Chemical Industry and Engineering Progress ›› 2025, Vol. 44 ›› Issue (4): 2338-2351.DOI: 10.16085/j.issn.1000-6613.2024-0512
• Resources and environmental engineering • Previous Articles Next Articles
ZHANG Yanmei1,2(
), LI Jiang1,3(
), YUAN Tao1,2, LIU Yajie1,2, SUN Zhanxue1,2
Received:2024-03-28
Revised:2024-11-27
Online:2025-05-07
Published:2025-04-25
Contact:
LI Jiang
张艳梅1,2(
), 李江1,3(
), 袁涛1,2, 刘亚洁1,2, 孙占学1,2
通讯作者:
李江
作者简介:张艳梅(1989—),女,博士研究生,研究方向为污水生化处理。E-mail:450826464@qq.com。
基金资助:CLC Number:
ZHANG Yanmei, LI Jiang, YUAN Tao, LIU Yajie, SUN Zhanxue. Construction of sulfate-reducing bacteria community and its response to acid stress[J]. Chemical Industry and Engineering Progress, 2025, 44(4): 2338-2351.
张艳梅, 李江, 袁涛, 刘亚洁, 孙占学. 硫酸盐还原菌群的构建及其在酸胁迫条件下的响应[J]. 化工进展, 2025, 44(4): 2338-2351.
Add to citation manager EndNote|Ris|BibTeX
URL: https://hgjz.cip.com.cn/EN/10.16085/j.issn.1000-6613.2024-0512
| 序号 | 样品来源 | 采样区域 | 采样点 |
|---|---|---|---|
| 1 | 洪城城北污水处理厂 | 厌氧消化池污泥 | 北纬28°43′2″ 东经115°49'30″ |
| 2 | 乌沙河 | 老丰和电排站排污口附近底泥 | 北纬28°42'25″ 东经115°51'16″ |
| 3 | 新疆某退役采区 | 某地浸采铀退役采区 | 9541地层 |
| 序号 | 样品来源 | 采样区域 | 采样点 |
|---|---|---|---|
| 1 | 洪城城北污水处理厂 | 厌氧消化池污泥 | 北纬28°43′2″ 东经115°49'30″ |
| 2 | 乌沙河 | 老丰和电排站排污口附近底泥 | 北纬28°42'25″ 东经115°51'16″ |
| 3 | 新疆某退役采区 | 某地浸采铀退役采区 | 9541地层 |
| 处理组 | Chao1指数 | ACE指数 | Simpon指数 | Shannon指数 | 覆盖率 |
|---|---|---|---|---|---|
| SRBs-CK | 93.56±4.78 | 97.91±4.66 | 0.16±0.05 | 2.52±0.04 | 0.999 |
| SRBs-T2 | 92.54±11.13 | 93.66±9.42 | 0.16±0.03 | 2.48±0.09 | 0.999 |
| 处理组 | Chao1指数 | ACE指数 | Simpon指数 | Shannon指数 | 覆盖率 |
|---|---|---|---|---|---|
| SRBs-CK | 93.56±4.78 | 97.91±4.66 | 0.16±0.05 | 2.52±0.04 | 0.999 |
| SRBs-T2 | 92.54±11.13 | 93.66±9.42 | 0.16±0.03 | 2.48±0.09 | 0.999 |
| 体系稳定性 | 硫酸盐还原性能(SO | 菌密度(OD600) | α多样性(Shannon指数) | 关键物种丰度(Desulfovibrio丰度) | |
|---|---|---|---|---|---|
| Des.-T2 | RS | 0.07 | -0.91 | — | — |
| RL | 0.205 | 43.3 | — | — | |
| SRBs-T2 | RS | 0.53 | -0.88 | 0.97 | 0.73 |
| RL | 0.22 | 20.9 | 0.60 | 17.85 | |
| 体系稳定性 | 硫酸盐还原性能(SO | 菌密度(OD600) | α多样性(Shannon指数) | 关键物种丰度(Desulfovibrio丰度) | |
|---|---|---|---|---|---|
| Des.-T2 | RS | 0.07 | -0.91 | — | — |
| RL | 0.205 | 43.3 | — | — | |
| SRBs-T2 | RS | 0.53 | -0.88 | 0.97 | 0.73 |
| RL | 0.22 | 20.9 | 0.60 | 17.85 | |
| 1 | ZHANG Zhao, ZHANG Chunhui, YANG Yang, et al. A review of sulfate-reducing bacteria: Metabolism, influencing factors and application in wastewater treatment[J]. Journal of Cleaner Production, 2022, 376: 134109. |
| 2 | NIELSEN Guillaume, COUDERT Lucie, JANIN Amelie, et al. Influence of organic carbon sources on metal removal from mine impacted water using sulfate-reducing bacteria bioreactors in cold climates[J]. Mine Water and the Environment, 2019, 38(1): 104-118. |
| 3 | BAUMGARTNER L K, REID R P, DUPRAZ C, et al. Sulfate reducing bacteria in microbial mats: Changing paradigms, new discoveries[J]. Sedimentary Geology, 2006, 185(3/4): 131-145. |
| 4 | ZHAO Baofu, SUN Hui, JIANG Peng, et al. Study on the treatment of sulfite wastewater by Desulfovibrio [J]. Bioprocess and Biosystems Engineering, 2023, 46(9): 1265-1278. |
| 5 | ZHOU Chen, ZHOU Yun, RITTMANN Bruce E. Reductive precipitation of sulfate and soluble Fe(Ⅲ) by Desulfovibrio vulgaris: Electron donor regulates intracellular electron flow and nano-FeS crystallization[J]. Water Research, 2017, 119: 91-101. |
| 6 | ZHOU Chen, VANNELA Raveender, HAYES Kim F, et al. Effect of growth conditions on microbial activity and iron-sulfide production by Desulfovibrio vulgaris [J]. Journal of Hazardous Materials, 2014, 272: 28-35. |
| 7 | ZENG Qian, HAO Tianwei, MACKEY Hamish Robert, et al. Recent advances in dissimilatory sulfate reduction: From metabolic study to application[J]. Water Research, 2019, 150: 162-181. |
| 8 | 朱晓丽, 张婵娟, 张星, 等. 生物炭固定化硫酸盐还原菌对镉污染土壤的钝化修复[J]. 环境科学学报, 2023, 43(5): 421-429. |
| ZHU Xiaoli, ZHANG Chanjuan, ZHANG Xing, et al. Remediation of Cd2+ contaminated soil by biochar immobilized sulfate reducing bacteria[J]. Acta Scientiae Circumstantiae, 2023, 43(5): 421-429. | |
| 9 | ALAZARD Didier, JOSEPH Manon, Fabienne BATTAGLIA-BRUNET, et al. Desulfosporosinus acidiphilus sp. nov.: A moderately acidophilic sulfate-reducing bacterium isolated from acid mining drainage sediments[J]. Extremophiles, 2010, 14(3): 305-312. |
| 10 | Irene SÁNCHEZ-ANDREA, STAMS Alfons J M, AMILS Ricardo, et al. Enrichment and isolation of acidophilic sulfate-reducing bacteria from Tinto River sediments[J]. Environmental Microbiology Reports, 2013, 5(5): 672-678. |
| 11 | TORBAGHAN Mehrnoush Eskandari, KHALILI TORGHABEH Gholam Hossein. Biological removal of iron and sulfate from synthetic wastewater of cotton delinting factory by using halophilic sulfate-reducing bacteria[J]. Heliyon, 2019, 5(12): e02948. |
| 12 | SANTOS Ana Laura, Barrie JOHNSON D. The effects of temperature and pH on the kinetics of an acidophilic sulfidogenic bioreactor and indigenous microbial communities[J]. Hydrometallurgy, 2017, 168: 116-120. |
| 13 | JAMESON E, ROWE O F, HALLBERG K B, et al. Sulfidogenesis and selective precipitation of metals at low pH mediated by Acidithiobacillus spp. and acidophilic sulfate-reducing bacteria[J]. Hydrometallurgy, 2010, 104(3/4): 488-493. |
| 14 | LI Yongchao, XU Zheng, WU Jixin, et al. Efficiency and mechanisms of antimony removal from wastewater using mixed cultures of iron-oxidizing bacteria and sulfate-reducing bacteria based on scrap iron[J]. Separation and Purification Technology, 2020, 246: 116756. |
| 15 | COSTA Josiel Martins, DE CASTRO Karine Cappuccio, RODRIGUEZ Renata Piacentini, et al. Anaerobic reactors for the treatment of sulphate and metal-rich wastewater: A review[J]. International Journal of Environmental Analytical Chemistry, 2022, 102(4): 923-934. |
| 16 | 庞安冉, 张晓丹, 刘淼, 等. 不同pH值条件下硫酸盐还原菌组成及硫酸盐还原机制分析[J]. 微生物学报, 2024, 64(4): 1081-1094. |
| PANG Anran, ZHANG Xiaodan, LIU Miao, et al. Dominant sulfate-reducing bacteria at different pH and mechanism of sulfate reduction[J]. Acta Microbiologica Sinica, 2024, 64(4): 1081-1094. | |
| 17 | SALO Marja, BOMBERG Malin. Sulfate-reducing bioreactors subjected to high sulfate loading rate or acidity: Variations in microbial consortia[J]. AMB Express, 2022, 12(1): 95. |
| 18 | 张艳梅, 袁涛, 李江, 等. 高效SRB混合菌群构建及其在酸胁迫条件下的性能研究[J]. 化工学报, 2023, 74(6): 2599-2610. |
| ZHANG Yanmei, YUAN Tao, LI Jiang, et al. Study on the construction of high-efficient SRB mixed microflora and its performance under acid stress[J]. CIESC Journal, 2023, 74(6): 2599-2610. | |
| 19 | 王娜. 巴氏醋杆菌对环境胁迫的生理响应机制及提高冻干存活率的研究[D]. 秦皇岛: 河北科技师范学院, 2015. |
| WANG Na. Study on physiological response mechanism of Acetobacter pasteurensis to environmental stress and improvement of freeze-drying survival rate[D]. Qinhuangdao: Hebei Normal University of Science & Technology, 2015. | |
| 20 | 张丽, 李川, 邱清华, 等. 不同pH下瘤胃微生物菌群密度及理化特性的变化[J]. 动物营养学报, 2023, 35(1): 450-459. |
| ZHANG Li, LI Chuan, QIU Qinghua, et al. Changes of rumen microbiota density and physicochemical properties at different pH[J]. Chinese Journal of Animal Nutrition, 2023, 35(1): 450-459. | |
| 21 | 吴重德. 干酪乳杆菌抵御酸胁迫的生理机制解析[D]. 无锡: 江南大学, 2012. |
| WU Zhongde. Analysis of physiological mechanism of Lactobacillus casei resisting acid stress[D]. Wuxi: Jiangnan University, 2012. | |
| 22 | 张群. 琥珀酸放线杆菌受丁二酸胁迫响应的初步研究[D]. 无锡: 江南大学, 2018. |
| ZHANG Qun. Preliminary study on the response of Actinobacillus succinogenes to succinic acid stress[D]. Wuxi: Jiangnan University, 2018. | |
| 23 | LI Yuanjing, YAN Pengfei, LEI Qingyun, et al. Metabolic adaptability shifts of cell membrane fatty acids of Komagataeibacter hansenii HDM1-3 improve acid stress resistance and survival in acidic environments[J]. Journal of Industrial Microbiology & Biotechnology, 2019, 46(11): 1491-1503. |
| 24 | 张周, 陈瑞蕊, 王晓婷, 等. 干旱扰动下长期不同施肥潮土微生物群落稳定性研究[J]. 土壤学报, 2024, 61(1): 211-222. |
| ZHANG Zhou, CHEN Ruirui, WANG Xiaoting, et al. Soil microbial community stability of different fertilization strategies under drought disturbance[J]. Acta Pedologica Sinica, 2024, 61(1): 211-222. | |
| 25 | 张燕英, 王天雨, 孙浩, 等. 山东沿海红纤维虾形草根际微生物群落结构及功能[J]. 烟台大学学报(自然科学与工程版), 2024, 37(1): 26-36. |
| ZHANG Yanying, WANG Tianyu, SUN Hao, et al. Microbial community structure and function in rhizosphere of Phyllospadix iwatensis on Shandong coast[J]. Journal of Yantai University (Natural Science and Engineering Edition), 2024, 37(1): 26-36. | |
| 26 | JI Hongbing, ZHANG Yan, BARARUNYERETSE Prudence, et al. Characterization of microbial communities of soils from gold mine tailings and identification of mercury-resistant strain[J]. Ecotoxicology and Environmental Safety, 2018, 165: 182-193. |
| 27 | WU Yang, HU Wanying, ZHENG Xiong, et al. Valorization of food waste into short-chain fatty acids via enzymatic pretreatment: Effects of fermentation-pH on acid-producing processes and microbial metabolic functions[J]. Waste Management, 2023, 167: 22-30. |
| 28 | Irene SÁNCHEZ-ANDREA, VAN DER GRAAF Charlotte M, HORNUNG Bastian, et al. Acetate degradation at low pH by the moderately acidophilic sulfate reducer Acididesulfobacillus acetoxydans gen. nov. sp. nov[J]. Frontiers in Microbiology, 2022, 13: 816605. |
| 29 | YUE Xuehai, LIU Hong, WEI Haotian, et al. Reactive and microbial inhibitory mechanisms depicting the panoramic view of pH stress effect on common biological nitrification[J]. Water Research, 2023, 231: 119660. |
| 30 | YANG Yishan, KHOO Wei Jie, ZHENG Qianwang, et al. Growth temperature alters Salmonella enteritidis heat/acid resistance, membrane lipid composition and stress/virulence related gene expression[J]. International Journal of Food Microbiology, 2014, 172: 102-109. |
| 31 | 张群, 陈鹏程, 郑璞. 酸胁迫下琥珀酸放线杆菌的生理及转录应答[J]. 微生物学报, 2018, 58(7): 1255-1265. |
| ZHANG Qun, CHEN Pengcheng, ZHENG Pu. Physiological and transcriptional responses of Actinobacillus succinogenes to acid stress[J]. Acta Microbiologica Sinica, 2018, 58(7): 1255-1265. | |
| 32 | ZHANG Jinlai, BAI Qiuyan, PENG Yangzi, et al. High production of triterpenoids in Yarrowia lipolytica through manipulation of lipid components[J]. Biotechnology for Biofuels, 2020, 13: 133. |
| 33 | WU Chongde, ZHANG Juan, CHEN Wei, et al. A combined physiological and proteomic approach to reveal lactic-acid-induced alterations in Lactobacillus casei Zhang and its mutant with enhanced lactic acid tolerance[J]. Applied Microbiology and Biotechnology, 2012, 93(2): 707-722. |
| 34 | PALMGREN Michael, MORSOMME Pierre. The plasma membrane H+-ATPase, a simple polypeptide with a long history[J]. Yeast, 2019, 36(4): 201-210. |
| 35 | LEE Yeji, NASUTION Olviyani, CHOI Eunyong, et al. Transcriptome analysis of acetic-acid-treated yeast cells identifies a large set of genes whose overexpression or deletion enhances acetic acid tolerance[J]. Applied Microbiology and Biotechnology, 2015, 99(15): 6391-6403. |
| 36 | XU Junnan, ZHAO Ning, MENG Xuemei, et al. Transcriptomic and metabolomic profiling uncovers response mechanisms of Alicyclobacillus acidoterrestris DSM 3922T to acid stress[J]. Microbiology Spectrum, 2023, 11(4): e0002223. |
| 37 | 郝雪雁, 刘梦晓, 韩紫依, 等. 大肠杆菌的耐酸机制及其改造研究进展[J]. 微生物学通报, 2023, 50(10): 4667-4680. |
| HAO Xueyan, LIU Mengxiao, HAN Ziyi, et al. Advances in acid-resistant mechanisms and modifications of Escherichia coli [J]. Microbiology China, 2023, 50(10): 4667-4680. | |
| 38 | ZHU Xinhao, GUO Ziyu, WANG Nannan, et al. Environmental stress stimulates microbial activities as indicated by cyclopropane fatty acid enhancement[J]. Science of the Total Environment, 2023, 873: 162338. |
| 39 | JIANG Xueqing, DUAN Yuanyuan, ZHOU Boshen, et al. The cyclopropane fatty acid synthase mediates antibiotic resistance and gastric colonization of Helicobacter pylori [J]. Journal of Bacteriology, 2019, 201(20): e00374-19. |
| 40 | 薛峰, 张娟, 堵国成, 等. 交互保护对干酪乳杆菌ATCC 393TM存活的影响[J]. 微生物学报, 2010, 50(4): 478-484. |
| XUE Feng, ZHANG Juan, DU Guocheng, et al. Influence of cross-protection on the survival of Lactobacillus casei ATCC 393[J]. Acta Microbiologica Sinica, 2010, 50(4): 478-484. | |
| 41 | Avelino ÁLVAREZ-ORDÓÑEZ, Ana FERNÁNDEZ, Mercedes LÓPEZ, et al. Relationship between membrane fatty acid composition and heat resistance of acid and cold stressed Salmonella senftenberg CECT 4384[J]. Food Microbiology, 2009, 26(3): 347-353. |
| 42 | CHEN YUAN yao, GÄNZLE Michael G. Influence of cyclopropane fatty acids on heat, high pressure, acid and oxidative resistance in Escherichia coli [J]. International Journal of Food Microbiology, 2016, 222: 16-22. |
| 43 | SHAN Xiaoran, CHEN Jiayi, ZHANG Jiaen, et al. Divergent responses of growth rate and antioxidative system of ten Bacillus strains to acid stresses[J]. Soil Ecology Letters, 2023, 6(1): 230192. |
| 44 | CHENG Jeffrey K J, Tanja ĐAPA, CHAN Ivan Y L, et al. Regulatory role of anti-sigma factor RsbW in Clostridioides difficile stress response, persistence, and infection[J]. Journal of Bacteriology, 2023, 205(5): e0046622. |
| 45 | 胡大伟, 李帅帅, 刘光辉. 非生物环境因子干扰对微生物群落演替影响的研究进展[J]. 北京航空航天大学学报, 2024, 50(9): 2677-2687. |
| HU Dawei, LI Shuaishuai, LIU Guanghui. Research progress on influence of disturbance of abiotic environmental factors on microbial community succession[J]. Journal of Beijing University of Aeronautics and Astronautics, 2024, 50(9): 2677-2687. | |
| 46 | BOTTON S, VAN HEUSDEN M, PARSONS J R, et al. Resilience of microbial systems towards disturbances[J]. Critical Reviews in Microbiology, 2006, 32(2): 101-112. |
| 47 | 张彬, 刘满强, 钱刘兵, 等. 土壤微生物群落抵抗力和恢复力研究进展[J]. 生态学报, 2023, 43(14): 5674-5685. |
| ZHANG Bin, LIU Manqiang, QIAN Liubing, et al. Resistance and resilience of soil microbial communities: Progress and perspective[J]. Acta Ecologica Sinica, 2023, 43(14): 5674-5685. | |
| 48 | ALLISON Steven D, MARTINY Jennifer B H. Colloquium paper: Resistance, resilience, and redundancy in microbial communities[J]. Proceedings of the National Academy of Sciences of the United States of America, 2008, 105(): 11512-11519. |
| 49 | SHADE Ashley, READ Jordan S, YOUNGBLUT Nicholas D, et al. Lake microbial communities are resilient after a whole-ecosystem disturbance[J]. The ISME Journal, 2012, 6(12): 2153-2167. |
| 50 | BECKER Joachim, EISENHAUER Nico, SCHEU Stefan, et al. Increasing antagonistic interactions cause bacterial communities to collapse at high diversity[J]. Ecology Letters, 2012, 15(5): 468-474. |
| 51 | QIAN Youfen, XU Meiying, DENG Tongchu, et al. Synergistic interactions of Desulfovibrio and Petrimonas for sulfate-reduction coupling polycyclic aromatic hydrocarbon degradation[J]. Journal of Hazardous Materials, 2021, 407: 124385. |
| 52 | HWANG Sun Kyung, Eun Hea JHO. Heavy metal and sulfate removal from sulfate-rich synthetic mine drainages using sulfate reducing bacteria[J]. Science of the Total Environment, 2018, 635: 1308-1316. |
| [1] | BAI Zhongliang, LI Ping, WANG Hui, LI Wei, ZHANG Qiang, LI Ning. Proportioning design and anti-aging performance of asphalt rejuvenator based on response surface methodology [J]. Chemical Industry and Engineering Progress, 2025, 44(3): 1607-1618. |
| [2] | JIANG Liping, ZHANG Xueqiao, ZHONG Xiaojuan, WEI Yufan, XIAO Li, GUO Xujing, YANG Yijin. Optimization of acid leaching process of iron from vanadium slag and preparation of composite photocatalysts [J]. Chemical Industry and Engineering Progress, 2025, 44(1): 538-548. |
| [3] | WU Yuqi, LI Jiangtao, DING Jianzhi, SONG Xiulan, SU Bingqin. Calcined Mg/Al hydrotalcites for CO2 removal in anaerobic digestion biogas: Performances and mechanisms [J]. Chemical Industry and Engineering Progress, 2024, 43(9): 5250-5261. |
| [4] | LI Binde, WANG Bixia, YUAN Wenlong, DANG Xiao’e, MA Hongzhou. Preparation of battery-grade iron phosphate using the by-product ferrous sulfate of titanium dioxide [J]. Chemical Industry and Engineering Progress, 2024, 43(8): 4523-4533. |
| [5] | ZHU Lianyan, ZHOU Xingfu. Mn-doped DSA electrode and optimized application in wastewater treatment process [J]. Chemical Industry and Engineering Progress, 2024, 43(6): 3459-3467. |
| [6] | PAN Tongtong, CUI Xiangmei. Preparation of methylglucamine-functionalized rGO/MWCNTs-OH composite aerogels and its adsorption of boron [J]. Chemical Industry and Engineering Progress, 2024, 43(6): 3386-3397. |
| [7] | JIANG Chenguang, ZHANG Shengzhen, ZHANG Cuiqing, GUO Yi, SUN Yongwei. Optimization of the preparation process of 52# Fischer-Tropsch wax based on DFSS method [J]. Chemical Industry and Engineering Progress, 2024, 43(4): 1742-1753. |
| [8] | SU Qian, XIA Zhifei, LIU Zhenxing. Ultrasound recognition method for flow patterns in oil-gas-water slug flow based on RBF neural network [J]. Chemical Industry and Engineering Progress, 2024, 43(2): 628-636. |
| [9] | WANG Yixiao, ZHANG Dan, TU Maoping, ZHOU Wenbo, ZHAO Bingchao. Heat flux field measurement technique by dual-film quantum dots [J]. Chemical Industry and Engineering Progress, 2024, 43(2): 872-881. |
| [10] | HU Heng, XU Na, LI Ziliang, YU Jiapeng, LI Xu, ZHANG Wei. Kinetics and process optimization of synthesis of methyl ester sulfonate in T-type microreactor [J]. Chemical Industry and Engineering Progress, 2024, 43(12): 6634-6644. |
| [11] | ZHANG Zhiqiang, CHENG Chunchun, ZUO Shuo, ZHOU Na, WANG Jiaqin, QIN Donglan. Agglomeration phenomenon and regulation method of lithium carbonate crystal [J]. Chemical Industry and Engineering Progress, 2024, 43(12): 6645-6661. |
| [12] | ZHENG Jia, LIU Yiming, XU Ligang, YAO Lin. Preparation and properties of color-changing hydrogel with dual-stimulation response to temperature and pH [J]. Chemical Industry and Engineering Progress, 2024, 43(12): 6811-6819. |
| [13] | SUN Yue, WANG Sijia, WU Mingxia, SONG Xianyu, XU Shouhong. Synthesis, performance regulation and application of pH/temperature responsive polymer PMAA-b-PDMAEMA [J]. Chemical Industry and Engineering Progress, 2024, 43(1): 480-489. |
| [14] | ZHANG Liang, MA Ji, HE Gaohong, JIANG Xiaobin, XIAO Wu. Determination and analysis of combined cooling and antisolvent crystallization metastable zone width of cefuroxime sodium with membrane regulation [J]. Chemical Industry and Engineering Progress, 2024, 43(1): 260-268. |
| [15] | LIU Yang, WANG Yungang, XIU Haoran, ZOU Li, BAI Yanyuan. Optimal carbonization process of walnut shell based on dynamic analysis [J]. Chemical Industry and Engineering Progress, 2023, 42(S1): 94-103. |
| Viewed | ||||||
|
Full text |
|
|||||
|
Abstract |
|
|||||
|
京ICP备12046843号-2;京公网安备 11010102001994号 Copyright © Chemical Industry and Engineering Progress, All Rights Reserved. E-mail: hgjz@cip.com.cn Powered by Beijing Magtech Co. Ltd |