Chemical Industry and Engineering Progress ›› 2024, Vol. 43 ›› Issue (12): 7105-7114.DOI: 10.16085/j.issn.1000-6613.2023-2123
• Resources and environmental engineering • Previous Articles
XU Bing1(), ZHANG Qian1, WU Huanhuan1(
), SHAO Guangyi1, TIAN Shuwen1, CHAI Wenming2, ZHANG Ming2, YAO Hong1(
)
Received:
2023-12-01
Revised:
2024-01-28
Online:
2025-01-11
Published:
2024-12-15
Contact:
WU Huanhuan, YAO Hong
徐冰1(), 张倩1, 吴欢欢1(
), 邵光艺1, 田淑雯1, 柴文明2, 张鸣2, 姚宏1(
)
通讯作者:
吴欢欢,姚宏
作者简介:
徐冰(2000—),男,硕士研究生,研究方向为环境工程。E-mail:490013696@qq.com。
基金资助:
CLC Number:
XU Bing, ZHANG Qian, WU Huanhuan, SHAO Guangyi, TIAN Shuwen, CHAI Wenming, ZHANG Ming, YAO Hong. Carbon footprint analysis and environmental impact assessment of integrated membrane process for fracturing flowback fluid based on LCA[J]. Chemical Industry and Engineering Progress, 2024, 43(12): 7105-7114.
徐冰, 张倩, 吴欢欢, 邵光艺, 田淑雯, 柴文明, 张鸣, 姚宏. 基于LCA的压裂返排液膜集成工艺碳足迹分析和环境影响评价[J]. 化工进展, 2024, 43(12): 7105-7114.
处理环节 | 参数 | 单位 | 数值 |
---|---|---|---|
预处理 | 氢氧化钠 | kg | 1.05 |
碳酸钠 | kg | 10 | |
次氯酸钠 | kg | 0.33 | |
管式超滤 | 原水 | kg | 1000 |
电能 | kW·h | 30 | |
纳滤 | 管式超滤膜产水 | kg | 1000 |
电能 | kW·h | 5.13 | |
电渗析 | 纳滤膜产水 | kg | 940 |
电能 | kW·h | 2.2 | |
反渗透 | 电渗析膜产水 | kg | 688.33 |
冷凝水 | kg | 275 | |
电能 | kW·h | 1.25 | |
机械蒸汽再压缩 | 纳滤膜浓水 | kg | 60 |
电渗析膜浓水 | kg | 251.67 | |
电能 | kW·h | 34.9 |
处理环节 | 参数 | 单位 | 数值 |
---|---|---|---|
预处理 | 氢氧化钠 | kg | 1.05 |
碳酸钠 | kg | 10 | |
次氯酸钠 | kg | 0.33 | |
管式超滤 | 原水 | kg | 1000 |
电能 | kW·h | 30 | |
纳滤 | 管式超滤膜产水 | kg | 1000 |
电能 | kW·h | 5.13 | |
电渗析 | 纳滤膜产水 | kg | 940 |
电能 | kW·h | 2.2 | |
反渗透 | 电渗析膜产水 | kg | 688.33 |
冷凝水 | kg | 275 | |
电能 | kW·h | 1.25 | |
机械蒸汽再压缩 | 纳滤膜浓水 | kg | 60 |
电渗析膜浓水 | kg | 251.67 | |
电能 | kW·h | 34.9 |
影响类别 | 预处理 | 管式超滤 | 纳滤 | 电渗析 | 反渗透 | 机械蒸汽再压缩 |
---|---|---|---|---|---|---|
温室效应(CO2 eq)/kg | 35.60000 | 31.30000 | 5.37000 | 2.30000 | 1.31000 | 53.40000 |
平流层臭氧消耗(CFC11 eq)/kg | 0 | 0 | 0 | 0 | 0 | 0.00001 |
电离辐射(Co-60 eq)/kBq | 0.90000 | 0.47800 | 0.08190 | 0.03510 | 0.01990 | 0.58300 |
臭氧人体损害(NO x eq)/kg | 0.03940 | 0.08690 | 0.01490 | 0.00640 | 0.00360 | 0.10400 |
细颗粒物生成(PM2.5 eq)/kg | 0.02990 | 0.04770 | 0.00820 | 0.00350 | 0.00200 | 0.05670 |
臭氧陆地生态毒性(NO x eq)/kg | 0.04050 | 0.08710 | 0.01490 | 0.00640 | 0.00360 | 0.10400 |
陆地酸化(SO2 eq)/kg | 0.07370 | 0.10700 | 0.01820 | 0.00780 | 0.00440 | 0.12600 |
淡水富营养化(P eq)/kg | 0.00920 | 0.00580 | 0.00100 | 0.00040 | 0.00020 | 0.05640 |
海洋富营养化(N eq)/kg | 0.00900 | 0.00040 | 0.00010 | 0 | 0 | 0.01930 |
陆地生态毒性(1,4-DCB)/kg | 59.20000 | 17.10000 | 2.94000 | 1.26000 | 0.71700 | 21.10000 |
淡水生态毒性(1,4-DCB)/kg | 0.72400 | 0.30500 | 0.05300 | 0.02260 | 0.01320 | 10.30000 |
海洋生态毒性(1,4-DCB)/kg | 0.96500 | 0.42300 | 0.07340 | 0.03130 | 0.01820 | 13.50000 |
人体致癌毒性(1,4-DCB)/kg | 0.87400 | 0.95300 | 0.16300 | 0.07000 | 0.03980 | 1.48000 |
人体非致癌毒性(1,4-DCB)/kg | 15.50000 | 13.90000 | 2.39000 | 1.02000 | 0.58500 | 229.00000 |
土地占用(crop eq)/m2·a | 0.52400 | 0.36500 | 0.06250 | 0.02680 | 0.01520 | 0.45500 |
矿产资源消耗(Cu eq)/kg | 0.02340 | 0.00940 | 0.00160 | 0.00070 | 0.00040 | 0.01190 |
化石资源消耗(oil eq)/kg | 9.19000 | 6.09000 | 1.04000 | 0.44700 | 0.25300 | 7.25000 |
水稀缺/m3 | 0.26000 | 0.07750 | 0.01330 | 0.00570 | 0.00320 | 0.09740 |
影响类别 | 预处理 | 管式超滤 | 纳滤 | 电渗析 | 反渗透 | 机械蒸汽再压缩 |
---|---|---|---|---|---|---|
温室效应(CO2 eq)/kg | 35.60000 | 31.30000 | 5.37000 | 2.30000 | 1.31000 | 53.40000 |
平流层臭氧消耗(CFC11 eq)/kg | 0 | 0 | 0 | 0 | 0 | 0.00001 |
电离辐射(Co-60 eq)/kBq | 0.90000 | 0.47800 | 0.08190 | 0.03510 | 0.01990 | 0.58300 |
臭氧人体损害(NO x eq)/kg | 0.03940 | 0.08690 | 0.01490 | 0.00640 | 0.00360 | 0.10400 |
细颗粒物生成(PM2.5 eq)/kg | 0.02990 | 0.04770 | 0.00820 | 0.00350 | 0.00200 | 0.05670 |
臭氧陆地生态毒性(NO x eq)/kg | 0.04050 | 0.08710 | 0.01490 | 0.00640 | 0.00360 | 0.10400 |
陆地酸化(SO2 eq)/kg | 0.07370 | 0.10700 | 0.01820 | 0.00780 | 0.00440 | 0.12600 |
淡水富营养化(P eq)/kg | 0.00920 | 0.00580 | 0.00100 | 0.00040 | 0.00020 | 0.05640 |
海洋富营养化(N eq)/kg | 0.00900 | 0.00040 | 0.00010 | 0 | 0 | 0.01930 |
陆地生态毒性(1,4-DCB)/kg | 59.20000 | 17.10000 | 2.94000 | 1.26000 | 0.71700 | 21.10000 |
淡水生态毒性(1,4-DCB)/kg | 0.72400 | 0.30500 | 0.05300 | 0.02260 | 0.01320 | 10.30000 |
海洋生态毒性(1,4-DCB)/kg | 0.96500 | 0.42300 | 0.07340 | 0.03130 | 0.01820 | 13.50000 |
人体致癌毒性(1,4-DCB)/kg | 0.87400 | 0.95300 | 0.16300 | 0.07000 | 0.03980 | 1.48000 |
人体非致癌毒性(1,4-DCB)/kg | 15.50000 | 13.90000 | 2.39000 | 1.02000 | 0.58500 | 229.00000 |
土地占用(crop eq)/m2·a | 0.52400 | 0.36500 | 0.06250 | 0.02680 | 0.01520 | 0.45500 |
矿产资源消耗(Cu eq)/kg | 0.02340 | 0.00940 | 0.00160 | 0.00070 | 0.00040 | 0.01190 |
化石资源消耗(oil eq)/kg | 9.19000 | 6.09000 | 1.04000 | 0.44700 | 0.25300 | 7.25000 |
水稀缺/m3 | 0.26000 | 0.07750 | 0.01330 | 0.00570 | 0.00320 | 0.09740 |
影响类别 | 预处理 | 管式超滤 | 纳滤 | 电渗析 | 反渗透 | 机械蒸汽再压缩 | 总值 |
---|---|---|---|---|---|---|---|
温室效应 | 0.00445 | 0.00391 | 0.00067 | 0.00029 | 0.00016 | 0.00455 | 0.01403 |
平流层臭氧消耗 | 0.00020 | 0.00011 | 0.00002 | 0.00001 | 0 | 0.00013 | 0.00047 |
电离辐射 | 0.00187 | 0.00100 | 0.00017 | 0.00007 | 0.00004 | 0.00116 | 0.00431 |
臭氧人体损害 | 0.00192 | 0.00422 | 0.00072 | 0.00031 | 0.00018 | 0.00491 | 0.01226 |
细颗粒物生成 | 0.00117 | 0.00187 | 0.00032 | 0.00014 | 0.00008 | 0.00217 | 0.00575 |
臭氧陆地生态毒性 | 0.00228 | 0.00490 | 0.00084 | 0.00036 | 0.00020 | 0.00570 | 0.01428 |
陆地酸化 | 0.00180 | 0.00260 | 0.00045 | 0.00019 | 0.00011 | 0.00302 | 0.00817 |
淡水富营养化 | 0.01420 | 0.00888 | 0.00152 | 0.00065 | 0.00037 | 0.01030 | 0.03592 |
海洋富营养化 | 0.00196 | 0.00008 | 0.00001 | 0.00001 | 0 | 0.00009 | 0.00215 |
陆地生态毒性 | 0.00389 | 0.00113 | 0.00019 | 0.00008 | 0.00005 | 0.00131 | 0.00665 |
淡水生态毒性 | 0.02870 | 0.01210 | 0.00211 | 0.00090 | 0.00052 | 0.01400 | 0.05833 |
海洋生态毒性 | 0.02220 | 0.00972 | 0.00169 | 0.00072 | 0.00042 | 0.01130 | 0.04605 |
人体致癌毒性 | 0.08490 | 0.09260 | 0.01590 | 0.00680 | 0.00386 | 0.10800 | 0.31206 |
人体非致癌毒性 | 0.00050 | 0.00044 | 0.00008 | 0.00003 | 0.00002 | 0.00052 | 0.00159 |
土地占用 | 0.00008 | 0.00006 | 0.00001 | 0 | 0 | 0.00007 | 0.00022 |
矿产资源消耗 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
化石资源消耗 | 0.00937 | 0.00621 | 0.00106 | 0.00046 | 0.00026 | 0.00723 | 0.02459 |
水稀缺 | 0.00098 | 0.00029 | 0.00005 | 0.00002 | 0.00001 | 0.00034 | 0.00169 |
影响类别 | 预处理 | 管式超滤 | 纳滤 | 电渗析 | 反渗透 | 机械蒸汽再压缩 | 总值 |
---|---|---|---|---|---|---|---|
温室效应 | 0.00445 | 0.00391 | 0.00067 | 0.00029 | 0.00016 | 0.00455 | 0.01403 |
平流层臭氧消耗 | 0.00020 | 0.00011 | 0.00002 | 0.00001 | 0 | 0.00013 | 0.00047 |
电离辐射 | 0.00187 | 0.00100 | 0.00017 | 0.00007 | 0.00004 | 0.00116 | 0.00431 |
臭氧人体损害 | 0.00192 | 0.00422 | 0.00072 | 0.00031 | 0.00018 | 0.00491 | 0.01226 |
细颗粒物生成 | 0.00117 | 0.00187 | 0.00032 | 0.00014 | 0.00008 | 0.00217 | 0.00575 |
臭氧陆地生态毒性 | 0.00228 | 0.00490 | 0.00084 | 0.00036 | 0.00020 | 0.00570 | 0.01428 |
陆地酸化 | 0.00180 | 0.00260 | 0.00045 | 0.00019 | 0.00011 | 0.00302 | 0.00817 |
淡水富营养化 | 0.01420 | 0.00888 | 0.00152 | 0.00065 | 0.00037 | 0.01030 | 0.03592 |
海洋富营养化 | 0.00196 | 0.00008 | 0.00001 | 0.00001 | 0 | 0.00009 | 0.00215 |
陆地生态毒性 | 0.00389 | 0.00113 | 0.00019 | 0.00008 | 0.00005 | 0.00131 | 0.00665 |
淡水生态毒性 | 0.02870 | 0.01210 | 0.00211 | 0.00090 | 0.00052 | 0.01400 | 0.05833 |
海洋生态毒性 | 0.02220 | 0.00972 | 0.00169 | 0.00072 | 0.00042 | 0.01130 | 0.04605 |
人体致癌毒性 | 0.08490 | 0.09260 | 0.01590 | 0.00680 | 0.00386 | 0.10800 | 0.31206 |
人体非致癌毒性 | 0.00050 | 0.00044 | 0.00008 | 0.00003 | 0.00002 | 0.00052 | 0.00159 |
土地占用 | 0.00008 | 0.00006 | 0.00001 | 0 | 0 | 0.00007 | 0.00022 |
矿产资源消耗 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
化石资源消耗 | 0.00937 | 0.00621 | 0.00106 | 0.00046 | 0.00026 | 0.00723 | 0.02459 |
水稀缺 | 0.00098 | 0.00029 | 0.00005 | 0.00002 | 0.00001 | 0.00034 | 0.00169 |
指标 因子 | 敏感性系数| | |||||
---|---|---|---|---|---|---|
人体 致癌毒性 | 温室 效应 | 化石 资源消耗 | 淡水 富营养化 | 海洋 生态毒性 | 淡水 生态毒性 | |
电力 | 0.652 | 0.592 | 0.615 | 0.193 | 0.069 | 0.065 |
碳酸钠 | 0.215 | 0.099 | 0.132 | 0.060 | 0.062 | 0.062 |
氢氧化钠 | 0.026 | 0.011 | 0.014 | 0.010 | 0.006 | 0.065 |
指标 因子 | 敏感性系数| | |||||
---|---|---|---|---|---|---|
人体 致癌毒性 | 温室 效应 | 化石 资源消耗 | 淡水 富营养化 | 海洋 生态毒性 | 淡水 生态毒性 | |
电力 | 0.652 | 0.592 | 0.615 | 0.193 | 0.069 | 0.065 |
碳酸钠 | 0.215 | 0.099 | 0.132 | 0.060 | 0.062 | 0.062 |
氢氧化钠 | 0.026 | 0.011 | 0.014 | 0.010 | 0.006 | 0.065 |
1 | 董沅武, 荣家洛, 李晓煜, 等. 碳中和愿景下页岩气压裂返排液处理技术思考[J]. 油田化学, 2023, 40(3): 534-542. |
DONG Yuanwu, RONG Jialuo, LI Xiaoyu, et al. Thinking on shale gas fracturing flowback fluid treatment technology under carbon neutral vision[J]. Oilfield Chemistry, 2023, 40(3): 534-542, 570. | |
2 | 于志龙, 陈滢, 刘敏. 页岩气废水处理技术研究进展[J]. 化工进展, 2020, 39(11): 4589-4599. |
YU Zhilong, CHEN Ying, LIU Min. Research progress in treatment technology for shale gas wastewater[J]. Chemical Industry and Engineering Progress, 2020, 39(11): 4589-4599. | |
3 | 成浩. 油田压裂返排液处理工艺的有关探讨[J]. 清洗世界, 2023, 39(6): 72-74. |
CHENG Hao. Discussion on treatment technology of fracturing flowback fluid in oilfield[J]. Cleaning World, 2023, 39(6): 72-74. | |
4 | 何伟. 复合法在处理压裂返排液时的最佳工艺流程[J]. 内蒙古石油化工, 2008, 34(1): 80-81. |
HE Wei. Optimum technological process of compound method in treating fracturing flowback fluid[J]. Inner Mongolia Petrochemical Industry, 2008, 34(1): 80-81. | |
5 | 何红梅. 生物法处理压裂返排液的实验研究[D]. 成都: 西南石油学院, 2004. |
HE Hongmei. Experimental study on biological treatment of fracturing flowback fluid[D]. Chengdu: Southwest Petroleum Institute, 2004. | |
6 | 张赫, 李小可, 熊颖, 等. 基于水凝胶界面光蒸发的压裂返排液脱盐降污处理[J]. 化工进展, 2023, 42(2): 1073-1079. |
ZHANG He, LI Xiaoke, XIONG Ying, et al. Desalination and pollution treatment of fracturing flow-back fluid based on interfacial solar evaporation of hydrogel[J]. Chemical Industry and Engineering Progress, 2023, 42(2): 1073-1079. | |
7 | 彭良梅, 罗成. 全膜法在页岩气压裂返排液处理中的应用[J]. 四川化工, 2022, 25(4): 24-27. |
PENG Liangmei, LUO Cheng. Application of total membrane method in shale gas fracturing flowback water treatment[J]. Sichuan Chemical Industry, 2022, 25(4): 24-27. | |
8 | 林超. 电渗析在压裂返排液废水处理中的应用研究[J]. 环境科学导刊, 2023, 42(5): 53-57. |
LIN Chao. Research on the application of electrodialysis in the treatment of fracturing backflow fluid wastewater[J]. Environmental Science Survey, 2023, 42(5): 53-57. | |
9 | 万里平. 探井残余压裂液无害化处理实验研究[D]. 成都: 西南石油学院, 2002. |
WAN Liping. Experimental study on harmless treatment of residual fracturing fluid in exploration wells[D]. Chengdu: Southwest Petroleum Institute, 2002. | |
10 | 史元腾, 王小强, 寇光辉, 等. 反渗透浓盐水双碱法除硬与除硅工艺研究[J]. 水处理技术, 2019, 45(12): 110-112. |
SHI Yuanteng, WANG Xiaoqiang, KOU Guanghui, et al. The treatment of silica and hardness by double-alkali method for reverse osmosis high-salinity water[J]. Technology of Water Treatment, 2019, 45(12): 110-112. | |
11 | 王强. 管式超滤膜处理油田污水试验[J]. 石油石化节能, 2014, 4(6): 5-7. |
WANG Qiang. Experimental study on treatment of oilfield wastewater by tubular ultrafiltration membrane[J]. Energy Conservation in Petroleum & Petrochemical Industry, 2014, 4(6): 5-7. | |
12 | 邹元新, 邓强, 项拓, 等. 反渗透-纳滤组合与MVR技术结合提纯工业盐工艺研究[J]. 盐科学与化工, 2023, 52(9): 1-3. |
ZOU Yuanxin, DENG Qiang, XIANG Tuo, et al. Research on industrial salt purification process combined with reverse osmosis, nanofiltration device and MVR technology[J]. Journal of Salt Science and Chemical Industry, 2023, 52(9): 1-3. | |
13 | 杨瑞锦. 基于SimaPro的水泥产品生命周期评价及“减碳”建议[J]. 四川水泥, 2023(9): 4-7. |
YANG Ruijin. Life cycle assessment of cement products based on SimaPro and suggestions on "carbon reduction"[J]. Sichuan Cement, 2023(9): 4-7. | |
14 | 孙杰, 董强, 张笛, 等. 基于LCA的废锂电池典型回收再生工艺碳足迹分析和环境影响评价[J]. 环境工程, 2023, 41(S2): 1254-1259. |
SUN Jie, DONG Qiang, ZHANG Di, et al. Carbon footprint analysis and environmental impact assessment of typical recycling process of waste lithium batteries based on LCA[J]. Environmental Engineering, 2023, 41(S2): 1254-1259. | |
15 | 赵兵, 景杰. “碳达峰、碳中和”目标下火力发电行业的转型与发展[J]. 节能与环保, 2021(5): 32-33. |
ZHAO Bing, JING Jie. Transformation and development of thermal power industry under the goal of "carbon peaking and carbon neutralization"[J]. Energy Conservation & Environmental Protection, 2021(5): 32-33. | |
16 | 贺美, 陈文杰, 田磊, 等. 页岩气压裂返排液的水生生态毒性效应研究[J]. 生态毒理学报, 2017, 12(2): 108-119. |
HE Mei, CHEN Wenjie, TIAN Lei, et al. Study on the aquatic ecological toxicity of shale gas fracturing fluids[J]. Asian Journal of Ecotoxicology, 2017, 12(2): 108-119. | |
17 | 李玉红, 廖学品, 王安, 等. 基于LCA方法对毛皮加工过程的环境影响评价[J]. 皮革科学与工程, 2020, 30(2): 6-11. |
LI Yuhong, LIAO Xuepin, WANG An, et al. The environmental impact assessment of fur making process using LCA methodology[J]. Leather Science and Engineering, 2020, 30(2): 6-11. | |
18 | 陶源, 刘伟军. 大型公共建筑工程LCA模型下的碳排放敏感性分析[J]. 中国建筑金属结构, 2022(9): 12-14. |
TAO Yuan, LIU Weijun. Sensitivity analysis of carbon emission under LCA model of large public building projects[J]. China Construction Metal Structure, 2022(9): 12-14. | |
19 | 丁宁. 煤炭中造成大气污染有害元素的分析[J]. 中国标准化, 2018(18): 163-164. |
DING Ning. Analysis of harmful elements causing air pollution in coal[J]. China Standardization, 2018(18): 163-164. | |
20 | 王玮, 程虎, 张放, 等. 某纯碱生产企业职业病危害因素现状调查与评价[J]. 中国辐射卫生, 2014, 23(3): 258-261. |
WANG Wei, CHENG Hu, ZHANG Fang, et al. Investigation on present status of occupational hazard factors in a soda ash plant[J]. Chinese Journal of Radiological Health, 2014, 23(3): 258-261. | |
21 | 张亚峰, 安路阳, 王宇楠, 等. 水中硬度去除方法研究进展[J]. 煤炭加工与综合利用, 2017(12): 54-63. |
ZHANG Yafeng, AN Luyang, WANG Yunan, et al. Research progress of hardness removal methods in water[J]. Coal Processing & Comprehensive Utilization, 2017(12): 54-63. |
[1] | HE Zihan, LI Wenxuan, LI Yanyu, WANG Xuechao, YANG Shirong, XIE Huina, LI Jie. Progress in the study of antibiotic resistance genes in the aquatic environment [J]. Chemical Industry and Engineering Progress, 2024, 43(S1): 533-544. |
[2] | GENG Xiumei, ZHANG Feng, ZHANG Xiang, SHAN Meixia, ZHANG Yatao. Research progress on the stability of Pebax-based mixed matrix membranes for CO2 separation [J]. Chemical Industry and Engineering Progress, 2024, 43(9): 4996-5012. |
[3] | ZHANG Rui, JIANG Jing, XU Hongfei, YANG Shengkai, LI Yahong, ZHOU Jingyuan, ZENG Jianxian, HUANG Xiaoping, LIU Pengfei, ZHANG Mingming, LI Zhiqiang. Progress of ceramic membrane separation technology and its application in bio-manufacturing field [J]. Chemical Industry and Engineering Progress, 2024, 43(8): 4550-4561. |
[4] | SONG Zhanlong, TANG Tao, PAN Wei, ZHAO Xiqiang, SUN Jing, MAO Yanpeng, WANG Wenlong. Micro-nano bubbles enhance ozone oxidation and degradation of wastewater containing phenol [J]. Chemical Industry and Engineering Progress, 2024, 43(8): 4614-4623. |
[5] | YIN Junquan, WU Yinkai, LI Weihua, SUN Yingjie, ZHANG Wenxuan, ZHANG Qingjian, MA Xiaoteng, BIAN Rongxing, WANG Huawei. Physicochemical characteristics and environmental risk of ash/slag in typical sections of MSW incineration [J]. Chemical Industry and Engineering Progress, 2024, 43(8): 4714-4725. |
[6] | PAN Hanting, XU Hongtao, XU Duo, LUO Zhuqing. Analysis of thermal insulation characteristics of lithium-ion batteries based on phase change materials under low temperature [J]. Chemical Industry and Engineering Progress, 2024, 43(8): 4333-4341. |
[7] | TANG Anqi, WEI Xin, DING Liming, WANG Yujie, XU Yixiao, LIU Yiqun. Discussing physical aging phenomenon of polyimide gas separation membranes [J]. Chemical Industry and Engineering Progress, 2024, 43(7): 3923-3933. |
[8] | ZHOU Aiguo, ZHENG Jiale, YANG Chuanruo, YANG Xiaoyi, ZHAO Junde, LI Xingchun. Industrial progress in direct air CO2 capture technology [J]. Chemical Industry and Engineering Progress, 2024, 43(6): 2928-2939. |
[9] | LIU Mengfan, WANG Huawei, WANG Yanan, ZHANG Yanru, JIANG Xutong, SUN Yingjie. Efficiency and mechanism of Bio-FeMnCeO x activated PMS for degradation of tetracycline [J]. Chemical Industry and Engineering Progress, 2024, 43(6): 3492-3502. |
[10] | LI Jingying, MA Longfei, ZHANG Hongjuan, PAN Yibo, LU Shan, XU Long, MA Xiaoxun. Current status and research progress of life cycle assessment method in pharmaceutical field [J]. Chemical Industry and Engineering Progress, 2024, 43(5): 2851-2861. |
[11] | LI Jingying, MA Longfei, PAN Yibo, LU Shan, ZHANG Hongjuan, XU Long, MA Xiaoxun. Life cycle environmental analysis of coke oven gas to liquefied natural gas based on decarburization and methanation processes [J]. Chemical Industry and Engineering Progress, 2024, 43(5): 2872-2879. |
[12] | LI Na, ZHAO Wantong, LING Lixia, WANG Baojun, ZHANG Riguang. Confined environment of RhCu catalyst to regulate the reaction performance for synthesis gas conversion to CH x [J]. Chemical Industry and Engineering Progress, 2024, 43(5): 2684-2695. |
[13] | LI Haipeng, WU Tong, WANG Qi, GAO Shiwang, WANG Xiaolong, LI Xu, GAO Xinhua, NIAN Pei, WEI Yibin. Effective methanol production by CO2 hydrogenation using water-permeable NaA zeolite membrane [J]. Chemical Industry and Engineering Progress, 2024, 43(5): 2834-2842. |
[14] | LI Lingbo. Practice and development of leak detection and repair technology in petroleum refining and petrochemical industry in the United States [J]. Chemical Industry and Engineering Progress, 2024, 43(4): 2049-2062. |
[15] | SHA Li, SU Yingjia, LING Zichen, YU Xiaoyan, LI Shupeng, GUO Lili, XIONG Jing, FANG Lianhu, ZHANG Ran, ZHANG Shuting. Effect of bituminous coal mixing on the electro-dewatering performance of sludge [J]. Chemical Industry and Engineering Progress, 2024, 43(4): 2144-2152. |
Viewed | ||||||||||||||||||||||||||||||||||||||||||||||||||
Full text 21
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||
Abstract 74
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||
京ICP备12046843号-2;京公网安备 11010102001994号 Copyright © Chemical Industry and Engineering Progress, All Rights Reserved. E-mail: hgjz@cip.com.cn Powered by Beijing Magtech Co. Ltd |