Chemical Industry and Engineering Progress ›› 2025, Vol. 44 ›› Issue (10): 6073-6082.DOI: 10.16085/j.issn.1000-6613.2024-1446
• Resources and environmental engineering • Previous Articles
ZHANG Yang1,2(
), HUANG Zhijia2(
), XIE Fusong2, LU Yuehong2
Received:2024-09-04
Revised:2025-01-28
Online:2025-11-10
Published:2025-10-25
Contact:
HUANG Zhijia
通讯作者:
黄志甲
作者简介:张样(1982—),女,博士研究生,研究方向为CO2捕集。E-mail:jzjnyjs@163.com。
基金资助:CLC Number:
ZHANG Yang, HUANG Zhijia, XIE Fusong, LU Yuehong. Preparation and properties investigation of CO2 anhydrous absorbent based on diethylenetriamine-ethanolamine-dimethyl sulfoxide[J]. Chemical Industry and Engineering Progress, 2025, 44(10): 6073-6082.
张样, 黄志甲, 谢福松, 鲁月红. 基于二乙烯三胺甲酸盐-乙醇胺-二甲亚砜无水CO2吸收剂的制备及性能[J]. 化工进展, 2025, 44(10): 6073-6082.
Add to citation manager EndNote|Ris|BibTeX
URL: https://hgjz.cip.com.cn/EN/10.16085/j.issn.1000-6613.2024-1446
| 有机溶剂 | 反应前 | 反应后 |
|---|---|---|
| [DETAH][HCOO]-MEA-苯甲醇 | 均相 | 均相 |
| [DETAH][HCOO]-MEA-N-甲基吡咯烷酮 | 均相 | 液-固分层 |
| [DETAH][HCOO]-MEA-乙二醇甲醚 | 均相 | 液-固分层 |
| [DETAH][HCOO]-MEA-乙二醇丁醚 | 均相 | 液-固分层 |
| [DETAH][HCOO]-MEA-乙二醇二丁醚 | 均相 | 液-固分层 |
| [DETAH][HCOO]-MEA-二甲亚砜 | 均相 | 均相 |
| [DETAH][HCOO]-MEA-N,N-二甲基甲酰胺 | 均相 | 液-固分层 |
| [DETAH][HCOO]-MEA-三甘醇单乙醚 | 均相 | 液-固分层 |
| [DETAH][HCOO]-MEA-乙二醇乙醚 | 均相 | 液-固分层 |
| [DETAH][HCOO]-MEA-聚乙二醇200 | 均相 | 均相 |
| [DETAH][HCOO]-MEA-二乙二醇丁醚 | 均相 | 液-固分层 |
| 有机溶剂 | 反应前 | 反应后 |
|---|---|---|
| [DETAH][HCOO]-MEA-苯甲醇 | 均相 | 均相 |
| [DETAH][HCOO]-MEA-N-甲基吡咯烷酮 | 均相 | 液-固分层 |
| [DETAH][HCOO]-MEA-乙二醇甲醚 | 均相 | 液-固分层 |
| [DETAH][HCOO]-MEA-乙二醇丁醚 | 均相 | 液-固分层 |
| [DETAH][HCOO]-MEA-乙二醇二丁醚 | 均相 | 液-固分层 |
| [DETAH][HCOO]-MEA-二甲亚砜 | 均相 | 均相 |
| [DETAH][HCOO]-MEA-N,N-二甲基甲酰胺 | 均相 | 液-固分层 |
| [DETAH][HCOO]-MEA-三甘醇单乙醚 | 均相 | 液-固分层 |
| [DETAH][HCOO]-MEA-乙二醇乙醚 | 均相 | 液-固分层 |
| [DETAH][HCOO]-MEA-聚乙二醇200 | 均相 | 均相 |
| [DETAH][HCOO]-MEA-二乙二醇丁醚 | 均相 | 液-固分层 |
| [1] | 周天军, 陈梓明, 陈晓龙, 等. IPCC AR6报告解读: 未来的全球气候——基于情景的预估和近期信息[J]. 气候变化研究进展, 2021, 17(6): 652-663. |
| ZHOU Tianjun, CHEN Ziming, CHEN Xiaolong, et al. Interpreting IPCC AR6: Future global climate based on projection under scenarios and on near-term information[J]. Climate Change Research, 2021, 17(6): 652-663. | |
| [2] | 周天军, 陈晓龙. 《巴黎协定》温控目标下未来碳排放空间的准确估算问题辨析[J]. 中国科学院院刊, 2022, 37(2): 216-229. |
| ZHOU Tianjun, CHEN Xiaolong. Perspective on challenges in accurately estimating remaining carbon budget for climate targets of paris agreement[J]. Bulletin of Chinese Academy of Sciences, 2022, 37(2): 216-229. | |
| [3] | 孙凤, 黄志甲, 张样, 等. 高炉煤气碳捕集对钢铁联合企业碳排放的影响[J]. 节能技术, 2022, 40(3): 244-247. |
| SUN Feng, HUANG Zhijia, ZHANG Yang, et al. Effect of CO2 capture of blast furnace gas on carbon emission of integrated steel works[J]. Energy Conservation Technology, 2022, 40(3): 244-247. | |
| [4] | 孔祥宇, 谢亮, 王延民, 等. CO2的捕集及资源化利用[J]. 化工进展, 2022, 41(3): 1187-1198. |
| KONG Xiangyu, XIE Liang, WANG Yanmin, et al. CO2 capture and resource utilization[J]. Chemical Industry and Engineering Progress, 2022, 41(3): 1187-1198. | |
| [5] | 何婷, 林文胜. 基于余热利用的活化MDEA法脱除CO2的天然气液化系统[J]. 化工学报, 2021, 72(S1): 453-460. |
| HE Ting, LIN Wensheng. Natural gas liquefaction system with activated MDEA method for CO2 removal based on waste heat utilization[J]. CIESC Journal, 2021, 72(S1): 453-460. | |
| [6] | AWAD Abdelrahman, ALJUNDI Isam H. Layer-by-layer assembly of carbide derived carbon-polyamide membrane for CO2 separation from natural gas[J]. Energy, 2018, 157: 188-199. |
| [7] | 王新东, 上官方钦, 邢奕, 等. “双碳” 目标下钢铁企业低碳发展的技术路径[J]. 工程科学学报, 2023, 45(5): 853-862. |
| WANG Xindong, SHANGGUAN Fangqin, XING Yi, et al. Research on the low-carbon development technology route of iron and steel enterprises under the “double carbon” target[J]. Chinese Journal of Engineering, 2023, 45(5): 853-862. | |
| [8] | 张金星, 张样, 黄志甲, 等. 基于响应曲面法的高炉煤气CO2吸收工艺参数优化[J]. 过程工程学报, 2021, 21(8): 985-992. |
| ZHANG Jinxing, ZHANG Yang, HUANG Zhijia, et al. Optimization of CO2 absorption process parameters of blast furnace gas based on response surface methodology[J]. The Chinese Journal of Process Engineering, 2021, 21(8): 985-992. | |
| [9] | FANG Mengxiang, YI Ningtong, DI Wentao, et al. Emission and control of flue gas pollutants in CO2 chemical absorption system—A review[J]. International Journal of Greenhouse Gas Control, 2020, 93: 102904. |
| [10] | GAUTAM Ashish, MONDAL Monoj Kumar. Review of recent trends and various techniques for CO2 capture: Special emphasis on biphasic amine solvents[J]. Fuel, 2023, 334: 126616. |
| [11] | 张金星, 黄志甲, 张样, 等. 醇胺法捕集高炉煤气CO2工艺吸收剂的优选[J]. 安徽工业大学学报(自然科学版), 2021, 38(2): 169-174. |
| ZHANG Jinxing, HUANG Zhijia, ZHANG Yang, et al. Optimization of absorbent for CO2 capture from blast furnace gas by alcohol amine process[J]. Journal of Anhui University of Technology (Natural Science), 2021, 38(2): 169-174. | |
| [12] | 屈丹龙, 陆诗建, 林名桢, 等. 新型烟气CO2捕集吸收剂测试分析与优化[J]. 天然气化工(C1化学与化工), 2020, 45(2): 95-99. |
| QU Danlong, LU Shijian, LIN Mingzhen, et al. Test analysis and optimization of a new type of flue gas CO2 capture absorbent[J]. Natural Gas Chemical Industry, 2020, 45(2): 95-99. | |
| [13] | ZHANG Shihan, SHEN Yao, WANG Lidong, et al. Phase change solvents for post-combustion CO2 capture: Principle, advances, and challenges[J]. Applied Energy, 2019, 239: 876-897. |
| [14] | 郭雨桐, 包海艺, 袁佳敏, 等. 离子液体[TETAH]+[BF4]-——乙二醇混合体系吸收CO2的实验研究[J]. 环境科学学报, 2020, 40(2): 492-496. |
| GUO Yutong, BAO Haiyi, YUAN Jiamin, et al. Experimental study on CO2 absorption by ionic liquid [TETAH]+[BF4]-—ethylene glycol mixed solvent[J]. Acta Scientiae Circumstantiae, 2020, 40(2): 492-496. | |
| [15] | 陶梦娜. 非水溶剂/多元胺体系的CO2液固相变吸收基础研究[D]. 杭州: 浙江大学, 2018. |
| TAO Mengna. The basic study of CO2 liquid-solid phase change absorption with non-aqueous solvent/polyamine system[D]. Hangzhou: Zhejiang University, 2018. | |
| [16] | YU Y S, LU H F, ZHANG T T, et al. Determining the performance of an efficient nonaqueous CO2 capture process at desorption temperatures below 373 K[J]. Industrial & Engineering Chemistry Research, 2013, 52(35): 12622-12634. |
| [17] | CIFTJA Arlinda F, HARTONO Ardi, SVENDSEN Hallvard F. Experimental study on phase change solvents in CO2 capture by NMR spectroscopy[J]. Chemical Engineering Science, 2013, 102: 378-386. |
| [18] | 刘练波, 方梦祥, 许世森, 等. DMAC/DETA复配水溶液两相吸收剂吸收CO2的行为研究[J]. 中国电机工程学报, 2021, 41(18): 6284-6292. |
| LIU Lianbo, FANG Mengxiang, XU Shisen, et al. Research on CO2 absorption behavior by DMAC/DETA biphasic absorbent[J]. Proceedings of the CSEE, 2021, 41(18): 6284-6292. | |
| [19] | 徐志成, 王淑娟, 陈昌和. BDA/DEEA两相吸收剂吸收CO2的研究[J]. 工程热物理学报, 2013, 34(5): 993-997. |
| XU Zhicheng, WANG Shujuan, CHEN Changhe. CO2 absorption by BDA/DEEA biphasic solvents[J]. Journal of Engineering Thermophysics, 2013, 34(5): 993-997. | |
| [20] | JIANG Wufeng, GAO Xiaoyi, XU Bin, et al. Effect of water on CO2 absorption by a novel anhydrous biphasic absorbent: Phase change behavior, absorption performance, reaction heat, and absorption mechanism[J]. Separation and Purification Technology, 2023, 325: 124624. |
| [21] | WU Hanlin, ZHANG Xuelai, WU Qing. Research progress of carbon capture technology based on alcohol amine solution[J]. Separation and Purification Technology, 2024, 333: 125715. |
| [22] | WANG Nan, PENG Zhengqi, GAO Hongxia, et al. New insight and evaluation of secondary Amine/N-butanol biphasic solutions for CO2 Capture: Equilibrium Solubility, phase separation Behavior, absorption Rate, desorption Rate, energy consumption and ion species[J]. Chemical Engineering Journal, 2022, 431: 133912. |
| [23] | 李磊, 赵宴民, 田海洋, 等. 燃气烟气中低浓度CO2的低能耗高效捕集工艺模拟优化[J]. 化工进展, 2024, 43(S1): 581-589. |
| LI Lei, ZHAO Yanmin, TIAN Haiyang, et al. Simulation and optimization of low energy consumption and high efficiency capture process for low concentration CO2 in flue gas[J]. Chemical Industry and Engineering Progress, 2024, 43(S1): 581-589 | |
| [24] | 王凤池, 刘飞, 赵瑞, 等. 基于DEEA/MEA两相吸收剂的15万t/年烟气CO2捕集工艺模拟和技术经济分析[J]. 中国电机工程学报, 2021, 41(23): 8088-8097. |
| WANG Fengchi, LIU Fei, ZHAO Rui, et al. Process simulation and techno-economic analysis on 150000t/year CO2 chemical absorption process from flue gas based on DEEA/MEA biphasic solvent[J]. Proceedings of the CSEE, 2021, 41(23): 8088-8097. | |
| [25] | 谢福松, 黄战, 黄志甲, 等. 高炉煤气碳捕集吸收塔设计[J]. 山东化工, 2021, 50(21): 157-158, 166. |
| XIE Fusong, HUANG Zhan, HUANG Zhijia, et al. Design of CO2 absorption tower for blast furnace gas[J]. Shandong Chemical Industry, 2021, 50(21): 157-158, 166. | |
| [26] | 黄志甲, 黄战, 张金星, 等. 氨法吸收高炉煤气中CO2过程传热传质模型[J]. 冶金能源, 2021, 40(5): 3-7. |
| HUANG Zhijia, HUANG Zhan, ZHANG Jinxing, et al. Heat and mass transfer model of CO2 absorption from blast furnace gas by ammonia process[J]. Energy for Metallurgical Industry, 2021, 40(5): 3-7. | |
| [27] | 李晨旭. 新型CO2捕集吸收体系构建及其再生过程的研究[D]. 石家庄: 河北科技大学, 2020. |
| LI Chenxu. Study on novel absorbent systems for CO2 capture and its regeneration characteristics[D]. Shijiazhuang: Hebei University of Science and Technology, 2020. | |
| [28] | 张样, 黄志甲, 鲁月红, 等. 一种吸收二氧化碳的氨基功能离子复配无水吸收剂及其制备方法:CN115738600A[P]. 2023-03-07. |
| ZHANG Yang, HUANG Zhijia, LU Yuehong, et al. Proposal for the preparation of an amino-functional ion-complexed anhydrous absorbent for carbon dioxide absorption: CN115738600A.1[P]. 2023-03-07. | |
| [29] | 张宁. 二氧化碳在有机胺中吸收及解吸动力学研究[D]. 上海: 华东理工大学, 2011. |
| ZHANG Ning. Kinetics of the reactive absorption and desorption of CO2 in organie amines[D]. Shanghai: East China University of Science and Technology, 2011. | |
| [30] | 郭超, 陈绍云, 陈思铭, 等. 13C-NMR定量分析一乙醇胺(MEA)与CO2的吸收和解吸特性[J]. 化工进展, 2014, 33(11): 3101-3106. |
| GUO Chao, CHEN Shaoyun, CHEN Siming, et al. Quantitative analysis on CO2 absorption and desorption in monoethanolamine(MEA) solution by using 13C-NMR[J]. Chemical Industry and Engineering Progress, 2014, 33(11): 3101-3106. | |
| [31] | 姚靖, 梁怀勇, 潘艳艳, 等. 乙醇胺-二甲基亚砜无水溶液吸收-解吸二氧化碳性能[J]. 节能与环保, 2021, 12(3): 64-66. |
| YAO Jing, LIANG Huaiyong, PAN Yanyan, et al. CO2 absorption and desorption performance of monoethanolamine-dimethyl sulfoxide nonaqueous solution[J]. Energy Conservation & Environmental Protection, 2021, 12(3): 64-66. | |
| [32] | MENG Fanli, FU Kun, WANG Xueli, et al. Study on absorption and regeneration performance of EHA-DMSO non-aqueous absorbent for CO2 capture from flue gas[J]. Energy, 2024, 286: 129631. |
| [33] | 顾永正, 李晓辉, 高歌, 等. 高效低能耗氨基酸盐水溶液固-液相变吸收剂捕集CO2性能探究[J]. 低碳化学与化工, 2025, 50(4): 122-130. |
| GU Yongzheng, LI Xiaohui, GAO Ge, et al. Study on amino acid salt aqueous solid-liquid phase change absorbent for energy-efficient CO2 capture[J]. Low-Carbon Chemistry and Chemical Engineering, 2025, 50(4): 122-130. | |
| [34] | 刘忠海. [N1111][Gly]复合工质吸收/解吸CO2性能研究[D]. 重庆: 重庆大学, 2014. |
| LIU Zhonghai. Performance of carbon dioxide absorption/desorption in tetramethylammonium glycin complex solution[D]. Chongqing: Chongqing University, 2014. | |
| [35] | 周诗岽, 陈小康, 边慧, 等. CO2水合物在管道中的生成及堵塞特性[J]. 化工进展, 2018, 37(11): 4250-4256. |
| ZHOU Shidong, CHEN Xiaokang, BIAN Hui, et al. CO2 hydrate formation in pipeline and its plugging characteristics[J]. Chemical Industry and Engineering Progress, 2018, 37(11): 4250-4256. | |
| [36] | 吴坤祥. 碳钢在氨基功能化离子液体捕集CO2体系中的腐蚀行为及缓蚀剂缓蚀性能研究[D]. 泉州: 华侨大学, 2019. |
| WU Kunxiang. Corrosion behavior of carbon steel and corrosion inhibition of inhibitor to carbon steel in amino-functionalized ionic liquids for CO2 capture[D]. Quanzhou: Huaqiao University, 2019. | |
| [37] | 张丽. 醇胺水溶液复配离子液体吸收CO2过程的腐蚀特性研究[D]. 北京: 华北电力大学, 2019. |
| ZHANG Li. Corrosion characteristics for CO2 capture process using functionalized ionic liquids activated amine aqueous solution[D]. Beijing: North China Electric Power University, 2019. | |
| [38] | Bihong LYU, YANG Kexuan, ZHOU Xiaobin, et al. 2-Amino-2-methyl-1-propanol based non-aqueous absorbent for energy-efficient and non-corrosive carbon dioxide capture[J]. Applied Energy, 2020, 264: 114703. |
| [39] | 童守宝, 车春文, 殷勇高. CaBr2溶液除湿再生性能及腐蚀性实验研究[J]. 东南大学学报(自然科学版), 2022, 52(3): 425-432. |
| TONG Shoubao, CHE Chunwen, YIN Yonggao. Experimental study on dehumidification and regeneration performance and corrosiveness of CaBr2 solution[J]. Journal of Southeast University (Natural Science Edition), 2022, 52(3): 425-432. | |
| [40] | 杨雪莹. 三乙烯四胺甲酸盐无水混合体系吸收CO2的实验研究[D]. 武汉: 华中科技大学, 2019. |
| YANG Xueying. Experimental study on CO2 absorption by triethylenetetramine formate anhydrous mixed system[D]. Wuhan: Huazhong University of Science and Technology, 2019. | |
| [41] | 周天宇, 于宇新, 赵博, 等. 20#碳钢在HCO3 -和Cl-混合溶液中的点蚀行为研究[J]. 安全、健康和环境, 2020, 20(11): 30-34. |
| ZHOU Tianyu, YU Yuxin, ZHAO Bo, et al. Study on the pitting corrosion of 20# steel in HCO3 - and Cl- mixed solution[J]. Safety Health & Environment, 2020, 20(11): 30-34. | |
| [42] | 梁怀勇, 周小斌, 姚靖, 等. 羟乙基乙二胺/二甲基亚砜溶液高效捕集二氧化碳的性能及机理[J]. 环境化学, 2021, 40(6): 1895-1902. |
| LIANG Huaiyong, ZHOU Xiaobin, YAO Jing, et al. 2-(2-Aminoethylamino)ethanol/dimethyl sulfoxide solution for highlyefficient carbon dioxide capture: Performance and mechanism[J]. Environmental Chemistry, 2021, 40(6): 1895-1902. |
| [1] | ZHANG Wenjing, HUANG Zhixin, LI Shiteng, DENG Shuai, LI Shuangjun. Biomass carbon aerogels for CO2 adsorbents [J]. Chemical Industry and Engineering Progress, 2025, 44(9): 5018-5032. |
| [2] | ZUO Qibin, ZHANG Han, SUN Chuanfu, HU Guilin, XIA Yuzhen. Application of nickel/graphene coating on foam metal flow field of PEMFC [J]. Chemical Industry and Engineering Progress, 2025, 44(9): 5195-5201. |
| [3] | CHEN Siming, LIU Jingchao, ZHONG Zhixuan, ZHANG Xinzhu, ZHU Tianhao, PENG Yiqing, YOU Sai, WANG Yikai, YUAN Jiajun, ZHANG Yongchun. Development and application of deep eutectic solvents in carbon dioxide capture [J]. Chemical Industry and Engineering Progress, 2025, 44(9): 5377-5390. |
| [4] | WANG Maoren, ZHAO Anyang, YU Jingwen, SHI Hanfeng, HUANG Qipiao, WANG Shihe. Thermal desorption treatment process of waste clay and its hazardous characteristics of residues [J]. Chemical Industry and Engineering Progress, 2025, 44(9): 5442-5449. |
| [5] | HUANG Ke’er, LIU Jiahao, LI Haoming, ZHOU Tianhang, GAO Jinsen, LAN Xingying. Self-diffusion coefficients in the process of carbon capture by amine solvents based on molecular dynamics simulation [J]. Chemical Industry and Engineering Progress, 2025, 44(8): 4352-4364. |
| [6] | FU Zijun, SONG Xuehang, SHEN Qun, WANG Xiaobo, GU Jiaming, WANG Danfeng, WEI Wei, SUN Nannan. Carbon footprint analysis of integrated CO2 capture and methanation technology based on life cycle assessment [J]. Chemical Industry and Engineering Progress, 2025, 44(5): 2879-2887. |
| [7] | HUANG Yuedong, GAO Botao, YANG Li, YAO Siyu, GUO Shenghui, HOU Ming. Microwave electromagnetic characteristics and microwave absorbing properties of foam silicon carbide carrier [J]. Chemical Industry and Engineering Progress, 2025, 44(4): 2238-2249. |
| [8] | DOU Yu, WANG Wenxuan, FAN Chunlei, MA Jiliang, LIANG Cai, CHEN Xiaoping. Preparation of vaterite CaCO3 by mineralizing CO2 from desulfurized gypsum [J]. Chemical Industry and Engineering Progress, 2025, 44(4): 2328-2337. |
| [9] | ZHAO Tiannan, ZHAO Chang, SUN Hao, LU Jianmin, YANG Huinan. Frozen droplets height measurement system based on absorption spectroscopy [J]. Chemical Industry and Engineering Progress, 2025, 44(4): 1907-1912. |
| [10] | WANG Wen, JIN Yang, LI Jun, CHEN Jianjun, CHEN Ming, MENG Xin. Preparation of superhydrophobic PVDF membrane via in-situ FeOOH growth for CO2 absorption [J]. Chemical Industry and Engineering Progress, 2025, 44(3): 1570-1577. |
| [11] | ZHANG Yating, MA Xiaomei, LI Keke, JIA Jia, CHEN Meng, DAI Liang, GAO Xitong. Recent advances on CDs/g-C3N4 heterostructure: Construction and photocatalytic application [J]. Chemical Industry and Engineering Progress, 2025, 44(10): 5751-5763. |
| [12] | WANG Peiqi, DAI Jingxiong, ZHONG Liang. 3D printing preparation and microwave absorption property analysis of C/UV curable resin electromagnetic metamaterials [J]. Chemical Industry and Engineering Progress, 2025, 44(10): 5819-5827. |
| [13] | WANG Dong, JIA Ruiqi, ZHANG Bo, ZHANG Jiaojiao, XIAO Jiawang, ZHANG Liangliang. Development and performance of phase change absorbent for MDEA/DETA/[Bmim][BF4]/H2O [J]. Chemical Industry and Engineering Progress, 2025, 44(10): 5891-5898. |
| [14] | WANG Ning, LU Shijian, LIU Ling, LIANG Jing, LIU Miaomiao, SUN Mengyuan, KANG Guojun. Research progress of catalytic regeneration for energy-efficient CO2 capture in amine absorption system [J]. Chemical Industry and Engineering Progress, 2025, 44(1): 445-464. |
| [15] | LI Letian, LU Shijian, LIU Hanxiao, WU Liming, LIU Ling, KANG Guojun. Progress of desorption and regeneration of organic amine-enriched liquids [J]. Chemical Industry and Engineering Progress, 2025, 44(1): 490-499. |
| Viewed | ||||||
|
Full text |
|
|||||
|
Abstract |
|
|||||
|
京ICP备12046843号-2;京公网安备 11010102001994号 Copyright © Chemical Industry and Engineering Progress, All Rights Reserved. E-mail: hgjz@cip.com.cn Powered by Beijing Magtech Co. Ltd |