Chemical Industry and Engineering Progress ›› 2024, Vol. 43 ›› Issue (8): 4562-4570.DOI: 10.16085/j.issn.1000-6613.2023-1205
• Resources and environmental engineering • Previous Articles
LU Shijian1,2,3(), ZHANG Juanjuan1,2,3(), YANG Fei1,2,3, LIU Ling1,2,3, CHEN Siming1,2,3, KANG Guojun1,2,3, FANG Qinqin4
Received:
2023-07-16
Revised:
2023-08-09
Online:
2024-09-02
Published:
2024-08-15
Contact:
LU Shijian, ZHANG Juanjuan
陆诗建1,2,3(), 张娟娟1,2,3(), 杨菲1,2,3, 刘玲1,2,3, 陈思铭1,2,3, 康国俊1,2,3, 房芹芹4
通讯作者:
陆诗建,张娟娟
作者简介:
陆诗建(1984—),博士,研究员,研究方向为CCUS与废气治理技术。E-mail:lushijian@cumt.edu.cn。
基金资助:
CLC Number:
LU Shijian, ZHANG Juanjuan, YANG Fei, LIU Ling, CHEN Siming, KANG Guojun, FANG Qinqin. Research progress of amine escape control technology by chemical absorption method[J]. Chemical Industry and Engineering Progress, 2024, 43(8): 4562-4570.
陆诗建, 张娟娟, 杨菲, 刘玲, 陈思铭, 康国俊, 房芹芹. 化学吸收法胺液逃逸控制技术研究进展[J]. 化工进展, 2024, 43(8): 4562-4570.
Add to citation manager EndNote|Ris|BibTeX
URL: https://hgjz.cip.com.cn/EN/10.16085/j.issn.1000-6613.2023-1205
排放类型 | 形态 | 产生原因 | 吸收塔后胺排放数量级/10-6 | 控制难点 |
---|---|---|---|---|
物理夹带 | 液滴 D≥100μm | 气液接触时部分吸收剂被气流携带 | <1 | — |
气体 | 气态 | 吸收剂及其降解产物挥发 | 0~100 | NH3等降解产物水溶速率较慢 |
气溶胶 | 气溶胶颗粒 100μm>D>1nm | 吸收塔内非均相成核、均相成核、气泡破裂等 | 0~1000 | D<3μm 气溶胶颗粒容易穿过水洗或除雾器,难以控制 |
排放类型 | 形态 | 产生原因 | 吸收塔后胺排放数量级/10-6 | 控制难点 |
---|---|---|---|---|
物理夹带 | 液滴 D≥100μm | 气液接触时部分吸收剂被气流携带 | <1 | — |
气体 | 气态 | 吸收剂及其降解产物挥发 | 0~100 | NH3等降解产物水溶速率较慢 |
气溶胶 | 气溶胶颗粒 100μm>D>1nm | 吸收塔内非均相成核、均相成核、气泡破裂等 | 0~1000 | D<3μm 气溶胶颗粒容易穿过水洗或除雾器,难以控制 |
控制方法 | 优缺点 |
---|---|
改进吸收剂性质 | 通过研发具有较低挥发性的吸收剂,可以减少胺逃逸。优点是技术相对简单,不需要增加额外的设备,能够有效降低胺的挥发性;缺点是可能会对吸收剂的捕集性能和成本产生一定的影响 |
加大分离设备 | 增加分离设备的尺寸和效率,使得气相中的胺能够更好地被捕集和回收,减少胺逃逸。优点是有效降低胺的排放,提高捕集效率;缺点是需要增加投资和能耗,对系统运行成本有一定影响 |
使用新型捕集材料 | 研发新型捕集材料,如吸附剂和膜分离技术,可以实现更高效的CO2捕集,减少胺逃逸。优点是具有更高的选择性和捕集效率,能够适应不同工况需求;缺点是研发和应用新材料可能存在技术和经济风险 |
控制运行参数 | 调整吸收塔的运行参数,如温度、压力和流速等,以控制胺的挥发和逃逸。优点是技术相对成熟,能够快速实施;缺点是需要对系统进行精细调控,可能会影响其他工艺参数和能耗 |
应用新技术 | 利用先进的控制技术,如智能监测和自动控制系统,实时监测和调整胺逃逸情况。优点是能够实现智能化运行,提高系统稳定性和减少人工干预;缺点是投资和技术需求较高 |
控制方法 | 优缺点 |
---|---|
改进吸收剂性质 | 通过研发具有较低挥发性的吸收剂,可以减少胺逃逸。优点是技术相对简单,不需要增加额外的设备,能够有效降低胺的挥发性;缺点是可能会对吸收剂的捕集性能和成本产生一定的影响 |
加大分离设备 | 增加分离设备的尺寸和效率,使得气相中的胺能够更好地被捕集和回收,减少胺逃逸。优点是有效降低胺的排放,提高捕集效率;缺点是需要增加投资和能耗,对系统运行成本有一定影响 |
使用新型捕集材料 | 研发新型捕集材料,如吸附剂和膜分离技术,可以实现更高效的CO2捕集,减少胺逃逸。优点是具有更高的选择性和捕集效率,能够适应不同工况需求;缺点是研发和应用新材料可能存在技术和经济风险 |
控制运行参数 | 调整吸收塔的运行参数,如温度、压力和流速等,以控制胺的挥发和逃逸。优点是技术相对成熟,能够快速实施;缺点是需要对系统进行精细调控,可能会影响其他工艺参数和能耗 |
应用新技术 | 利用先进的控制技术,如智能监测和自动控制系统,实时监测和调整胺逃逸情况。优点是能够实现智能化运行,提高系统稳定性和减少人工干预;缺点是投资和技术需求较高 |
1 | 陆诗建, 贡玉萍, 刘玲, 等. 有机胺CO2吸收技术研究现状与发展方向[J]. 洁净煤技术, 2022, 28(9): 44-54. |
LU Shijian, GONG Yuping, LIU Ling, et al. Research status and future development direction of CO2 absorption technology for organic amine[J]. Clean Coal Technology, 2022, 28(9): 44-54. | |
2 | 陆诗建, 张娟娟, 刘玲, 等. 工业源二氧化碳捕集技术进展与发展趋势[J]. 现代化工, 2022, 42(11): 59-64. |
LU Shijian, ZHANG Juanjuan, LIU Ling, et al. Progress and development trend of industry-sourced carbon dioxide capture technology[J]. Modern Chemical Industry, 2022, 42(11): 59-64. | |
3 | 卢静. 美国能源部100万吨CO2捕集与封存项目[J]. 中国电力, 2015, 48(2): 110. |
LU Jing. 1 million tons of CO2 capture and storage project of US Department of Energy[J]. Electric Power, 2015, 48(2): 110. | |
4 | 方圆. 落实“双碳”目标化工建设企业大有可为——陕西国华锦界15万t/a二氧化碳捕集(CCS)示范工程建设纪实[J]. 石油化工建设, 2021, 43(5): 1-5. |
FANG Yuan. There is a bright future for chemical construction enterprises to achieve the goal of “double carbon”—On-the-spot record of 150, 000 t/a carbon dioxide capture (CCS) demonstration project in Shanxi Guohua Jinjie[J]. Petroleum and Chemical Construction, 2021, 43(5): 1-5. | |
5 | 陆诗建, 刘苗苗, 刘玲, 等. 烟气胺法CO2捕集技术进展与未来发展趋势[J]. 化工进展, 2023, 42(1): 435-444. |
LU Shijian, LIU Miaomiao, LIU Ling, et al. Progress and future development trend of CO2 capture technology by amine method in flue gas[J]. Chemical Industry and Engineering Progress, 2023, 42(1): 435-444. | |
6 | LIANG Wanqiao, HUANG Jihuan, XIAO Penny, et al. Amine-immobilized HY zeolite for CO2 capture from hot flue gas[J]. Chinese Journal of Chemical Engineering, 2022, 43: 335-342. |
7 | LIU Jialin, WONG David Shan-Hill, CHEN Dingsou. Energy-saving performance of the process modifications for carbon capture by diluted aqueous ammonia[J]. Journal of the Taiwan Institute of Chemical Engineers, 2022, 130: 103966. |
8 | 陆诗建, 张媛媛, 吴文华, 等. 百万吨级CO2捕集项目亚硝胺污染物扩散健康风险评估[J]. 化工进展, 2023, 42(6): 3209-3216. |
LU Shijian, ZHANG Yuanyuan, WU Wenhua, et al. Health risk assessment of nitrosamine pollutant diffusion in a million ton CO2 capture project[J]. Chemical Industry and Engineering Progress, 2023, 42(6): 3209-3216. | |
9 | ZHANG Minkai, GUO Yincheng. Rate based modeling of absorption and regeneration for CO2 capture by aqueous ammonia solution[J]. Applied Energy, 2013, 111: 142-152. |
10 | SLAVU Nela, BADEA Adrian, DINCA Cristian. Optimal parameters of the aqueous ammonia process for CO2 separation[C]//2019 International Conference on ENERGY and ENVIRONMENT (CIEM). October, 17-19, 2019, Timisoara, Romania. IEEE, 2019: 64-68. |
11 | LI Wei, LANDON James, IRVIN Bradley, et al. Use of carbon steel for construction of post-combustion CO2 capture facilities: A pilot-scale corrosion study[J]. Industrial & Engineering Chemistry Research, 2017, 56(16): 4792-4803. |
12 | MA Shuangchen, CHEN Gongda, GAO Ran, et al. Experimental research of ammonia escape in CO2 absorption using ammonia solution in wetted-wall column[J]. International Journal of Greenhouse Gas Control, 2016, 51: 254-259. |
13 | SPIETZ T, STEC M, TATARCZUK A, et al. Reduction of amines emission and their volatile degradation products[J]. Chemik Science-Technique-Market, 2015, 69(10): 625-634. |
14 | 刘飞, 祁志福, 方梦祥, 等. 用于烟气二氧化碳捕集的有机胺挥发性研究进展[J]. 热力发电, 2022, 51(1): 33-43. |
LIU Fei, QI Zhifu, FANG Mengxiang, et al. Research progress of amine volatility for carbon dioxide capture from flue gas[J]. Thermal Power Generation, 2022, 51(1): 33-43. | |
15 | 方梦祥, 狄闻韬, 易宁彤, 等. CO2化学吸收系统污染物排放与控制研究进展[J]. 洁净煤技术, 2021, 27(2): 8-16. |
FANG Mengxiang, DI Wentao, YI Ningtong, et al. Research progress on pollutant emission and control from CO2 chemical absorption system[J]. Clean Coal Technology, 2021, 27(2): 8-16. | |
16 | SILVA Eirik F DA, KOLDERUP Herman, GOETHEER Earl, et al. Emission studies from a CO2 capture pilot plant[J]. Energy Procedia, 2013, 37: 778-783. |
17 | NGUYEN Thu, HILLIARD Marcus, ROCHELLE Gary. Volatility of aqueous amines in CO2 capture[J]. Energy Procedia, 2011, 4: 1624-1630. |
18 | KHAKHARIA Purvil, BRACHERT Leonie, MERTENS Jan, et al. Understanding aerosol based emissions in a Post Combustion CO2 Capture process: Parameter testing and mechanisms[J]. International Journal of Greenhouse Gas Control, 2015, 34: 63-74. |
19 | WANG Fu, ZHAO Jun, MIAO He, et al. Current status and challenges of the ammonia escape inhibition technologies in ammonia-based CO2 capture process[J]. Applied Energy, 2018, 230: 734-749. |
20 | 易宁彤, 狄闻韬, 方梦祥, 等. CO2化学吸收系统有机胺排放与控制研究[C]//第二十四届大气污染防治技术研讨会论文集. 广州, 2020: 157-163. |
YI Ningtong, DI Wentao, Fang mengxiang, et al. Study on emission and control of organic amines in CO2 chemical absorption system[C]//Proceedings of the 24th Symposium on air pollution prevention and control technology. Guangzhou, 2020: 157-163. | |
21 | 林海周, 裴爱国, 方梦祥. 燃煤电厂烟气二氧化碳胺法捕集工艺改进研究进展[J]. 化工进展, 2018, 37(12): 4874-4886. |
LIN Haizhou, PEI Aiguo, FANG Mengxiang. Progress of research on process modifications for amine solvent-based post combustion CO2 capture from coal-fired power plant[J]. Chemical Industry and Engineering Progress, 2018, 37(12): 4874-4886. | |
22 | YU Hai, QI Guojie, WANG Shujuan, et al. Results from trialling aqueous ammonia-based post-combustion capture in a pilot plant at Munmorah Power Station: Gas purity and solid precipitation in the stripper[J]. International Journal of Greenhouse Gas Control, 2012, 10: 15-25. |
23 | KHAKHARIA Purvil, HUIZINGA Arjen, JURADO LOPEZ Cristina, et al. Acid wash scrubbing as a countermeasure for ammonia emissions from a postcombustion CO2 capture plant[J]. Industrial & Engineering Chemistry Research, 2014, 53(33): 13195-13204. |
24 | MA Shuangchen, SONG Huihui, WANG Mengxuan, et al. Research on mechanism of ammonia escaping and control in the process of CO2 capture using ammonia solution[J]. Chemical Engineering Research and Design, 2013, 91(7): 1327-1334. |
25 | 马修元, 申智勇, 李志强. 湿式电除尘器粉尘颗粒流动特性数值模拟[J]. 热力发电, 2017, 46(9): 72-77. |
MA Xiuyuan, SHEN Zhiyong, LI Zhiqiang. Numerical simulation on flow characteristics of dust particles in a wet electrostatic precipitator[J]. Thermal Power Generation, 2017, 46(9): 72-77. | |
26 | KAMIJO Takashi, KAJIYA Yoshinori, ENDO Takahiko, et al. SO3 impact on amine emission and emission reduction technology[J]. Energy Procedia, 2013, 37: 1793-1796. |
27 | KHAKHARIA Purvil, KVAMSDAL Hanne M, SILVA Eirik F DA, et al. Field study of a Brownian Demister Unit to reduce aerosol based emission from a Post Combustion CO2 Capture plant[J]. International Journal of Greenhouse Gas Control, 2014, 28: 57-64. |
28 | MERTENS Jan, KHAKHARIA P, ROGIERS Pieter, et al. Prevention of mist formation in amine based carbon capture: Field testing using a wet ElectroStatic precipitator (WESP) and a gas-gas heater (GGH)[J]. Energy Procedia, 2017, 114: 987-999. |
29 | MOSER Peter, SCHMIDT Sandra, STAHL Knut, et al. Demonstrating emission reduction - results from the post-combustion capture pilot plant at niederaussem[J]. Energy Procedia, 2014, 63: 902-910. |
30 | MA Shuangchen, SONG Huihui, ZANG Bin, et al. Experimental study on additives inhibiting ammonia escape in carbon capture process using ammonia method[J]. Chemical Engineering Research and Design, 2013, 91(12): 2775-2781. |
31 | YANG Jitao, GAO Hanyang, HU Guoxin, et al. Novel process of removal of sulfur dioxide by aqueous ammonia–fulvic acid solution with ammonia escape inhibition[J]. Energy & Fuels, 2016, 30(4): 3205-3218. |
32 | MA Shuangchen, CHEN Gongda, HAN Tingting, et al. Experimental study on the effect of Ni(II) additive on ammonia escape in CO2 capture using ammonia solution[J]. International Journal of Greenhouse Gas Control, 2015, 37: 249-255. |
33 | MA Shuangchen, SONG Huihui, CHEN Gongda, et al. Cobalt(Ⅱ) as an additive inhibiting ammonia escape in carbon capture using ammonia solution[J]. Greenhouse Gases: Science and Technology, 2013, 3(5): 392-396. |
34 | KIM Yoori, Seong-Rin LIM, PARK Jong Moon. The effects of Cu(Ⅱ) ion as an additive on NH3 loss and CO2 absorption in ammonia-based CO2 capture processes[J]. Chemical Engineering Journal, 2012, 211/212: 327-335. |
35 | MA Shuangchen, SONG Huihui, ZANG Bin, et al. Experimental study of Co(Ⅱ) additive on ammonia escape in carbon capture using renewable ammonia[J]. Chemical Engineering Journal, 2013, 234: 430-436. |
36 | MAJEED Hammad, SVENDSEN Hallvard F. Effect of water wash on mist and aerosol formation in absorption column[J]. Chemical Engineering Journal, 2018, 333: 636-648. |
37 | KARIMI Mehdi, HILLESTAD Magne, SVENDSEN Hallvard F. Investigation of intercooling effect in CO2 capture energy consumption[J]. Energy Procedia, 2011, 4: 1601-1607. |
38 | MAJEED Hammad, SVENDSEN Hallvard F. Characterization of aerosol emissions from CO2 capture plants treating various power plant and industrial flue gases[J]. International Journal of Greenhouse Gas Control, 2018, 74: 282-295. |
39 | GUPTA Vijay, MOBLEY Paul, TANTHANA Jak, et al. Aerosol emissions from water-lean solvents for post-combustion CO2 capture[J]. International Journal of Greenhouse Gas Control, 2021, 106: 103284. |
40 | FULK Steven M, ROCHELLE Gary T. Modeling aerosols in amine-based CO2 capture[J]. Energy Procedia, 2013, 37: 1706-1719. |
41 | 黄杰, 邹丽蓉. 影响静电除尘器除尘效率的关键因素探究[J]. 电气技术与经济, 2019(3): 52-54. |
HUANG Jie, ZOU Lirong. Study on key factors affecting dust removal efficiency of electrostatic precipitator[J]. Electrical Equipment and Economy, 2019(3): 52-54. | |
42 | 王金意, 牛红伟, 刘练波, 等. 燃煤电厂烟气新型CO2吸收剂开发与工程应用[J]. 热力发电, 2021, 50(1): 54-61. |
WANG Jinyi, NIU Hongwei, LIU Lianbo, et al. Development and engineering application of new absorption solvent for CO2 capture from flue gas of coal-fired power plant[J]. Thermal Power Generation, 2021, 50(1): 54-61. | |
43 | 王浩霖. 烟气气体成分对静电除尘器放电及脱除效率影响的研究[D]. 杭州: 浙江大学, 2020: 18-20. |
WANG Haolin. Study on the effect of flue gas composition on the discharge and removal efficiency of electrostatic precipitator[D].Hangzhou: Zhejiang University, 2020: 18-20. | |
44 | KARUNARATHNE Sumudu S, EIMER Dag A, ØI Lars E. Density, viscosity and free energy of activation for viscous flow of CO2 loaded 2-amino-2-methyl-1-propanol (AMP), monoethanol amine (MEA) and H2O mixtures[J]. Journal of Molecular Liquids, 2020, 311: 113286. |
45 | 沈丹. 惯电耦合脱除有机胺气溶胶效果研究[D]. 杭州: 浙江大学, 2021. |
SHEN Dan. Effects of inertial electrical coupling on removal of organic amine aerosols[D]. Hangzhou: Zhejiang University, 2021. | |
46 | 沈丹, 骆仲泱, 方梦祥, 等. 电场对有机胺气溶胶作用机理与实验研究[J]. 热力发电, 2021, 50(7): 137-142. |
SHEN Dan, LUO Zhongyang, FANG Mengxiang, et al. Mechanism and experimental study on the effect of electric field on organic amine aerosol[J]. Thermal Power Generation, 2021, 50(7): 137-142. | |
47 | ANDERLOHR C, BRACHERT L, MERTENS J, et al. Collection and generation of sulfuric acid aerosols in a wet electrostatic precipitator[J]. Aerosol Science and Technology, 2015, 49(3): 144-151. |
48 | FUJITA Koshito, MURAOKA Daigo, KASEDA Tetsuya, et al. Impact of the aerosol particle included in actual flue gas on amine mist formation/growth in the post-combustion capture pilot plant[J]. Energy Procedia, 2017, 114: 930-938. |
49 | KHAKHARIA P, MERTENS J, ABU-ZAHRA M R M, et al. Overview of aerosols in post-combustion CO2 capture[M]//Absorption-based post-combustion capture of carbon dioxide. Amsterdam: Elsevier, 2016: 465-485. |
50 | LI Chao, YI Ningtong, FANG Mengxiang, et al. Solvent emissions control in large scale chemical absorption CO2 capture plant[J]. International Journal of Greenhouse Gas Control, 2021, 111: 103444. |
51 | 孙盖南, 刘懿谦, 卢浩, 等. 新型纤维聚结污水除油技术实验及应用研究[J]. 水处理技术, 2019, 45(9): 110-114. |
SUN Gainan, LIU Yiqian, LU Hao, et al. Experiment and application study on a novel fibrous coalescence technique for oily sewage treatment[J]. Technology of Water Treatment, 2019, 45(9): 110-114. |
[1] | ZHI Yuan, MA Jiliang, CHEN Xiaoping, LIU Daoyin, LIANG Cai. Decarbonization capability of supported Na-based CO2 adsorbents prepared by fluidized bed spray impregnation [J]. Chemical Industry and Engineering Progress, 2024, 43(6): 2961-2967. |
[2] | LIU Kefeng, LIU Taoran, CAI Yong, HU Xuesheng, DONG Weigang, ZHOU Huaqun, GAO Fei. Progress in research and engineering demonstration of CO2 capture technology [J]. Chemical Industry and Engineering Progress, 2024, 43(6): 2901-2914. |
[3] | MIAO Yihe, WANG Yaozu, LIU Yuhang, ZHU Xuancan, LI Jia, YU Lijun. Research progress on the improving effect of additives on supported amine adsorbents for carbon capture [J]. Chemical Industry and Engineering Progress, 2024, 43(5): 2739-2759. |
[4] | GAO Fanxiang, LIU Yang, ZHANG Guiquan, QIN Feng, YAO Jiantao, JIN Hui, SHI Jinwen. Research progress of wet process synergistic desulfurization and decarbonization technology for coal-fired flue gas [J]. Chemical Industry and Engineering Progress, 2024, 43(5): 2324-2342. |
[5] | SUN Weiji, LIU Lang, FANG Zhiyu, ZHU Mengbo, XIE Geng, HE Wei, GAO Yuheng. Technique of wet carbonation of modified magnesium slag [J]. Chemical Industry and Engineering Progress, 2024, 43(4): 2161-2173. |
[6] | XU Zewen, WANG Ming, WANG Qiang, HOU Yingfei. Recent advances in amine-rich membrane for CO2 separation [J]. Chemical Industry and Engineering Progress, 2024, 43(3): 1374-1386. |
[7] | CHEN Chongming, CHEN Qiu, GONG Yunqian, CHE Kai, YU Jinxing, SUN Nannan. Research progresses on zeolite-based CO2 adsorbents [J]. Chemical Industry and Engineering Progress, 2023, 42(S1): 411-419. |
[8] | DAI Huantao, CAO Lingyu, YOU Xinxiu, XU Haoliang, WANG Tao, XIANG Wei, ZHANG Xueyang. Adsorption properties of CO2 on pomelo peel biochar impregnated by lignin [J]. Chemical Industry and Engineering Progress, 2023, 42(S1): 356-363. |
[9] | WANG Shengyan, DENG Shuai, ZHAO Ruikai. Research progress on carbon dioxide capture technology based on electric swing adsorption [J]. Chemical Industry and Engineering Progress, 2023, 42(S1): 233-245. |
[10] | YANG Ying, HOU Haojie, HUANG Rui, CUI Yu, WANG Bing, LIU Jian, BAO Weiren, CHANG Liping, WANG Jiancheng, HAN Lina. Coal tar phenol-based carbon nanosphere prepared by Stöber method for adsorption of CO2 [J]. Chemical Industry and Engineering Progress, 2023, 42(9): 5011-5018. |
[11] | BAI Yadi, DENG Shuai, ZHAO Ruikai, ZHAO Li, YANG Yingxia. Exploration on standardized test scheme and experimental performance of temperature swing adsorption carbon capture unit [J]. Chemical Industry and Engineering Progress, 2023, 42(7): 3834-3846. |
[12] | GU Shiya, DONG Yachao, LIU Linlin, ZHANG Lei, ZHUANG Yu, DU Jian. Design and optimization of pipeline system for carbon capture considering intermediate nodes [J]. Chemical Industry and Engineering Progress, 2023, 42(6): 2799-2808. |
[13] | LU Shijian, ZHANG Yuanyuan, WU Wenhua, YANG Fei, LIU Ling, KANG Guojun, LI Qingfang, CHEN Hongfu, WANG Ning, WANG Feng, ZHANG Juanjuan. Health risk assessment of nitrosamine pollutant diffusion in a million ton CO2 capture project [J]. Chemical Industry and Engineering Progress, 2023, 42(6): 3209-3216. |
[14] | WANG Jiuheng, RONG Nai, LIU Kaiwei, HAN Long, SHUI Taotao, WU Yan, MU Zhengyong, LIAO Xuqing, MENG Wenjia. Enhanced CO2 capture performance and strength of cellulose-templated CaO-based pellets with steam reactivation [J]. Chemical Industry and Engineering Progress, 2023, 42(6): 3217-3225. |
[15] | SANG Wei, TANG Jianfeng, HUA Yihuai, CHEN Jie, SUN Peiyuan, XU Yifei. Effects of physical solvent and amine properties on the performance of biphasic solvent [J]. Chemical Industry and Engineering Progress, 2023, 42(4): 2151-2159. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||
京ICP备12046843号-2;京公网安备 11010102001994号 Copyright © Chemical Industry and Engineering Progress, All Rights Reserved. E-mail: hgjz@cip.com.cn Powered by Beijing Magtech Co. Ltd |