Chemical Industry and Engineering Progress ›› 2025, Vol. 44 ›› Issue (9): 5442-5449.DOI: 10.16085/j.issn.1000-6613.2024-1132
• Resources and environmental engineering • Previous Articles
WANG Maoren1(
), ZHAO Anyang1, YU Jingwen2, SHI Hanfeng3, HUANG Qipiao3, WANG Shihe3
Received:2024-07-15
Revised:2024-10-11
Online:2025-09-30
Published:2025-09-25
Contact:
WANG Maoren
王茂仁1(
), 赵安洋1, 于婧雯2, 时汉峰3, 黄启飘3, 汪世鹤3
通讯作者:
王茂仁
作者简介:王茂仁(1982—),男,博士,正高级工程师,硕士生导师,主要研究方向为“三废”治理及资源化、油田化学。E-mail:wangmaoren@cupk.edu.cn
基金资助:CLC Number:
WANG Maoren, ZHAO Anyang, YU Jingwen, SHI Hanfeng, HUANG Qipiao, WANG Shihe. Thermal desorption treatment process of waste clay and its hazardous characteristics of residues[J]. Chemical Industry and Engineering Progress, 2025, 44(9): 5442-5449.
王茂仁, 赵安洋, 于婧雯, 时汉峰, 黄启飘, 汪世鹤. 废白土热脱附处理工艺参数及其残渣危险特性[J]. 化工进展, 2025, 44(9): 5442-5449.
Add to citation manager EndNote|Ris|BibTeX
URL: https://hgjz.cip.com.cn/EN/10.16085/j.issn.1000-6613.2024-1132
| TPH分布 | 含量/g·kg-1 | TPH分布 | 含量/g·kg-1 |
|---|---|---|---|
| C12 | 0.32 | C28 | 0.94 |
| C13 | 41.85 | C29 | 2.92 |
| C17 | 36.32 | C30 | 0.31 |
| C18 | 11.94 | C31 | 5.06 |
| C19 | 16.65 | C32 | 0.56 |
| C20 | 14.77 | C33 | 0.66 |
| C21 | 0.52 | C34 | 0.96 |
| C22 | 0.33 | C35 | 0.55 |
| C23 | 5.88 | C36 | 9.96 |
| C24 | 1.38 | C37 | 0.39 |
| C25 | 1.57 | C38 | 1.94 |
| C26 | 2.28 | C39 | 0.16 |
| C27 | 4.52 | C40 | 108.58 |
| TPH分布 | 含量/g·kg-1 | TPH分布 | 含量/g·kg-1 |
|---|---|---|---|
| C12 | 0.32 | C28 | 0.94 |
| C13 | 41.85 | C29 | 2.92 |
| C17 | 36.32 | C30 | 0.31 |
| C18 | 11.94 | C31 | 5.06 |
| C19 | 16.65 | C32 | 0.56 |
| C20 | 14.77 | C33 | 0.66 |
| C21 | 0.52 | C34 | 0.96 |
| C22 | 0.33 | C35 | 0.55 |
| C23 | 5.88 | C36 | 9.96 |
| C24 | 1.38 | C37 | 0.39 |
| C25 | 1.57 | C38 | 1.94 |
| C26 | 2.28 | C39 | 0.16 |
| C27 | 4.52 | C40 | 108.58 |
| 序号 | 加热温度(A)/℃ | 停留时间(B)/min | 进料速率(C)/t·h-1 | 石油烃含量/mg·kg-1 | 天然气消耗量/m3·t-1 |
|---|---|---|---|---|---|
| 1 | 450 | 90 | 3 | 2658 | 31.85 |
| 2 | 525 | 90 | 2 | 1665 | 33.35 |
| 3 | 450 | 75 | 4 | 4723 | 32.05 |
| 4 | 525 | 90 | 4 | 3541 | 35.22 |
| 5 | 525 | 75 | 3 | 822 | 24.28 |
| 6 | 525 | 75 | 3 | 928 | 24.73 |
| 7 | 600 | 75 | 2 | 282 | 20.09 |
| 8 | 600 | 75 | 3 | 715 | 18.12 |
| 9 | 535 | 60 | 2 | 1428 | 21.55 |
| 10 | 600 | 60 | 3 | 1631 | 17.81 |
| 11 | 600 | 90 | 3 | 388 | 24.83 |
| 12 | 450 | 60 | 3 | 2512 | 22.26 |
| 13 | 525 | 75 | 3 | 1017 | 24.25 |
| 14 | 450 | 75 | 2 | 2202 | 20.31 |
| 15 | 600 | 75 | 4 | 3231 | 21.56 |
| 16 | 525 | 75 | 3 | 892 | 25.08 |
| 17 | 525 | 60 | 4 | 5085 | 29.87 |
| 序号 | 加热温度(A)/℃ | 停留时间(B)/min | 进料速率(C)/t·h-1 | 石油烃含量/mg·kg-1 | 天然气消耗量/m3·t-1 |
|---|---|---|---|---|---|
| 1 | 450 | 90 | 3 | 2658 | 31.85 |
| 2 | 525 | 90 | 2 | 1665 | 33.35 |
| 3 | 450 | 75 | 4 | 4723 | 32.05 |
| 4 | 525 | 90 | 4 | 3541 | 35.22 |
| 5 | 525 | 75 | 3 | 822 | 24.28 |
| 6 | 525 | 75 | 3 | 928 | 24.73 |
| 7 | 600 | 75 | 2 | 282 | 20.09 |
| 8 | 600 | 75 | 3 | 715 | 18.12 |
| 9 | 535 | 60 | 2 | 1428 | 21.55 |
| 10 | 600 | 60 | 3 | 1631 | 17.81 |
| 11 | 600 | 90 | 3 | 388 | 24.83 |
| 12 | 450 | 60 | 3 | 2512 | 22.26 |
| 13 | 525 | 75 | 3 | 1017 | 24.25 |
| 14 | 450 | 75 | 2 | 2202 | 20.31 |
| 15 | 600 | 75 | 4 | 3231 | 21.56 |
| 16 | 525 | 75 | 3 | 892 | 25.08 |
| 17 | 525 | 60 | 4 | 5085 | 29.87 |
| 来源 | 石油烃含量 | 天然气消耗量 | ||||||||
|---|---|---|---|---|---|---|---|---|---|---|
| 平方和 | 自由度 | F | P | 显著性 | 平方和 | 自由度 | F | P | 显著性 | |
| 模型 | 33940000 | 9 | 223.54 | <0.0001 | 显著 | 470.03 | 9 | 207.23 | <0.0001 | 显著 |
| A | 5485000 | 1 | 325.12 | <0.0001 | 显著 | 68.74 | 1 | 272.76 | <0.0001 | 显著 |
| B | 722400 | 1 | 42.82 | 0.0003 | 显著 | 142.47 | 1 | 565.31 | <0.0001 | 显著 |
| C | 15130000 | 1 | 896.97 | <0.0001 | 显著 | 68.44 | 1 | 271.59 | <0.0001 | 显著 |
| AB | 482300 | 1 | 28.59 | 0.0011 | 显著 | 1.65 | 1 | 6.55 | 0.0376 | 显著 |
| AC | 45796 | 1 | 2.71 | 0.1434 | 不显著 | 26.37 | 1 | 104.63 | <0.0001 | 显著 |
| BC | 793000 | 1 | 47.00 | 0.0002 | 显著 | 10.40 | 1 | 41.27 | 0.0004 | 显著 |
| A2 | 407900 | 1 | 24.18 | 0.0017 | 显著 | 50.42 | 1 | 200.06 | <0.0001 | 显著 |
| B2 | 1364000 | 1 | 80.84 | <0.0001 | 显著 | 39.52 | 1 | 156.83 | <0.0001 | 显著 |
| C2 | 8012000 | 1 | 474.90 | <0.0001 | 显著 | 23.86 | 1 | 94.67 | <0.0001 | 显著 |
| 残差 | 118100 | 7 | — | — | — | 1.76 | 7 | — | — | — |
| 失拟项 | 98349.39 | 4 | 3.73 | 0.1538 | 不显著 | 1.29 | 4 | 2.6 | 0.2899 | 不显著 |
| R2 | 0.9965 | 0.9963 | ||||||||
| 来源 | 石油烃含量 | 天然气消耗量 | ||||||||
|---|---|---|---|---|---|---|---|---|---|---|
| 平方和 | 自由度 | F | P | 显著性 | 平方和 | 自由度 | F | P | 显著性 | |
| 模型 | 33940000 | 9 | 223.54 | <0.0001 | 显著 | 470.03 | 9 | 207.23 | <0.0001 | 显著 |
| A | 5485000 | 1 | 325.12 | <0.0001 | 显著 | 68.74 | 1 | 272.76 | <0.0001 | 显著 |
| B | 722400 | 1 | 42.82 | 0.0003 | 显著 | 142.47 | 1 | 565.31 | <0.0001 | 显著 |
| C | 15130000 | 1 | 896.97 | <0.0001 | 显著 | 68.44 | 1 | 271.59 | <0.0001 | 显著 |
| AB | 482300 | 1 | 28.59 | 0.0011 | 显著 | 1.65 | 1 | 6.55 | 0.0376 | 显著 |
| AC | 45796 | 1 | 2.71 | 0.1434 | 不显著 | 26.37 | 1 | 104.63 | <0.0001 | 显著 |
| BC | 793000 | 1 | 47.00 | 0.0002 | 显著 | 10.40 | 1 | 41.27 | 0.0004 | 显著 |
| A2 | 407900 | 1 | 24.18 | 0.0017 | 显著 | 50.42 | 1 | 200.06 | <0.0001 | 显著 |
| B2 | 1364000 | 1 | 80.84 | <0.0001 | 显著 | 39.52 | 1 | 156.83 | <0.0001 | 显著 |
| C2 | 8012000 | 1 | 474.90 | <0.0001 | 显著 | 23.86 | 1 | 94.67 | <0.0001 | 显著 |
| 残差 | 118100 | 7 | — | — | — | 1.76 | 7 | — | — | — |
| 失拟项 | 98349.39 | 4 | 3.73 | 0.1538 | 不显著 | 1.29 | 4 | 2.6 | 0.2899 | 不显著 |
| R2 | 0.9965 | 0.9963 | ||||||||
| 项目 | 停留时间/min | 加热温度/℃ | 进料速度/t·h-1 | TPH/mg·kg-1 | 天然气消耗量/m3·t-1 |
|---|---|---|---|---|---|
| 优化结果 | 70.56 | 597.88 | 2.59 | 281.77 | 17.81 |
| 验证结果 | 70 | 600 | 2.6 | 291.22,322.11,311 | 18.66,19.28,19.66 |
| 项目 | 停留时间/min | 加热温度/℃ | 进料速度/t·h-1 | TPH/mg·kg-1 | 天然气消耗量/m3·t-1 |
|---|---|---|---|---|---|
| 优化结果 | 70.56 | 597.88 | 2.59 | 281.77 | 17.81 |
| 验证结果 | 70 | 600 | 2.6 | 291.22,322.11,311 | 18.66,19.28,19.66 |
| [1] | 李维宁, 李茁, 李建忠, 等. 废润滑油残渣油与废白土在废润滑油再生的应用[J]. 应用化工, 2021, 50(1): 110-112. |
| LI Weining, LI Zhuo, LI Jianzhong, et al. Application of waste lube oil residue and waste clay in the regeneration of waste lube oil[J]. Applied Chemical Industry, 2021, 50(1): 110-112. | |
| [2] | 李闰华, 高丽, 张虎清, 等. 润滑油精制废白土再生及资源化利用[J]. 山东化工, 2020, 49(18): 242-243. |
| LI Runhua, GAO Li, ZHANG Huqing, et al. Regeneration and resource utilization of waste clay from lubricant oil refining process[J]. Shandong Chemical Industry, 2020, 49(18): 242-243. | |
| [3] | 孙浩程, 回军, 孙志强, 等. 润滑油精制废白土处理工艺的研究进展[J]. 现代化工, 2018, 38(10): 58-61. |
| SUN Haocheng, HUI Jun, SUN Zhiqiang, et al. Research progress in treatment of waste bleaching clay from lubricant oil refining process[J]. Modern Chemical Industry, 2018, 38(10): 58-61. | |
| [4] | ZUBAIDI Isam AL, TAMIMI Adil AL, Mustafa AL-ZUBAIDI. Applications of de-oiling and reactivation of spent clay[J]. Environmental Technology & Innovation, 2021, 21: 101182. |
| [5] | YUAN Chuan, LIU Qian, LI Peijun, et al. Biofuel characteristic of waste clay oil pyrolysis[J]. Journal of Analytical and Applied Pyrolysis, 2021, 156: 105117. |
| [6] | 李晋, 谢萍, 陈平, 等. 废白土热解残渣强化炼化剩余污泥水热液厌氧产能[J]. 工业水处理, 2022, 42(12): 65-71. |
| LI Jin, XIE Ping, CHEN Ping, et al. Enhancement of anaerobic digestion of refinery excess sludge hydrothermal liquid by pyrolytic residue of spent bleaching earth[J]. Industrial Water Treatment, 2022, 42(12): 65-71. | |
| [7] | YU Hongdi, LIN Fawei, GUO Xuan, et al. Co-pyrolysis of saw dust and oily sludge with waste-heat utilization of steel slag on rotary kiln simulated engineering practice[J]. Fuel, 2024, 364: 131012. |
| [8] | LI Kai, CAI Ao, TANG Yijun, et al. Heat and mass transfer characteristics of oily sludge thermal desorption[J]. Processes, 2024, 12(1): 227. |
| [9] | SONG Siduo, LIU Xuedong, JIANG Xiao, et al. Kinetic analysis of slow pyrolysis of oily sludge at medium temperature (350℃—650℃) and the effects of heating rate on pyrolysis[J]. Environmental Technology, 2024, 45(23): 4900-4913. |
| [10] | LIU Chenglong, FAN Dekai, LIU Yang, et al. Production of aromatic-rich oil from marine oily sludge via in situ catalytic pyrolysis using coal gangue[J]. Fuel, 2024, 369: 131699. |
| [11] | 万震, 王绍庆, 李志合, 等. 废白土热解制备烃类化合物的热解行为分析[J]. 可再生能源, 2023, 41(12): 1563-1570. |
| WAN Zhen, WANG Shaoqing, LI Zhihe, et al. Analysis on pyrolysis behavior of hydrocarbon compounds prepared by pyrolysis of spent bleaching clay[J]. Renewable Energy Resources, 2023, 41(12): 1563-1570. | |
| [12] | WANG Shuang, YUAN Chuan, ESAKKIMUTHU Sivakumar, et al. Catalytic pyrolysis of waste clay oil to produce high quality biofuel[J]. Journal of Analytical and Applied Pyrolysis, 2019, 141: 104633. |
| [13] | 王文杰, 王万福, 屈一新, 等. 润滑油废白土的热解处理[J]. 环境工程学报, 2012, 6(6): 2067-2071. |
| WANG Wenjie, WANG Wanfu, QU Yixin, et al. Pyrolysis treatment of waste clay from lubricating oil production[J]. Chinese Journal of Environmental Engineering, 2012, 6(6): 2067-2071. | |
| [14] | 万震. 木质素与废白土定向催化热解制备芳烃的反应机理研究[D]. 淄博: 山东理工大学, 2023. |
| WAN Zhen. Study on reaction mechanism of lignin and spent bleaching clay for preparation of aromatic hydrocarbons by directional catalytic pyrolysis[D]. Zibo: Shandong University of Technology, 2023. | |
| [15] | 全翠, 高宁博, 张广涛, 等. 含油污泥热解残渣制备渗水砖的重金属和多环芳烃浸出特性[J]. 化工进展, 2024, 43(9): 5226-5233. |
| QUAN Cui, GAO Ningbo, ZHANG Guangtao, et al. Leaching characteristics of heavy metals and polycyclic aromatic hydrocarbons from permeable bricks prepared by pyrolysis residue of oily sludge[J]. Chemical Industry and Engineering Progress, 2024, 43(9): 5226-5233. | |
| [16] | LIU Yucheng, WANG Ziming, CHEN Mingyan, et al. Preparation of sintered brick from thermal desorption residue of oily sludge and analysis of environmental performance[J]. Construction and Building Materials, 2023, 376: 130923. |
| [17] | 王茂仁, 贾悦, 李慧敏, 等. 油基岩屑热脱附工程实验能耗分析与优化[J]. 油气田环境保护, 2022, 32(4): 37-43. |
| WANG Maoren, JIA Yue, LI Huimin, et al. Energy consumption analysis and optimization of thermal desorption engineering experiment for oil drilling cuttings[J]. Environmental Protection of Oil & Gas Fields, 2022, 32(4): 37-43. | |
| [18] | CHOI Byeongwook, LEE Sungjong, Eun Hea JHO. Removal of TPH, UCM, PAHs, and Alk-PAHs in oil-contaminated soil by thermal desorption[J]. Applied Biological Chemistry, 2020, 63(1): 83. |
| [19] | 刘宇程, 王茂仁, 李永刚, 等. 油基岩屑热脱附处理工艺参数优化[J]. 环境工程学报, 2020, 14(6): 1639-1648. |
| LIU Yucheng, WANG Maoren, LI Yonggang, et al. Parameters optimization of thermal desorption process treating oil-based cuttings[J]. Chinese Journal of Environmental Engineering, 2020, 14(6): 1639-1648. | |
| [20] | LIU Yucheng, WANG Ziming, CHEN Mingyan, et al. Potential of thermal desorption residue of oil-based drilling cuttings for use in subgrade materials[J]. Journal of Environmental Engineering, 2023, 149(10), 04023061. |
| [21] | 王海峰, 何社云, 王军, 等. 页岩气勘探开发钻井固废特性鉴别研究[J]. 油气田环境保护, 2021, 31(2): 15-20. |
| WANG Haifeng, HE Sheyun, WANG Jun, et al. Research on identification of solid waste from shale gas exploration and development drilling[J]. Environmental Protection of Oil & Gas Fields, 2021, 31(2): 15-20. | |
| [22] | 郑发, 李浩文, 林法伟, 等. 大庆罐底油泥热解特性及污染物释放特性[J]. 化工进展, 2022, 41(1): 476-484. |
| ZHENG Fa, LI Haowen, LIN Fawei, et al. Pyrolysis characteristics and pollutant release characteristics of Daqing oil sludge[J]. Chemical Industry and Engineering Progress, 2022, 41(1): 476-484. | |
| [23] | 李恒. 涡流和旋转流场中颗粒聚集特性研究[D]. 杭州: 浙江大学, 2020. |
| LI Heng. Study of particle accumulation behavior in vortex and rotating flows[D]. Hangzhou: Zhejiang University, 2020. | |
| [24] | 崔元凯, 张欢. 颗粒间碰撞对槽道湍流中颗粒聚集效应的影响研究[J]. 力学学报, 2024, 56(2): 365-376. |
| CUI Yuankai, ZHANG Huan. Study of the effects of inter-particle collisions on particle accumulation in turbulent channel flows[J]. Chinese Journal of Theoretical and Applied Mechanics, 2024, 56(2): 365-376. | |
| [25] | QUAN Cui, ZHANG Guangtao, GAO Ningbo, et al. Behavior study of migration and transformation of heavy metals during oily sludge pyrolysis[J]. Energy & Fuels, 2022, 36(15): 8311-8322. |
| [26] | ZHANG Ge, YANG Huifen, ZHAO Tong, et al. Highly efficient removal of As(Ⅲ), Zn(Ⅱ), Cu(Ⅱ) and Cd(Ⅱ) in aqueous solution using thermal desorption residue from oil sludge contaminated soil: Performance and mechanism[J]. Journal of Environmental Chemical Engineering, 2022, 10(3): 107668. |
| [27] | 徐建林, 淡小敏, 文琛, 等. 纳米锑颗粒粒径对润滑油摩擦性能的影响[J]. 稀有金属材料与工程, 2018, 47(1): 333-338. |
| XU Jianlin, DAN Xiaomin, WEN Chen, et al. Effect of particle size of antimony nanoparticles on tribological properties of lubricant oil[J]. Rare Metal Materials and Engineering, 2018, 47(1): 333-338. | |
| [28] | 王红娟, 蒋国斌, 赵靓, 等. 油基岩屑热脱附残渣危险特性与利用潜力分析[J]. 能源与环保, 2023, 45(8): 177-183. |
| WANG Hongjuan, JIANG Guobin, ZHAO Liang, et al. Hazard characteristics and utilization potential analysis of thermal desorption residues from oil-based cuttings[J]. China Energy and Environmental Protection, 2023, 45(8): 177-183. | |
| [29] | 李伟栋. 含油污泥热解残渣生态风险评价及资源化利用[D]. 西安: 西安工业大学, 2023. |
| LI Weidong. Ecological risk assessment and resource utilization of pyrolysis residue of oily sludge[D]. Xi’an: Xi’an Technological University, 2023. | |
| [30] | 荆涛. 硫化碱渣的固体废物属性鉴别及其腐蚀性变化规律研究[D]. 兰州: 兰州交通大学, 2020. |
| JING Tao. Study on the property identification of solid waste and the change rule of its corrosiveness [D]. Lanzhou: Lanzhou Jiaotong University, 2020. |
| [1] | DONG Fenglian, LI Peng, WEI Zhiwei, SUN Xin, XU Hekai, HE Chang. Optimization of mixing processing considering crude oil procurement selection [J]. Chemical Industry and Engineering Progress, 2025, 44(8): 4648-4656. |
| [2] | WANG Yangfeng, CAI Haile, ZHANG Shudong, ZHU Zichen, SUO Cong, YANG Yan, HOU Shuandi. Compatibility of petroleum coke based anodes and electrolytes in sodium ion batteries [J]. Chemical Industry and Engineering Progress, 2025, 44(7): 3850-3859. |
| [3] | SU Liangjian, XIAO Junyan, ZHANG Chunguang, ZHAO Yuansheng, YANG Xu. Deep regeneration of fixed-bed HDCCR catalyst [J]. Chemical Industry and Engineering Progress, 2025, 44(2): 728-734. |
| [4] | LIANG Xuebin, WEI Yilin, ZHOU Zhening, ZHAN Hao, ZENG Zhiyong, LENG Lijian, PENG Haoyi. Enhanced biofuels from pharmaceutical process residues: Thermo-chemical conversion characteristics and mechanisms [J]. Chemical Industry and Engineering Progress, 2025, 44(1): 477-489. |
| [5] | LI Letian, LU Shijian, LIU Hanxiao, WU Liming, LIU Ling, KANG Guojun. Progress of desorption and regeneration of organic amine-enriched liquids [J]. Chemical Industry and Engineering Progress, 2025, 44(1): 490-499. |
| [6] | CAO Shuyang, SHI Jingbo, DONG Youming, LYU Jianxiong. Water adsorption and desorption isotherms and thermodynamic properties of Eucalyptus obliqua woods at different temperatures [J]. Chemical Industry and Engineering Progress, 2024, 43(9): 5095-5105. |
| [7] | QUAN Cui, GAO Ningbo, ZHANG Guangtao, SUO Haojie. Leaching characteristics of heavy metals and polycyclic aromatic hydrocarbons from permeable bricks prepared by pyrolysis residue of oily sludge [J]. Chemical Industry and Engineering Progress, 2024, 43(9): 5226-5233. |
| [8] | LI Zihan, SHU Jiancheng, CAO Wenxing, YANG Huimin, CHEN Mengjun. Physicochemical properties of rhodochrosite before and after leaching and the changing law of interface hydration behavior [J]. Chemical Industry and Engineering Progress, 2024, 43(9): 5320-5328. |
| [9] | LIU Wenjin, ZHANG Yuming, LI Jiazhou, ZHANG Wei, CHEN Zhewen. State of the art and prospect of typical petroleum thermal processing technology [J]. Chemical Industry and Engineering Progress, 2024, 43(7): 3534-3550. |
| [10] | YAO Xue, WU Shuhui, YANG Yang, WANG Xiao, FENG Lei, FENG Xuedong, MA Yanfei. Treatment of oily wastewater by oily sludge-based biochar [J]. Chemical Industry and Engineering Progress, 2024, 43(6): 3398-3409. |
| [11] | WU Da, JIANG Shujiao, WEI Qiang, YUAN Shenghua, YANG Gang, ZHANG Cheng. Research progress on efficient utilization technology of residue in energy transition [J]. Chemical Industry and Engineering Progress, 2024, 43(5): 2343-2353. |
| [12] | ZHENG Kexin, JIANG Yuxin, BI Kexin, ZHAO Qiming, CHEN Shaochen, WANG Bingbing, REN Junyu, JI Xu, QIU Tong, DAI Yiyang. Ensemble transfer learning framework for outflow compositions prediction in steam cracking process [J]. Chemical Industry and Engineering Progress, 2024, 43(5): 2880-2889. |
| [13] | LIAO Changjian, ZHANG Kewei, WANG Jing, ZENG Xiangyu, JIN Ping, LIU Zhiyu. Progress on direct air capture of carbon dioxide [J]. Chemical Industry and Engineering Progress, 2024, 43(4): 2031-2048. |
| [14] | LI Lingbo. Practice and development of leak detection and repair technology in petroleum refining and petrochemical industry in the United States [J]. Chemical Industry and Engineering Progress, 2024, 43(4): 2049-2062. |
| [15] | GAO Zenglin, ZHANG Qian, GAO Chenming, YANG Kai, GAO Zhihua, HUANG Wei. Extraction and separation of carbon from coal water slurry gasification coarse slag by waterflow classifier [J]. Chemical Industry and Engineering Progress, 2024, 43(3): 1576-1583. |
| Viewed | ||||||
|
Full text |
|
|||||
|
Abstract |
|
|||||
|
京ICP备12046843号-2;京公网安备 11010102001994号 Copyright © Chemical Industry and Engineering Progress, All Rights Reserved. E-mail: hgjz@cip.com.cn Powered by Beijing Magtech Co. Ltd |