| [1] |
黄晟, 王静宇, 郭沛, 等. 碳中和目标下能源结构优化的近期策略与远期展望[J]. 化工进展, 2022, 41(11): 5695-5708.
|
|
HUANG Sheng, WANG Jingyu, GUO Pei, et al. Short-term strategy and long-term prospect of energy structure optimization under carbon neutrality target[J]. Chemical Industry and Engineering Progress, 2022, 41(11): 5695-5708.
|
| [2] |
LIU Qiming, LU Bingzhang, NICHOLS Forrest, et al. Rapid preparation of carbon-supported ruthenium nanoparticles by magnetic induction heating for efficient hydrogen evolution reaction in both acidic and alkaline media[J]. SusMat, 2022, 2(3): 335-346.
|
| [3] |
TRAN Khoa Dang, NGUYEN Thanh Hai, TRAN Duy Thanh, et al. Realizing the tailored catalytic performances on atomic Pt-promoted transition metal moieties implanted layered double hydroxides for water electrolysis[J]. ACS Nano, 2024, 18(25): 16222-16235.
|
| [4] |
ZHANG Tianyu, JIN Jing, CHEN Junmei, et al. Pinpointing the axial ligand effect on platinum single-atom-catalyst towards efficient alkaline hydrogen evolution reaction[J]. Nature Communications, 2022, 13: 6875.
|
| [5] |
YUE Changle, FENG Chao, SUN Guangxun, et al. Hierarchically stabilized Pt single-atom catalysts induced by an atomic substitution strategy for an efficient hydrogen evolution reaction[J]. Energy & Environmental Science, 2024, 17(14): 5227-5240.
|
| [6] |
ZHU Jing, HU Liangsheng, ZHAO Pengxiang, et al. Recent advances in electrocatalytic hydrogen evolution using nanoparticles[J]. Chemical Reviews, 2020, 120(2): 851-918.
|
| [7] |
QIN Qing, JANG Haeseong, JIANG Xiaoli, et al. Constructing interfacial oxygen vacancy and ruthenium lewis acid-base pairs to boost the alkaline hydrogen evolution reaction kinetics[J]. Angewandte Chemie International Editon, 2024, 63(3): e202317622.
|
| [8] |
ZHOU KAIling, WANG Zelin, HAN Changbao, et al. Platinum single-atom catalyst coupled with transition metal/metal oxide heterostructure for accelerating alkaline hydrogen evolution reaction[J]. Nature Communications, 2021, 12(1): 3783.
|
| [9] |
黄龙, 徐海超, 荆碧, 等. 质子交换膜燃料电池铂基催化剂研究进展[J]. 电化学, 2022, 28(1): 16-32.
|
|
HUANG Long, XU Haichao, JING Bi, et al. Progress of Pt-based catalysts in proton-exchange membrane fuel cells: A review[J]. Journal of Electrochemistry, 2022, 28(1): 16-32.
|
| [10] |
朱芳芳, 张昆华, 刘伟平, 等. 改进多元醇法制备Pt/C催化剂及其性能表征[J]. 贵金属, 2012, 33(1): 29-32, 40.
|
|
ZHU Fangfang, ZHANG Kunhua, LIU Weiping, et al. Preparation and characterization of Pt/C catalysts by modified polyol method[J]. Precious Metals, 2012, 33(1): 29-32, 40.
|
| [11] |
郎德龙. 不同还原法制备的Pt-Co/C催化剂电催化还原性能[J]. 广西科学, 2022, 29(6): 1212-1216.
|
|
LANG Delong. Electrocatalytic reduction performance of Pt-Co/C catalysts prepared by different reduction methods[J]. Guangxi Sciences, 2022, 29(6): 1212-1216.
|
| [12] |
FIEVET F, LAGIER J P, FIGLARZ M. Preparing monodisperse metal powders in micrometer and submicrometer sizes by the polyol process[J]. MRS Bulletin, 1989, 14(12): 29-34.
|
| [13] |
QIU Yu, LIU Shuangquan, WEI Cong, et al. Synergistic effect between platinum single atoms and oxygen vacancy in MoO2 boosting pH-Universal hydrogen evolution reaction at large current density[J]. Chemical Engineering Journal, 2022, 427: 131309.
|
| [14] |
ZHANG Yiming, ZHENG Weiqiong, WU Huijuan, et al. Tungsten oxide-anchored Ru clusters with electron-rich and anti-corrosive microenvironments for efficient and robust seawater splitting[J]. SusMat, 2024, 4(1): 106-115.
|
| [15] |
WANG Xuesi, ZHENG Yao, SHENG Wenchao, et al. Strategies for design of electrocatalysts for hydrogen evolution under alkaline conditions[J]. Materials Today, 2020, 36: 125-138.
|
| [16] |
LUO Zhouxin, ZHAO Guoqiang, PAN Hongge, et al. Strong metal-support interaction in heterogeneous catalysts[J]. Advanced Energy Materials, 2022, 12(37): 2201395.
|
| [17] |
KIM Taehee, ROY S B, MOON S, et al. Highly dispersed Pt clusters on F-doped tin(Ⅳ) oxide aerogel matrix: An ultra-robust hybrid catalyst for enhanced hydrogen evolution[J]. ACS Nano, 2022, 16(1): 1625-1638.
|
| [18] |
WU Xueke, WANG Zuochao, ZHANG Dan, et al. Solvent-free microwave synthesis of ultra-small Ru-Mo2C@CNT with strong metal-support interaction for industrial hydrogen evolution[J]. Nature Communications, 2021, 12(1): 4018.
|
| [19] |
YE Shenghua, LUO Feiyan, XU Tingting, et al. Boosting the alkaline hydrogen evolution of Ru nanoclusters anchored on B/N-doped graphene by accelerating water dissociation[J]. Nano Energy, 2020, 68: 104301.
|
| [20] |
NAIR Akshaya S, Imran JAFRI R. A facile one-step microwave synthesis of Pt deposited on N & P co-doped graphene intercalated carbon black—An efficient cathode electrocatalyst for PEM fuel cell[J]. International Journal of Hydrogen Energy, 2023, 48(9): 3653-3664.
|
| [21] |
YU Wenhao, HUANG Hao, QIN Yingnan, et al. The synergistic effect of pyrrolic-N and pyridinic-N with Pt under strong metal-support interaction to achieve high-performance alkaline hydrogen evolution[J]. Advanced Energy Materials, 2022, 12(21): 2200110.
|
| [22] |
XIAO Fei, WANG Yian, XU Guiliang, et al. Fe-N-C boosts the stability of supported platinum nanoparticles for fuel cells[J]. Journal of the American Chemical Society, 2022, 144(44): 20372-20384.
|
| [23] |
CHEN Hongyan, NIU Huajie, MA Xiaohong, et al. Flower-like platinum-cobalt-ruthenium alloy nanoassemblies as robust and highly efficient electrocatalyst for hydrogen evolution reaction[J]. Journal of Colloid and Interface Science, 2020, 561: 372-378.
|
| [24] |
ZHANG Lei, WANG Qi, SI Rutong, et al. New insight of pyrrole-like nitrogen for boosting hydrogen evolution activity and stability of Pt single atoms[J]. Small, 2021, 17(16): 2004453.
|
| [25] |
PENG Liang, HUNG Chin-Te, WANG Shuwen, et al. Versatile nanoemulsion assembly approach to synthesize functional mesoporous carbon nanospheres with tunable pore sizes and architectures[J]. Journal of the American Chemical Society, 2019, 141(17): 7073-7080.
|
| [26] |
SHANG Yu, DING Yunxuan, ZHANG Peili, et al. Pyrrolic N or pyridinic N: The active center of N-doped carbon for CO2 reduction[J]. Chinese Journal of Catalysis, 2022, 43(9): 2405-2413.
|
| [27] |
ZHU Yiming, KLINGENHOF Malte, GAO Chenlong, et al. Facilitating alkaline hydrogen evolution reaction on the hetero-interfaced Ru/RuO2 through Pt single atoms doping[J]. Nature Communications, 2024, 15(1): 1447.
|
| [28] |
万成凤, 李志达, 张春月, 等. MXene负载CoP纳米棒高效电催化分解水制氢[J]. 化工进展, 2024, 43(6): 3232-3239.
|
|
WAN Chengfeng, LI Zhida, ZHANG Chunyue, et al. Highly efficient electrocatalytic water splitting by MXene supported CoP nanorods[J]. Chemical Industry and Engineering Progress, 2024, 43(6): 3232-3239.
|
| [29] |
杨成功, 黄蓉, 王冬娥, 等. 氮掺杂二硫化钼纳米催化剂的电催化析氢性能[J]. 化工进展, 2024, 43(1): 465-472.
|
|
YANG Chenggong, HUANG Rong, WANG Donge, et al. Electrocatalytic hydrogen evolution performance of nitrogen-doped molybdenum disulfide nanocatalysts[J]. Chemical Industry and Engineering Progress, 2024, 43(1): 465-472.
|
| [30] |
姜楠, 李佳优, 蒋博龙, 等. Co/NiCoP纳米异质结构催化剂的构建及其析氢性能[J]. 化工进展, 2023, 42(12): 6345-6353.
|
|
JIANG Nan, LI Jiayou, JIANG Bolong, et al. Construction of heterostructure Co/NiCoP nanoparticles for hydrogen evolution[J]. Chemical Industry and Engineering Progress, 2023, 42(12): 6345-6353.
|
| [31] |
孙世刚, 陈胜利. 电催化[M]. 北京: 化学工业出版社, 2013.
|
|
SUN Shigang, CHEN Shengli. Electrocatalysis[M]. Beijing: Chemical Industry Press, 2013.
|