Chemical Industry and Engineering Progress ›› 2025, Vol. 44 ›› Issue (4): 2328-2337.DOI: 10.16085/j.issn.1000-6613.2024-0483
• Resources and environmental engineering • Previous Articles Next Articles
DOU Yu1,2(
), WANG Wenxuan3, FAN Chunlei4, MA Jiliang1,2, LIANG Cai1,2, CHEN Xiaoping1,2(
)
Received:2024-03-25
Revised:2024-06-24
Online:2025-05-07
Published:2025-04-25
Contact:
CHEN Xiaoping
窦玉1,2(
), 王文选3, 范春雷4, 马吉亮1,2, 梁财1,2, 陈晓平1,2(
)
通讯作者:
陈晓平
作者简介:窦玉(1999—),男,硕士研究生,研究方向为CO2减排技术与固废资源化利用。E-mail:2281396412@qq.com。
基金资助:CLC Number:
DOU Yu, WANG Wenxuan, FAN Chunlei, MA Jiliang, LIANG Cai, CHEN Xiaoping. Preparation of vaterite CaCO3 by mineralizing CO2 from desulfurized gypsum[J]. Chemical Industry and Engineering Progress, 2025, 44(4): 2328-2337.
窦玉, 王文选, 范春雷, 马吉亮, 梁财, 陈晓平. 脱硫石膏矿化CO2制备球霰石碳酸钙[J]. 化工进展, 2025, 44(4): 2328-2337.
Add to citation manager EndNote|Ris|BibTeX
URL: https://hgjz.cip.com.cn/EN/10.16085/j.issn.1000-6613.2024-0483
| 成分 | 质量分数/% |
|---|---|
| CaO | 36.40 |
| SO3 | 38.00 |
| SiO2 | 2.65 |
| Fe2O3 | 0.22 |
| Al2O3 | 0.61 |
| K2O | 0.08 |
| MgO | 0.36 |
| 结晶水 | 20.91 |
| 成分 | 质量分数/% |
|---|---|
| CaO | 36.40 |
| SO3 | 38.00 |
| SiO2 | 2.65 |
| Fe2O3 | 0.22 |
| Al2O3 | 0.61 |
| K2O | 0.08 |
| MgO | 0.36 |
| 结晶水 | 20.91 |
| 元素 | 质量分数/% |
|---|---|
| S | 1.38 |
| Si | 1.36 |
| F | 0.82 |
| Al | 0.64 |
| Fe | 0.60 |
| Na | 0.25 |
| K | 0.15 |
| Mg | 0.13 |
| Ti | 0.08 |
| Sr | 0.08 |
| Cl | 0.03 |
| Zn | 0.02 |
| P | 0.02 |
| 元素 | 质量分数/% |
|---|---|
| S | 1.38 |
| Si | 1.36 |
| F | 0.82 |
| Al | 0.64 |
| Fe | 0.60 |
| Na | 0.25 |
| K | 0.15 |
| Mg | 0.13 |
| Ti | 0.08 |
| Sr | 0.08 |
| Cl | 0.03 |
| Zn | 0.02 |
| P | 0.02 |
| 取样 质量/g | 定容 体积/mL | 稀释 系数 | 所测 元素 | 仪器读数 /mg·L-1 | 换算含量 /mg·kg-1 | 国家标准 /mg·kg-1 |
|---|---|---|---|---|---|---|
| 0.1058 | 25 | 1 | As | 0.0033 | 0.8 | ≤10 |
| 0.1058 | 25 | 1 | Cd | 0.0004 | 0.1 | ≤10 |
| 0.1058 | 25 | 1 | Co | 0.0114 | 2.7 | |
| 0.1058 | 25 | 1 | Cr | 0.0361 | 8.5 | ≤50 |
| 0.1058 | 25 | 1 | Cu | 0.0057 | 1.3 | |
| 0.1058 | 25 | 1 | Ni | 0.0023 | 0.5 | |
| 0.1058 | 25 | 1 | Pb | 0.0019 | 0.4 | ≤50 |
| 0.1058 | 25 | 1 | Sb | 0.0027 | 0.6 | |
| 0.1058 | 25 | 1 | Tl | 0.0013 | 0.3 | |
| 0.1058 | 25 | 1 | V | 0.0009 | 0.2 |
| 取样 质量/g | 定容 体积/mL | 稀释 系数 | 所测 元素 | 仪器读数 /mg·L-1 | 换算含量 /mg·kg-1 | 国家标准 /mg·kg-1 |
|---|---|---|---|---|---|---|
| 0.1058 | 25 | 1 | As | 0.0033 | 0.8 | ≤10 |
| 0.1058 | 25 | 1 | Cd | 0.0004 | 0.1 | ≤10 |
| 0.1058 | 25 | 1 | Co | 0.0114 | 2.7 | |
| 0.1058 | 25 | 1 | Cr | 0.0361 | 8.5 | ≤50 |
| 0.1058 | 25 | 1 | Cu | 0.0057 | 1.3 | |
| 0.1058 | 25 | 1 | Ni | 0.0023 | 0.5 | |
| 0.1058 | 25 | 1 | Pb | 0.0019 | 0.4 | ≤50 |
| 0.1058 | 25 | 1 | Sb | 0.0027 | 0.6 | |
| 0.1058 | 25 | 1 | Tl | 0.0013 | 0.3 | |
| 0.1058 | 25 | 1 | V | 0.0009 | 0.2 |
| 1 | 曹建宗, 刘琦, 陈文通,等. 典型湿法脱硫系统存在的问题及人工智能在优化运行中的应用[J]. 化工进展, 2020, 39(S1): 242-249 |
| CAO Jianzong, LIU Qi, CHEN Wentong, et al. Problems of typical wet desulfurization system and application of artificial intelligence in optimal operation[J]. Chemical Industry and Engineering Progress, 2020, 39(S1): 242-249. | |
| 2 | AAKRITI, MAITI Soumitra, JAIN Neeraj, et al. A comprehensive review of flue gas desulphurized gypsum: Production, properties, and applications[J]. Construction and Building Materials, 2023, 393: 131918. |
| 3 | 王文飚, 许月阳, 薛建明,等. 燃煤电厂脱硫技术研究进展及建议[J]. 电力科技与环保, 2020, 36(3): 1-5. |
| WANG Wenbiao, XU Yueyang, XUE Jianming, et al. The research progress and suggestions of desulfurization technology in coal-fired power plants[J]. Electric Power Technology and Environmental Protection, 2020, 36(3): 1-5. | |
| 4 | 郭程程. 小型热电厂烟气脱硫系统改造设计优化与实践[J]. 电力科技与环保, 2020, 36(3): 42-44. |
| GUO Chengcheng. Optimization and practice about desulfurization reform in small thermal power plants[J]. Electric Power Technology and Environmental Protection, 2020, 36(3): 42-44. | |
| 5 | WANG Guodong, HOU Zhiwei, ZHAN Li, et al. Integrated numerical simulation of CO2 flooding, heat recovery and storage in high temperature reservoir[J]. Petroleum Science and Technology, 2023, 41(12): 1250-1271. |
| 6 | FREEMAN C L, HARDING J H. The transformation of amorphous calcium carbonate to calcite and classical nucleation theory[J]. Journal of Crystal Growth, 2023, 603: 126978. |
| 7 | Anett LÁZÁR, Zsombor MOLNÁR, Attila DEMÉNY, et al. Insights into the amorphous calcium carbonate (ACC) → ikaite → calcite transformations[J]. CrystEngComm, 2023, 25(5): 738-750. |
| 8 | ZHANG Shuheng, NAHI Ouassef, CHEN Li, et al. Magnesium ions direct the solid-state transformation of amorphous calcium carbonate thin films to aragonite, magnesium-calcite, or dolomite[J]. Advanced Functional Materials, 2022, 32(25): 2201394. |
| 9 | LUO Mingzhi, ZHANG Guoquan, FANG Yuguo, et al. Calcium carbonate crystallization process from the mineralization of calcium chloride waste[J]. Separation and Purification Technology, 2023, 319: 124066. |
| 10 | MARMO Vitor Luca Moura, AMBRÓSIO Jéssica A R, GONÇALVES Erika Peterson, et al. Vaterite microparticle-loaded methylene blue for photodynamic activity in macrophages infected with Leishmania braziliensis [J]. Photochemical & Photobiological Sciences, 2023, 22(8): 1977-1989. |
| 11 | WILLIAMS Jonah M, ZHAO Diandian, MOON Seokyoon, et al. Stabilization of pure vaterite during carbon mineralization: Defining critical activities, additive concentrations, and gas flow conditions for carbon utilization[J]. Crystal Growth & Design, 2023, 23(11): 8103-8115. |
| 12 | Xingyuan SAN, HU Junwei, CHEN Mingyi, et al. Unlocking the mysterious polytypic features within vaterite CaCO3 [J]. Nature Communications, 2023, 14(1): 7858. |
| 13 | 丁文金, 姚金, 乔静怡, 等. 磷石膏矿化CO2制备高纯碳酸钙及产物调控[J]. 矿产保护与利用, 2022, 42(4): 104-112. |
| DING Wenjin, YAO Jin, QIAO Jingyi, et al. Preparation of high-purity CaCO3 from phosphogypsum by CO2 mineralization and product control[J]. Conservation and Utilization of Mineral Resources, 2022, 42(4): 104-112. | |
| 14 | 李文秀, 杨宇航, 黄艳, 等. 二氧化碳矿化高钙基固废制备微细碳酸钙研究进展[J]. 化工进展, 2023, 42(4): 2047-2057. |
| LI Wenxiu, YANG Yuhang, HUANG Yan, et al. Preparation of ultrafine calcium carbonate by CO2 mineralization using high calcium-based solid waste[J]. Chemical Industry and Engineering Progress, 2023, 42(4): 2047-2057. | |
| 15 | SASAMOTO Ryo, KANDA Yasuharu, YAMANAKA Shinya. Difference in cadmium chemisorption on calcite and vaterite porous particles[J]. Chemosphere, 2022, 297: 134057. |
| 16 | FEBRIDA Renny, CAHYANTO Arief, HERDA Ellyza, et al. Synthesis and characterization of porous CaCO3 vaterite particles by simple solution method[J]. Materials, 2021, 14(16): 4425. |
| 17 | TRUSHINA Daria B, BORODINA Tatiana N, BELYAKOV Sergei, et al. Calcium carbonate vaterite particles for drug delivery: Advances and challenges[J]. Materials Today Advances, 2022, 14: 100214. |
| 18 | LUO Wenli, LI Zhaojian, ZHANG Ling, et al. Polyethylenimine-CO2 adduct templated CaCO3 nanoparticles as anticancer drug carrier[J]. Cancer Nanotechnology, 2023, 14(1): 7. |
| 19 | ABAKUMOVA Tatiana O, GUSLIAKOVA Olga I, CVJETINOVIC Julijana, et al. Barnase-loaded vaterite nanoparticles functionalized by EpCAM targeting vectors for the treatment of lung diseases[J]. ACS Applied Nano Materials, 2022, 5(8): 10744-10754. |
| 20 | Donata KONOPACKA-ŁYSKAWA. Synthesis methods and favorable conditions for spherical vaterite precipitation: A review[J]. Crystals, 2019, 9(4): 223. |
| 21 | 王宇轩, 徐颖, 王东平, 等. 球霰石的性质及其应用进展[J]. 安徽理工大学学报(自然科学版), 2017, 37(2): 76-80. |
| WANG Yuxuan, XU Ying, WANG Dongping, et al. Properties and applications of vaterite[J]. Journal of Anhui University of Science and Technology (Natural Science), 2017, 37(2): 76-80. | |
| 22 | LAI Yonghua, CHEN Liangsen, BAO Weichao, et al. Glycine-mediated, selective preparation of monodisperse spherical vaterite calcium carbonate in various reaction systems[J]. Crystal Growth & Design, 2015, 15(3): 1194-1200. |
| 23 | GUO Yuming, WANG Feifei, ZHANG Jie, et al. Biomimetic synthesis of calcium carbonate with different morphologies under the direction of different amino acids[J]. Research on Chemical Intermediates, 2013, 39(6): 2407-2415. |
| 24 | 王波. 脱硫石膏矿化CO2制备均一球霰石型CaCO3机理研究[D]. 太原: 山西大学, 2021. |
| WANG Bo. Study on mechanism of preparation of uniform vaterite-type CaCO3 via CO2 mineralization by flue gas desulfurization gypsum[D]. Taiyuan: Shanxi University, 2021. | |
| 25 | SARKAR Arpita, DUTTA Kingshuk, MAHAPATRA Samiran. Polymorph control of calcium carbonate using insoluble layered double hydroxide[J]. Crystal Growth & Design, 2013, 13(1): 204-211. |
| 26 | ZHAO Diandian, WILLIAMS Jonah M, HOU Pengkun, et al. Stabilizing mechanisms of metastable vaterite in cement systems[J]. Cement and Concrete Research, 2024, 178: 107441. |
| 27 | NAKANISHI Yurie, CHENG Bohan, RICHARDSON Joseph J, et al. Using phenolic polymers to control the size and morphology of calcium carbonate microparticles[J]. RSC Advances, 2023, 13(43): 30539-30547. |
| 28 | SONG Kyungsun, JANG Young-Nam, KIM Wonbaek, et al. Precipitation of calcium carbonate during direct aqueous carbonation of flue gas desulfurization gypsum[J]. Chemical Engineering Journal, 2012, 213: 251-258. |
| 29 | LI Qing, DING Yi, LI Fanqing, et al. Solvothermal growth of vaterite in the presence of ethylene glycol, 1, 2-propanediol and glycerin[J]. Journal of Crystal Growth, 2002, 236(1/2/3): 357-362. |
| 30 | POLAT Sevgi. Experimental investigations on the effects of asparagine and serine on the polymorphism of calcium carbonate[J]. Advanced Powder Technology, 2020, 31(10): 4282-4291. |
| 31 | MENAHEM Tali, MASTAI Yitzhak. Controlled crystallization of calcium carbonate superstructures in macroemulsions[J]. Journal of Crystal Growth, 2008, 310(15): 3552-3556. |
| 32 | XU Meng, YUAN Liang, ZHANG Shuiqin, et al. Effects of a preparation containing amino acids on pakchoi nutrient absorption, yield, and quality when grown in saline-alkali soil[J]. Agriculture, 2023, 13(4): 863. |
| 33 | ZIMMERMANN Sandra E, BENSTEIN Ruben M, María FLORES-TORNERO, et al. The phosphorylated pathway of serine biosynthesis links plant growth with nitrogen metabolism[J]. Plant Physiology, 2021, 186(3): 1487-1506. |
| [1] | WANG Ning, LU Shijian, LIU Ling, LIANG Jing, LIU Miaomiao, SUN Mengyuan, KANG Guojun. Research progress of catalytic regeneration for energy-efficient CO2 capture in amine absorption system [J]. Chemical Industry and Engineering Progress, 2025, 44(1): 445-464. |
| [2] | LI Letian, LU Shijian, LIU Hanxiao, WU Liming, LIU Ling, KANG Guojun. Progress of desorption and regeneration of organic amine-enriched liquids [J]. Chemical Industry and Engineering Progress, 2025, 44(1): 490-499. |
| [3] | LU Shijian, ZHANG Juanjuan, YANG Fei, LIU Ling, CHEN Siming, KANG Guojun, FANG Qinqin. Research progress of amine escape control technology by chemical absorption method [J]. Chemical Industry and Engineering Progress, 2024, 43(8): 4562-4570. |
| [4] | LI Weijie, LU Leilei, LI Deke, WANG Chunhang, ZHANG Zuming, TAN Qiang. Lithium-ion battery disassembly and recycling technology and progress [J]. Chemical Industry and Engineering Progress, 2024, 43(8): 4601-4613. |
| [5] | LIU Kefeng, LIU Taoran, CAI Yong, HU Xuesheng, DONG Weigang, ZHOU Huaqun, GAO Fei. Progress in research and engineering demonstration of CO2 capture technology [J]. Chemical Industry and Engineering Progress, 2024, 43(6): 2901-2914. |
| [6] | ZHI Yuan, MA Jiliang, CHEN Xiaoping, LIU Daoyin, LIANG Cai. Decarbonization capability of supported Na-based CO2 adsorbents prepared by fluidized bed spray impregnation [J]. Chemical Industry and Engineering Progress, 2024, 43(6): 2961-2967. |
| [7] | XIAN Xuequan, DU Fangli, LIU Zhonglin, LIU Wanyu, LI Yanming, LONG Siyu, HUANG Hualin. Preparation and formation mechanism of vaterite calcium carbonate microspheres by PEG/Na2CO3 aqueous two-phase emulsion method [J]. Chemical Industry and Engineering Progress, 2024, 43(6): 3221-3231. |
| [8] | MIAO Yihe, WANG Yaozu, LIU Yuhang, ZHU Xuancan, LI Jia, YU Lijun. Research progress on the improving effect of additives on supported amine adsorbents for carbon capture [J]. Chemical Industry and Engineering Progress, 2024, 43(5): 2739-2759. |
| [9] | GAO Fanxiang, LIU Yang, ZHANG Guiquan, QIN Feng, YAO Jiantao, JIN Hui, SHI Jinwen. Research progress of wet process synergistic desulfurization and decarbonization technology for coal-fired flue gas [J]. Chemical Industry and Engineering Progress, 2024, 43(5): 2324-2342. |
| [10] | SUN Weiji, LIU Lang, FANG Zhiyu, ZHU Mengbo, XIE Geng, HE Wei, GAO Yuheng. Technique of wet carbonation of modified magnesium slag [J]. Chemical Industry and Engineering Progress, 2024, 43(4): 2161-2173. |
| [11] | XU Zewen, WANG Ming, WANG Qiang, HOU Yingfei. Recent advances in amine-rich membrane for CO2 separation [J]. Chemical Industry and Engineering Progress, 2024, 43(3): 1374-1386. |
| [12] | CHU Zhenpu, CHEN Yumeng, LI Junguo, SUN Qingxuan, LIU Ke. Review on recycling of graphite anode from spent lithium-ion batteries [J]. Chemical Industry and Engineering Progress, 2024, 43(3): 1524-1534. |
| [13] | QIN Xue, ZHAO Chuanwen, HUANG Pu, ZENG Pengxin, SUN Jian, GUO Yafei. Preparation and performance optimization of Na2CO3-based CO2 forming adsorbent by graphite-casting method [J]. Chemical Industry and Engineering Progress, 2024, 43(12): 7095-7104. |
| [14] | WU Dawei, YIN Yihan, CAO Zhiyong, LIN Haizhou, FAN Yongchun, GAO Hongxia, LIANG Zhiwu. Experimental study on CO2 mass transfer performance of TETA-DEEA-TMS-H2O phase separation absorbent in hollow fiber membrane contactor [J]. Chemical Industry and Engineering Progress, 2024, 43(11): 6039-6048. |
| [15] | WEI Shihui, ZHENG Xuan, WANG Yan, WANG Yang, JI Long, YAN Shuiping. Desorption performance of CO2-rich ammonia aqueous via CO2 mineralization using biomass ash [J]. Chemical Industry and Engineering Progress, 2024, 43(10): 5950-5957. |
| Viewed | ||||||
|
Full text |
|
|||||
|
Abstract |
|
|||||
|
京ICP备12046843号-2;京公网安备 11010102001994号 Copyright © Chemical Industry and Engineering Progress, All Rights Reserved. E-mail: hgjz@cip.com.cn Powered by Beijing Magtech Co. Ltd |