S1): 374-381. |
[6] | XU Jiaheng, LI Yongsheng, LUO Chunhuan, SU Qingquan. Optimization of methanol steam reforming process [J]. Chemical Industry and Engineering Progress, 2023, 42(S1): 41-46. |
[7] | WANG Ying, HAN Yunping, LI Lin, LI Yanbo, LI Huili, YAN Changren, LI Caixia. Research status and future prospects of the emission characteristics of virus aerosols in urban wastewater treatment plants [J]. Chemical Industry and Engineering Progress, 2023, 42(S1): 439-446. |
[8] | XU Chunshu, YAO Qingda, LIANG Yongxian, ZHOU Hualong. Research progress on functionalization strategies of covalent organic frame materials and its adsorption properties for Hg(Ⅱ) and Cr(Ⅵ) [J]. Chemical Industry and Engineering Progress, 2023, 42(S1): 461-478. |
[9] | ZHAO Jingchao, TAN Ming. Effect of surfactants on the reduction of industrial saline wastewater by electrodialysis [J]. Chemical Industry and Engineering Progress, 2023, 42(S1): 529-535. |
[10] | LIU Xuanlin, WANG Yikai, DAI Suzhou, YIN Yonggao. Analysis and optimization of decomposition reactor based on ammonium carbamate in heat pump [J]. Chemical Industry and Engineering Progress, 2023, 42(9): 4522-4530. |
[11] | LUO Cheng, FAN Xiaoyong, ZHU Yonghong, TIAN Feng, CUI Louwei, DU Chongpeng, WANG Feili, LI Dong, ZHENG Hua’an. CFD simulation of liquid distribution in different distributors in medium-low temperature coal tar hydrogenation reactor [J]. Chemical Industry and Engineering Progress, 2023, 42(9): 4538-4549. |
[12] | CHENG Tao, CUI Ruili, SONG Junnan, ZHANG Tianqi, ZHANG Yunhe, LIANG Shijie, PU Shi. Analysis of impurity deposition and pressure drop increase mechanisms in residue hydrotreating unit [J]. Chemical Industry and Engineering Progress, 2023, 42(9): 4616-4627. |
[13] | SHI Keke, LIU Muzi, ZHAO Qiang, LI Jinping, LIU Guang. Properties and research progress of magnesium based hydrogen storage materials [J]. Chemical Industry and Engineering Progress, 2023, 42(9): 4731-4745. |
[14] | LIU Muzi, SHI Keke, ZHAO Qiang, LI Jinping, LIU Guang. Research progress of solid hydrogen storage materials [J]. Chemical Industry and Engineering Progress, 2023, 42(9): 4746-4769. |
[15] | LIN Xiaopeng, XIAO Youhua, GUAN Yichen, LU Xiaodong, ZONG Wenjie, FU Shenyuan. Recent progress of flexible electrodes for ion polymer-metal composites (IPMC) [J]. Chemical Industry and Engineering Progress, 2023, 42(9): 4770-4782. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||
京ICP备12046843号-2;京公网安备 11010102001994号 Copyright © Chemical Industry and Engineering Progress, All Rights Reserved. E-mail: hgjz@cip.com.cn Powered by Beijing Magtech Co. Ltd |