Chemical Industry and Engineering Progress ›› 2024, Vol. 43 ›› Issue (3): 1576-1583.DOI: 10.16085/j.issn.1000-6613.2023-0407
• Resources and environmental engineering • Previous Articles
GAO Zenglin(), ZHANG Qian(), GAO Chenming, YANG Kai, GAO Zhihua, HUANG Wei
Received:
2023-03-17
Revised:
2023-06-24
Online:
2024-04-11
Published:
2024-03-10
Contact:
ZHANG Qian
通讯作者:
张乾
作者简介:
高增林(1994—),男,硕士研究生,研究方向为煤炭清洁高效利用。E-mail:1304110107@qq.com。
基金资助:
CLC Number:
GAO Zenglin, ZHANG Qian, GAO Chenming, YANG Kai, GAO Zhihua, HUANG Wei. Extraction and separation of carbon from coal water slurry gasification coarse slag by waterflow classifier[J]. Chemical Industry and Engineering Progress, 2024, 43(3): 1576-1583.
高增林, 张乾, 高晨明, 杨凯, 高志华, 黄伟. 水煤浆煤气化粗渣水流分级提炭分质[J]. 化工进展, 2024, 43(3): 1576-1583.
Add to citation manager EndNote|Ris|BibTeX
URL: https://hgjz.cip.com.cn/EN/10.16085/j.issn.1000-6613.2023-0407
样品 | 工业分析/% | 元素分析/% | H/C | |||||||
---|---|---|---|---|---|---|---|---|---|---|
Mar | Ad | Vd | FCd | Cd | Hd | Od① | Nd | St.d | ||
原煤 | 4.55 | 16.35 | 34.05 | 49.60 | 66.67 | 3.81 | 11.58 | 0.85 | 0.73 | 0.69 |
粗渣 | 26.18 | 83.04 | 2.15 | 14.81 | 16.72 | 0.05 | 0.01 | 0.04 | 0.14 | 0.04 |
样品 | 工业分析/% | 元素分析/% | H/C | |||||||
---|---|---|---|---|---|---|---|---|---|---|
Mar | Ad | Vd | FCd | Cd | Hd | Od① | Nd | St.d | ||
原煤 | 4.55 | 16.35 | 34.05 | 49.60 | 66.67 | 3.81 | 11.58 | 0.85 | 0.73 | 0.69 |
粗渣 | 26.18 | 83.04 | 2.15 | 14.81 | 16.72 | 0.05 | 0.01 | 0.04 | 0.14 | 0.04 |
样品 | 粗渣 |
---|---|
SiO2 | 38.02 |
Al2O3 | 15.04 |
Fe2O3 | 15.62 |
CaO | 19.68 |
MgO | 5.09 |
SO3 | 0.95 |
TiO2 | 0.85 |
K2O | 2.38 |
ClO2 | 0.46 |
P2O5 | 0.45 |
其他 | 1.48 |
样品 | 粗渣 |
---|---|
SiO2 | 38.02 |
Al2O3 | 15.04 |
Fe2O3 | 15.62 |
CaO | 19.68 |
MgO | 5.09 |
SO3 | 0.95 |
TiO2 | 0.85 |
K2O | 2.38 |
ClO2 | 0.46 |
P2O5 | 0.45 |
其他 | 1.48 |
粒级/mm | 产率/% | 灰分/% | 烧失量/% | 累计产率/% | 筛上灰分/% |
---|---|---|---|---|---|
合计 | 100 | 82.62 | 17.38 | — | — |
>0.5 | 57.46 | 84.58 | 15.42 | 57.46 | 84.58 |
0.5~0.25 | 18.17 | 68.67 | 31.33 | 75.63 | 80.76 |
0.25~0.18 | 8.72 | 79.41 | 20.59 | 84.35 | 80.62 |
0.18~0.15 | 3.63 | 88.10 | 11.90 | 87.98 | 80.93 |
0.15~0.074 | 5.67 | 96.71 | 3.29 | 93.65 | 81.88 |
0.074~0.061 | 3.37 | 95.18 | 4.82 | 97.02 | 82.34 |
0.061~0.043 | 1.86 | 90.02 | 9.98 | 98.88 | 82.49 |
0.043~0.03 | 0.77 | 93.64 | 6.36 | 99.65 | 82.58 |
<0.03 | 0.35 | 94.07 | 5.93 | 100.00 | 82.62 |
粒级/mm | 产率/% | 灰分/% | 烧失量/% | 累计产率/% | 筛上灰分/% |
---|---|---|---|---|---|
合计 | 100 | 82.62 | 17.38 | — | — |
>0.5 | 57.46 | 84.58 | 15.42 | 57.46 | 84.58 |
0.5~0.25 | 18.17 | 68.67 | 31.33 | 75.63 | 80.76 |
0.25~0.18 | 8.72 | 79.41 | 20.59 | 84.35 | 80.62 |
0.18~0.15 | 3.63 | 88.10 | 11.90 | 87.98 | 80.93 |
0.15~0.074 | 5.67 | 96.71 | 3.29 | 93.65 | 81.88 |
0.074~0.061 | 3.37 | 95.18 | 4.82 | 97.02 | 82.34 |
0.061~0.043 | 1.86 | 90.02 | 9.98 | 98.88 | 82.49 |
0.043~0.03 | 0.77 | 93.64 | 6.36 | 99.65 | 82.58 |
<0.03 | 0.35 | 94.07 | 5.93 | 100.00 | 82.62 |
粒级 /mm | 产率 /% | 灰分 /% | 烧失量 /% | 水含量 /% | 密度 /g·cm-3 | 累计产率 /% | 筛上灰分 /% |
---|---|---|---|---|---|---|---|
合计 | 100 | 82.67 | 17.33 | — | — | — | — |
>0.5 | 57.11 | 85.24 | 14.76 | 22.87 | 2.38 | 57.11 | 85.24 |
0.5~0.18 | 25.64 | 73.72 | 26.28 | 47.33 | 2.08 | 82.75 | 81.67 |
<0.18 | 17.25 | 87.47 | 12.53 | 34.58 | 2.58 | 100 | 82.67 |
粒级 /mm | 产率 /% | 灰分 /% | 烧失量 /% | 水含量 /% | 密度 /g·cm-3 | 累计产率 /% | 筛上灰分 /% |
---|---|---|---|---|---|---|---|
合计 | 100 | 82.67 | 17.33 | — | — | — | — |
>0.5 | 57.11 | 85.24 | 14.76 | 22.87 | 2.38 | 57.11 | 85.24 |
0.5~0.18 | 25.64 | 73.72 | 26.28 | 47.33 | 2.08 | 82.75 | 81.67 |
<0.18 | 17.25 | 87.47 | 12.53 | 34.58 | 2.58 | 100 | 82.67 |
粒级/mm | 烧失量/% | 可燃体回收率/% | 综合效率/% | |
---|---|---|---|---|
浮渣 | 尾渣 | |||
>0.5 | 52.98 | 8.05 | 24.84 | 21.02 |
0.5~0.18 | 70.05 | 6.92 | 80.17 | 67.96 |
<0.18 | 43.68 | 3.87 | 28.07 | 22.88 |
合计 | 62.07 | 7.04 | 46.67 | 40.68 |
全粒级分选 | 43.16 | 6.36 | 43.78 | 31.67 |
粒级/mm | 烧失量/% | 可燃体回收率/% | 综合效率/% | |
---|---|---|---|---|
浮渣 | 尾渣 | |||
>0.5 | 52.98 | 8.05 | 24.84 | 21.02 |
0.5~0.18 | 70.05 | 6.92 | 80.17 | 67.96 |
<0.18 | 43.68 | 3.87 | 28.07 | 22.88 |
合计 | 62.07 | 7.04 | 46.67 | 40.68 |
全粒级分选 | 43.16 | 6.36 | 43.78 | 31.67 |
1 | 杨宇, 何则. 中国海外油气依存的现状、地缘风险与应对策略[J]. 资源科学, 2020, 42(8): 1614-1629. |
YANG Yu, HE Ze. China’s overseas oil and gas dependence: Situation, geographical risks, and countermeasures[J]. Resources Science, 2020, 42(8): 1614-1629. | |
2 | 黄晟, 王静宇, 郭沛, 等. 碳中和目标下能源结构优化的近期策略与远期展望[J]. 化工进展, 2022, 41(11): 5695-5708. |
HUANG Sheng, WANG Jingyu, GUO Pei, et al. Short-term strategy and long-term prospect of energy structure optimization under carbon neutrality target[J]. Chemical Industry and Engineering Progress, 2022, 41(11): 5695-5708. | |
3 | 艾军, 郭治, 李克健. 神东煤富惰质组加氢液化反应动力学的研究[J]. 煤炭转化, 2008, 31(2): 25-27. |
AI Jun, GUO Zhi, LI Kejian. Kinetics of hydroliquefaction of Shendong rich inertinite[J]. Coal Conversion, 2008, 31(2): 25-27. | |
4 | 曲江山, 张建波, 孙志刚, 等. 煤气化渣综合利用研究进展[J]. 洁净煤技术, 2020, 26(1): 184-193. |
QU Jiangshan, ZHANG Jianbo, SUN Zhigang, et al. Research progress on comprehensive utilization of coal gasification slag[J]. Clean Coal Technology, 2020, 26(1): 184-193. | |
5 | WANG Yafeng, TANG Yuegang, GUO Xin, et al. Fate of potentially hazardous trace elements during the entrained-flow coal gasification processes in China[J]. Science of the Total Environment, 2019, 668: 854-866. |
6 | 朱菊芬, 李健, 闫龙, 等. 煤气化渣资源化利用研究进展及应用展望[J]. 洁净煤技术, 2021, 27(6): 11-21. |
ZHU Jufen, LI Jian, YAN Long, et al. Research progress and application prospect of coal gasification slag resource utilization[J]. Clean Coal Technology, 2021, 27(6): 11-21. | |
7 | 张一昕, 郭旸, 王如梦, 等. 宁东煤气化细渣及其碳灰分离产物物理化学性质[J]. 煤炭学报, 2021, 46(S2): 1096-1104. |
ZHANG Yixin, GUO Yang, WANG Rumeng, et al. Physicochemical properties of fine slag of Ningdong coal gasification and its carbon-ash separation products[J]. Journal of China Coal Society, 2021, 46(S2): 1096-1104. | |
8 | 商晓甫, 马建立, 张剑, 等. 煤气化炉渣研究现状及利用技术展望[J]. 环境工程技术学报, 2017, 7(6): 712-717. |
SHANG Xiaofu, MA Jianli, ZHANG Jian, et al. Research status and prospects of utilization technologies of slag from coal gasification[J]. Journal of Environmental Engineering Technology, 2017, 7(6): 712-717. | |
9 | LI Zuzhong, ZHANG Yayun, ZHAO Hongyan, et al. Structure characteristics and composition of hydration products of coal gasification slag mixed cement and lime[J]. Construction and Building Materials, 2019, 213: 265-274. |
10 | 赵利杰, 张彤, 黄伟, 等. 煤气化粗渣-矿渣基地质聚合物的制备与性能[J]. 硅酸盐通报, 2022, 41(10): 3542-3547. |
ZHAO Lijie, ZHANG Tong, HUANG Wei, et al. Preparation and properties of coal gasification coarse slag-blast furnace slag based geopolymer[J]. Bulletin of the Chinese Ceramic Society, 2022, 41(10): 3542-3547. | |
11 | MA Chuandong, LI Xiaoteng, Jianqiao LYU, et al. Study on characteristics of coal gasification fine slag-coal water slurry slurrying, combustion, and ash fusion[J]. Fuel, 2023, 332: 126039. |
12 | GUO Yang, MA Chaofan, ZHANG Yixin, et al. Comparative study on the structure characteristics, combustion reactivity, and potential environmental impacts of coal gasification fine slag with different particle size fractions[J]. Fuel, 2022, 311: 122493. |
13 | 叶军建, 高占彬, 吕超, 等. 某干粉煤气化细渣特征及浮选回收残炭研究[J]. 矿业研究与开发, 2021, 41(10): 138-141. |
YE Junjian, GAO Zhanbin, Chao LYU, et al. Characteristics of coal gasification fine slag from a dry powder and recovery of residual carbon by flotation[J]. Mining Research and Development, 2021, 41(10): 138-141. | |
14 | ZHANG Rui, GUO Fangyu, XIA Yangchao, et al. Recovering unburned carbon from gasification fly ash using saline water[J]. Waste Management, 2019, 98: 29-36. |
15 | ZHANG Ling, YANG Fei, TAO Youjun. Removal of unburned carbon from fly ash using enhanced gravity separation and the comparison with froth flotation[J]. Fuel, 2020, 259: 116282. |
16 | XUE Zhonghua, YANG Chongyi, DONG Lianping, et al. Recent advances and conceptualizations in process intensification of coal gasification fine slag flotation[J]. Separation and Purification Technology, 2023, 304: 122394. |
17 | WU Shiyong, HUANG Sheng, JI Liyuan, et al. Structure characteristics and gasification activity of residual carbon from entrained-flow coal gasification slag[J]. Fuel, 2014, 122: 67-75. |
18 | 任振玚, 井云环, 樊盼盼, 等. 气化渣水介重选及其分离炭制备脱硫脱硝活性焦试验研究[J]. 煤炭学报, 2021, 46(4): 1164-1172. |
REN Zhenyang, JING Yunhuan, FAN Panpan, et al. Experimental study on the water-medium gravity separation of gasification slag and the preparation of desulfurization and denitrification activated coke using separated carbon[J]. Journal of China Coal Society, 2021, 46(4): 1164-1172. | |
19 | 李慧泽, 董连平, 鲍卫仁, 等. 基于视密度的煤气化渣水介质旋流炭-灰分离[J]. 化工进展, 2021, 40(3): 1344-1353. |
LI Huize, DONG Lianping, BAO Weiren, et al. Carbon-ash separation of coal gasification slag in swirling water based on apparent density[J]. Chemical Industry and Engineering Progress, 2021, 40(3): 1344-1353. | |
20 | 张乾, 高增林, 黄伟, 等. 水介风力分离装置以及煤气化灰渣分离残炭的方法: CN115069405B[P]. 2023-05-26. |
ZHANG Qian, GAO Zenglin, HUANG Wei, et al. Water medium wind power separation device and method for separating carbon residue from coal gasification ash: CN115069405B[P]. 2023-05-26. | |
21 | 杨润全, 王怀法. 宽粒级煤浮选机流场数值模拟研究[J]. 煤炭学报, 2013, 38(4): 657-661. |
YANG Runquan, WANG Huaifa. A numerical simulation study on the flow field of wide-sizefraction coal flotation machine[J]. Journal of China Coal Society, 2013, 38(4): 657-661. | |
22 | 王凤. 宁东典型气流床煤气化渣的熔融与沉积特性研究[D]. 银川: 宁夏大学, 2020. |
WANG Feng. Study on the melting and fouling characteristics of coal gasification slag[D]. Yinchuan: Ningxia University, 2020. | |
23 | 史达, 张建波, 杨晨年, 等. 煤气化灰渣脱碳技术研究进展[J]. 洁净煤技术, 2020, 26(6): 1-10. |
SHI Da, ZHANG Jianbo, YANG Chennian, et al. Research progress of the decarburization technology of coal gasification ash slag[J]. Clean Coal Technology, 2020, 26(6): 1-10. | |
24 | 王冀, 孔令学, 白进, 等. 煤气化灰渣中残炭对灰渣流动性影响的研究进展[J]. 洁净煤技术, 2021, 27(1): 181-192. |
WANG Ji, KONG Lingxue, BAI Jin, et al. Research progress on the effect of residual carbon in coal gasification slag on ash and slag flow property[J]. Clean Coal Technology, 2021, 27(1): 181-192. | |
25 | LIU Xiaodong, JIN Zhengwei, JING Yunhuan, et al. Review of the characteristics and graded utilisation of coal gasification slag[J]. Chinese Journal of Chemical Engineering, 2021, 35: 92-106. |
26 | 张丽宏, 金要茹, 程芳琴. 煤气化渣资源化利用[J]. 化工进展, 2023, 42(8): 4447-4457. |
ZHANG Lihong, JIN Yaoru, CHENG Fangqin. Resource utilization of coal gasification slag[J]. Chemical Industry and Engineering Progress, 2023, 42(8): 4447-4457. |
[1] | DING Lihua, XU Hongtao, ZHANG Chenyu. Analysis of the heat storage performance of the latent heat storage unit combined with frustum wavy tube [J]. Chemical Industry and Engineering Progress, 2024, 43(3): 1214-1223. |
[2] | LIU Zepeng, ZENG Jijun, TANG Xiaobo, ZHAO Bo, HAN Sheng, LIAO Yuanhao, ZHANG Wei. Thermodynamic properties of four alkyl imidazolium phosphate ionic liquids [J]. Chemical Industry and Engineering Progress, 2024, 43(3): 1484-1491. |
[3] | LIU Zepeng, ZENG Jijun, LIAO Yuanhao, TANG Xiaobo, ZHAO Bo, HAN Sheng, ZHANG Wei. Thermodynamic properties of 1-ethyl-3-methylimidazolium methyl phosphonate and 1-ethyl-3-methylimidazolium ethyl phosphonate [J]. Chemical Industry and Engineering Progress, 2024, 43(2): 1054-1062. |
[4] | ZHANG Lihong, JIN Yaoru, CHENG Fangqin. Resource utilization of coal gasification slag [J]. Chemical Industry and Engineering Progress, 2023, 42(8): 4447-4457. |
[5] | YE Zhendong, LIU Han, LYU Jing, ZHANG Yaning, LIU Hongzhi. Optimization of thermochemical energy storage reactor based on calcium and magnesium binary salt hydrates [J]. Chemical Industry and Engineering Progress, 2023, 42(8): 4307-4314. |
[6] | ZHAO Yi, YANG Zhen, ZHANG Xinwei, WANG Gang, YANG Xuan. Molecular simulation of self-healing behavior of asphalt under different crack damage and healing temperature [J]. Chemical Industry and Engineering Progress, 2023, 42(6): 3147-3156. |
[7] | WANG Yuzhuo, LI Gang. S,N co-doped three-dimensional graphene for all-solid-state supercapacitors [J]. Chemical Industry and Engineering Progress, 2023, 42(4): 1974-1982. |
[8] | MI Zehao, HUA Er. Theoretical analysis of CO2 absorption by polyamines-TFSA type protic ionic liquids [J]. Chemical Industry and Engineering Progress, 2023, 42(11): 6015-6030. |
[9] | WANG Zhen, YAN Ting, HUO Yingjie. Performance of thermochemical sorption heat storage using manganese chloride/ammonia [J]. Chemical Industry and Engineering Progress, 2022, 41(8): 4425-4431. |
[10] | LIU Huanbo, LI Jian, YAN Beibei, DONG Xiaoshan, CHEN Guanyi. Research progress of wet torrefaction technology [J]. Chemical Industry and Engineering Progress, 2022, 41(6): 3221-3234. |
[11] | SUN Deyun, HU Yanhong, LIU Peng, TANG Mao, HU Ze, LIU Zhaogang, WU Jinxiu. Interaction mechanism of CTAB and Ce3+ in different cerium salt systems (nitrate, sulfate, chloride) [J]. Chemical Industry and Engineering Progress, 2022, 41(6): 3212-3220. |
[12] | FANG Yufei, DING Donghai, XIAO Guoqing, FU Pengcheng, ZHONG Xiaochuan, ZHU Xianfeng. Progress in academic and application researches on ceramic proppant [J]. Chemical Industry and Engineering Progress, 2022, 41(5): 2511-2525. |
[13] | LYU Feiyong, CHU Mo, YI Haoran, HAO Yan, YANG Yanbo, SHI Xu, SUN Xingbo. Distribution characteristics of magnetic ash particles in gasification slag of different particle sizes [J]. Chemical Industry and Engineering Progress, 2022, 41(5): 2372-2378. |
[14] | LI Haoyang, ZHANG Wei, LI Xiaosen, XU Chungang. Research process of hydrate-based hydrogen storage [J]. Chemical Industry and Engineering Progress, 2022, 41(12): 6285-6294. |
[15] | LI Dan, ZHANG Boya, LIU Bohong, TAO Yang, XIONG Zi’ang, HOU Sanying. Research progress on low platinum load and high stable membrane electrode assembly of proton exchange membrane fuel cell [J]. Chemical Industry and Engineering Progress, 2021, 40(S2): 89-100. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||
京ICP备12046843号-2;京公网安备 11010102001994号 Copyright © Chemical Industry and Engineering Progress, All Rights Reserved. E-mail: hgjz@cip.com.cn Powered by Beijing Magtech Co. Ltd |