Chemical Industry and Engineering Progress ›› 2024, Vol. 43 ›› Issue (12): 6913-6924.DOI: 10.16085/j.issn.1000-6613.2023-2049
• Fine chemicals • Previous Articles
HUANG Xue1(), FAN Yanxiang1, ZHOU Hongjun1, ZHOU Xinhua1, DOU Yao2
Received:
2023-11-24
Revised:
2024-01-19
Online:
2025-01-11
Published:
2024-12-15
Contact:
HUANG Xue
通讯作者:
黄雪
作者简介:
黄雪(1982—),女,博士,副教授,研究方向为绿色功能材料。E-mail:huangxue0206@126.com。
基金资助:
CLC Number:
HUANG Xue, FAN Yanxiang, ZHOU Hongjun, ZHOU Xinhua, DOU Yao. Preparation and properties of castor oil-based waterborne polyurethane drug-loaded emulsion[J]. Chemical Industry and Engineering Progress, 2024, 43(12): 6913-6924.
黄雪, 范燕香, 周红军, 周新华, 窦瑶. 蓖麻油基水性聚氨酯载药乳液的制备及性能[J]. 化工进展, 2024, 43(12): 6913-6924.
样品 | 配比 | |
---|---|---|
CO | mPEG | |
CP-0 | 0 | 3.0g(3.0mmol) |
CP-20 | 0.6g(0.64mmol) | 2.4g(2.4mmol) |
CP-40 | 1.2g(1.29mmol) | 1.8g(1.8mmol) |
CP-60 | 1.8g(1.93mmol) | 1.2g(1.2mmol) |
CP-80 | 2.4g(2.57mmol) | 0.6g(0.6mmol) |
样品 | 配比 | |
---|---|---|
CO | mPEG | |
CP-0 | 0 | 3.0g(3.0mmol) |
CP-20 | 0.6g(0.64mmol) | 2.4g(2.4mmol) |
CP-40 | 1.2g(1.29mmol) | 1.8g(1.8mmol) |
CP-60 | 1.8g(1.93mmol) | 1.2g(1.2mmol) |
CP-80 | 2.4g(2.57mmol) | 0.6g(0.6mmol) |
CP样品 | 粒径/nm | CPA样品 | 粒径/nm |
---|---|---|---|
CP-0 | 60.05±2.89 | CPA-0 | 55.86±0.71 |
CP-20 | 76.92±1.92 | CPA-20 | 66.34±10.24 |
CP-40 | 135.5±0.99 | CPA-40 | 125.97±6.67 |
CP-60 | 176.40±5.30 | CPA-60 | 175.20±4.75 |
CP-80 | 226.83±1.17 | CPA-80 | 178.33±3.88 |
CP样品 | 粒径/nm | CPA样品 | 粒径/nm |
---|---|---|---|
CP-0 | 60.05±2.89 | CPA-0 | 55.86±0.71 |
CP-20 | 76.92±1.92 | CPA-20 | 66.34±10.24 |
CP-40 | 135.5±0.99 | CPA-40 | 125.97±6.67 |
CP-60 | 176.40±5.30 | CPA-60 | 175.20±4.75 |
CP-80 | 226.83±1.17 | CPA-80 | 178.33±3.88 |
样品名称 | 包封率/% | 载药率/% |
---|---|---|
CPA-0 | 73.76±0.06 | 5.56±0.005 |
CPA-20 | 75.50±0.11 | 5.61±0.008 |
CPA-40 | 77.89±0.16 | 5.72±0.012 |
CPA-60 | 88.66±0.44 | 6.47±0.032 |
CPA-80 | 92.00±0.26 | 6.62±0.019 |
样品名称 | 包封率/% | 载药率/% |
---|---|---|
CPA-0 | 73.76±0.06 | 5.56±0.005 |
CPA-20 | 75.50±0.11 | 5.61±0.008 |
CPA-40 | 77.89±0.16 | 5.72±0.012 |
CPA-60 | 88.66±0.44 | 6.47±0.032 |
CPA-80 | 92.00±0.26 | 6.62±0.019 |
拟合模型 | 样品 | 拟合公式 | a | b | R2 |
---|---|---|---|---|---|
Zero-order | CPA-0 | y=ax | 1.0407 | — | 0.8363 |
CPA-20 | 0.9525 | — | 0.8640 | ||
CPA-40 | 0.9204 | — | 0.8742 | ||
CPA-60 | 0.9007 | — | 0.8720 | ||
CPA-80 | 0.8705 | — | 0.8869 | ||
First-order | CPA-0 | y=a(1-e-bx ) | 94.62 | 0.0528 | 0.9886 |
CPA-20 | 89.75 | 0.0405 | 0.9888 | ||
CPA-40 | 87.98 | 0.0369 | 0.9408 | ||
CPA-60 | 85.28 | 0.0385 | 0.9144 | ||
CPA-80 | 85.52 | 0.0324 | 0.9569 | ||
Higuchi | CPA-0 | y=ax0.5 | 10.42 | — | 0.4469 |
CPA-20 | 9.44 | — | 0.7402 | ||
CPA-40 | 9.08 | — | 0.7924 | ||
CPA-60 | 8.90 | — | 0.7657 | ||
CPA-80 | 8.54 | — | 0.8680 | ||
Korsmeyer Peppas | CPA-0 | y=axb | 27.66 | 0.2722 | 0.8824 |
CPA-20 | 19.83 | 0.3271 | 0.9242 | ||
CPA-40 | 18.23 | 0.3378 | 0.9481 | ||
CPA-60 | 18.77 | 0.3261 | 0.9593 | ||
CPA-80 | 15.00 | 0.3692 | 0.9540 | ||
Hixson Crowell | CPA-0 | y=(a-bx)3 | 3.93 | -0.0061 | 0.5927 |
CPA-20 | 3.70 | -0.0071 | 0.6691 | ||
CPA-40 | 3.63 | -0.0074 | 0.7362 | ||
CPA-60 | 3.62 | -0.0072 | 0.7634 | ||
CPA-80 | 3.51 | -0.0079 | 0.7526 |
拟合模型 | 样品 | 拟合公式 | a | b | R2 |
---|---|---|---|---|---|
Zero-order | CPA-0 | y=ax | 1.0407 | — | 0.8363 |
CPA-20 | 0.9525 | — | 0.8640 | ||
CPA-40 | 0.9204 | — | 0.8742 | ||
CPA-60 | 0.9007 | — | 0.8720 | ||
CPA-80 | 0.8705 | — | 0.8869 | ||
First-order | CPA-0 | y=a(1-e-bx ) | 94.62 | 0.0528 | 0.9886 |
CPA-20 | 89.75 | 0.0405 | 0.9888 | ||
CPA-40 | 87.98 | 0.0369 | 0.9408 | ||
CPA-60 | 85.28 | 0.0385 | 0.9144 | ||
CPA-80 | 85.52 | 0.0324 | 0.9569 | ||
Higuchi | CPA-0 | y=ax0.5 | 10.42 | — | 0.4469 |
CPA-20 | 9.44 | — | 0.7402 | ||
CPA-40 | 9.08 | — | 0.7924 | ||
CPA-60 | 8.90 | — | 0.7657 | ||
CPA-80 | 8.54 | — | 0.8680 | ||
Korsmeyer Peppas | CPA-0 | y=axb | 27.66 | 0.2722 | 0.8824 |
CPA-20 | 19.83 | 0.3271 | 0.9242 | ||
CPA-40 | 18.23 | 0.3378 | 0.9481 | ||
CPA-60 | 18.77 | 0.3261 | 0.9593 | ||
CPA-80 | 15.00 | 0.3692 | 0.9540 | ||
Hixson Crowell | CPA-0 | y=(a-bx)3 | 3.93 | -0.0061 | 0.5927 |
CPA-20 | 3.70 | -0.0071 | 0.6691 | ||
CPA-40 | 3.63 | -0.0074 | 0.7362 | ||
CPA-60 | 3.62 | -0.0072 | 0.7634 | ||
CPA-80 | 3.51 | -0.0079 | 0.7526 |
样品 | 毒力回归方程 | LC50/mg·L-1 | 95%置信区间 | R2 |
---|---|---|---|---|
AVM分散液 | y=0.9838x+4.3863 | 4.20 | 2.62~6.76 | 0.9867 |
AVM乳油分散液 | y=1.9227x+3.8827 | 3.81 | 2.90~5.01 | 0.9313 |
CPA-40 | y=1.1071x+4.2110 | 5.16 | 3.34~7.98 | 0.9981 |
样品 | 毒力回归方程 | LC50/mg·L-1 | 95%置信区间 | R2 |
---|---|---|---|---|
AVM分散液 | y=0.9838x+4.3863 | 4.20 | 2.62~6.76 | 0.9867 |
AVM乳油分散液 | y=1.9227x+3.8827 | 3.81 | 2.90~5.01 | 0.9313 |
CPA-40 | y=1.1071x+4.2110 | 5.16 | 3.34~7.98 | 0.9981 |
1 | FANG Xinzi, ZHANG Qian, YU Beibei, et al. Plant-oil based polymeric emulsions as adhesive nanocarriers for enhancing the efficacy of nanopesticides[J]. Industrial Crops and Products, 2023, 192: 116020. |
2 | 郝丽, 黄丹丹, 关梅, 等. 氨基-酰胺类智能超分子水凝胶农药载体制备[J]. 化工学报, 2020, 71(8): 3819-3829. |
HAO Li, HUANG Dandan, GUAN Mei, et al. Preparation of supramolecular-assemble hydrogels as pesticide carriers based on amphiphilic amino-amide compounds[J]. CIESC Journal, 2020, 71(8): 3819-3829. | |
3 | FENG Jianguo, CHEN Wang, LIU Qi, et al. Development of abamectin-loaded nanoemulsion and its insecticidal activity and cytotoxicity[J]. Pest Management Science, 2020, 76(12): 4192-4201. |
4 | TAO Ruping, YOU Chaoqun, QU Qingli, et al. Recent advances in the design of controlled- and sustained-release micro/nanocarriers of pesticide[J]. Environmental Science: Nano, 2023, 10(2): 351-371. |
5 | LUO Jian, GAO Yue, LIU Yukun, et al. Self-assembled degradable nanogels provide foliar affinity and pinning for pesticide delivery by flexibility and adhesiveness adjustment[J]. ACS Nano, 2021, 15(9): 14598-14609. |
6 | GUAN Wenxun, ZHANG Wenxiang, TANG Liming, et al. Fabrication of novel avermectin nanoemulsion using a polyurethane emulsifier with cleavable disulfide bonds[J]. Journal of Agricultural and Food Chemistry, 2018, 66(26): 6569-6577. |
7 | LUO Jian, HUANG Xueping, JING Tongfang, et al. Analysis of particle size regulating the insecticidal efficacy of phoxim polyurethane microcapsules on leaves[J]. ACS Sustainable Chemistry & Engineering, 2018, 6(12): 17194-17203. |
8 | KONOVALOV Dmitry S, SAPRYKINA Natalia N, ZUEV Vjacheslav V. High-performance castor oil-based polyurethane composites reinforced by birch wood fibers[J]. Applied Sciences, 2023, 13(14): 8258. |
9 | HOWELL Bob A, OSTRANDER Eric A. Thermal degradation of flame-retardant compounds derived from castor oil[J]. Journal of Thermal Analysis and Calorimetry, 2019, 138(6): 3961-3975. |
10 | ZHONG Yuye, ZHANG Tao, ZHANG Wenshuo, et al. Antibacterial castor oil-based waterborne polyurethane/gelatin films for packaging of strawberries[J]. Food Packaging and Shelf Life, 2023, 36: 101055. |
11 | QIN He, ZHANG Hong, ZHOU Xiaoteng, et al. Preparation and reducing-responsive property of a novel functional polyurethane nanoemulsion[J]. Chinese Chemical Letters, 2020, 31(1): 292-294. |
12 | WANG Shiying, ZHANG Yi, YANG Liupeng, et al. Indoxacarb-loaded anionic polyurethane blend with sodium alginate improves pH sensitivity and ecological security for potential application in agriculture[J]. Polymers, 2020, 12(5): 1135. |
13 | 单久航. 蓖麻油改性水性聚氨酯的制备及性能研究[D]. 长春: 长春工业大学, 2019. |
SHAN Jiuhang. Preparation and properties of castor oil modified waterborne polyurethane[D]. Changchun: Changchun University of Technology, 2019. | |
14 | SHI Mengqing, YANG Jin, WANG Xiwen. Preparation castor oil-modified high bio-based waterborne polyurethane and its application[J]. Journal of Polymer Research, 2021, 28(9): 351. |
15 | 陈锓, 王成强, 宋季轩, 等. 蓖麻油基异氰酸酯乳液胶黏剂的制备及应用[J]. 中国胶黏剂, 2020, 29(3): 11-16. |
CHEN Qin, WANG Chengqiang, SONG Jixuan, et al. Preparation and application of castor oil based isocyanate emulsion adhesive[J]. China Adhesives, 2020, 29(3): 11-16. | |
16 | 解雅洁, 王海花. 水基羧酸型含锆盐聚氨酯乳液的制备及性能研究[J]. 涂料工业, 2017, 47(7): 51-57, 70. |
XIE Yajie, WANG Haihua. Synthesis and properties of waterborne carboxylic polyurethane emulsion containing zirconium salt[J]. Paint & Coatings Industry, 2017, 47(7): 51-57, 70. | |
17 | OURIQUE Pedro Antonio, ORNAGHI Felipe Gustavo, ORNAGHI Heitor Luiz, et al. Thermo-oxidative degradation kinetics of renewable hybrid polyurethane-urea obtained from air-oxidized soybean oil[J]. Journal of Thermal Analysis and Calorimetry, 2019, 137(6): 1969-1979. |
18 | FORTES Amanda C, BEZZON Vinicius D N, DE ARAÚJO Gabriel L B, et al. Preparation and physicochemical characterization of drug loaded in castor oil-based polyurethane[J]. Journal of Thermal Analysis and Calorimetry, 2020, 139(3): 1949-1957. |
19 | JIA Runping, WANG Dayang, HUANG Zhixiong, et al. Synthesis of castor oil-based waterborne polyurethane with improved properties via adjusting PBA/CO soft segment ratio[J]. ChemistrySelect, 2020, 5(41): 12690-12696. |
20 | WANG Shihai, ZHOU Yu, ZHUANG Bo, et al. Star-shaped amphiphilic block polyurethane with pentaerythritol core for a hydrophobic drug delivery carrier[J]. Polymer International, 2016, 65(5): 551-558. |
21 | MA Jianzhong, ZHOU Jianhua, LIU Geng, et al. Synthesis and properties of waterborne polyurethane modified with guar gum polysaccharide[J]. ChemistrySelect, 2020, 5(7): 2348-2353. |
22 | JIANG Qinhong, XIE Yonghui, PENG Min, et al. A nanocarrier pesticide delivery system with promising benefits in the case of dinotefuran: Strikingly enhanced bioactivity and reduced pesticide residue[J]. Environmental Science: Nano, 2022, 9(3): 988-999. |
23 | YU Manli, YAO Junwei, LIANG Jie, et al. Development of functionalized abamectin poly(lactic acid) nanoparticles with regulatable adhesion to enhance foliar retention[J]. RSC Advances, 2017, 7(19): 11271-11280. |
24 | SU Yi, MA Songqi, WANG Binbo, et al. High-performance castor oil-based polyurethane thermosets: Facile synthesis and properties[J]. Reactive and Functional Polymers, 2023, 183: 105496. |
25 | Sonalee DAS, PANDEY Priyanka, MOHANTY Smita, et al. Study of UV aging on the performance characteristics of vegetable oil and palm oil derived isocyanate based polyurethane[J]. Korean Journal of Chemical Engineering, 2017, 34(2): 523-538. |
26 | FU Heqing, WANG Yin, LI Xiaoya, et al. Synthesis of vegetable oil-based waterborne polyurethane/silver-halloysite antibacterial nanocomposites[J]. Composites Science and Technology, 2016, 126: 86-93. |
27 | AKBARI Ali, WU Jianping. Ovomucin nanoparticles: Promising carriers for mucosal delivery of drugs and bioactive compounds[J]. Drug Delivery and Translational Research, 2017, 7(4): 598-607. |
28 | KHAN Muhammad Umar Aslam, RAZAQ Saiful Izwan Abd, MEHBOOB Hassan, et al. Antibacterial and hemocompatible pH-responsive hydrogel for skin wound healing application: In vitro drug release[J]. Polymers, 2021, 13(21): 3703. |
29 | LI Yinghui, WANG Yusheng, ZHAO Jingsong, et al. A pH-sensitive curcumin loaded microemulsion-filled alginate and porous starch composite gels: Characterization, in vitro release kinetics and biological activity[J]. International Journal of Biological Macromolecules, 2021, 182: 1863-1873. |
30 | KAMPA Jansuda, FRAZIER Richard, Julia RODRIGUEZ-GARCIA. Physical and chemical characterisation of conventional and nano/emulsions: Influence of vegetable oils from different origins[J]. Foods, 2022, 11(5): 681. |
31 | GAO Guangchun, LU Zhongxian, TAO Shuhong, et al. Triterpenoid saponins with antifeedant activities from stem bark of Catunaregam spinosa (Rubiaceae) against Plutella xylostella (Plutellidae)[J]. Carbohydrate Research, 2011, 346(14): 2200-2205. |
32 | KIM Hyun Kyung, CHO Sun-Ran, KIM Gil-Hah. Insecticidal and antifeeding activity of Perilla frutescens-derived material against the diamondback moth, Plutella xylostella L[J]. Entomological Research, 2019, 49(1): 55-62. |
33 | CHERIF Asma, MANSOUR Ramzi, SUN Changjiao, et al. Lethal effects of nano and commercial formulations of abamectin on Tuta absoluta (Meyrick) and its mirid predators Macrolophus pygmaeus and Nesidiocoris tenuis[J]. International Journal of Tropical Insect Science, 2022, 42(3): 2183-2193. |
34 | CHEN Long, ZHOU Xinhua, LIN Guanquan, et al. Synthesis of pH-responsive isolated soy protein/carboxymethyl chitosan microspheres for sustained pesticide release[J]. Journal of Applied Polymer Science, 2020, 137(6): 48358. |
35 | 李梓泳, 马憬希, 赵明, 等. 羧甲基纤维素-大豆分离蛋白农药缓释颗粒的制备及性能[J]. 化工进展, 2021, 40(5): 2739-2746. |
LI Ziyong, MA Jingxi, ZHAO Ming, et al. Preparation and performance of carboxymethyl cellulose-soybean protein isolate pesticides sustained-release particles[J]. Chemical Industry and Engineering Progress, 2021, 40(5): 2739-2746. |
[1] | XIONG Lei, DING Feiyan, LI Cong, WANG Qunle, LYU Qi, ZHAI Xiaona, LIU Feng. Recent advances in metal Pt supported heterogeneous catalysts [J]. Chemical Industry and Engineering Progress, 2024, 43(S1): 295-304. |
[2] | SONG Caicheng, CHEN Xiaozhen, LIU Li, YANG Chengmin, ZHENG Bumei, YIN Xiaoying, SUN Jin, YAO Yunhai, DUAN Weiyu. Research progress of carbon-based carrier supported hydrodesulfurization catalysts [J]. Chemical Industry and Engineering Progress, 2024, 43(S1): 305-314. |
[3] | ZHANG Ridong, LYU Jianhua, LIU Jidong, GUO Bao, LI Wensong. Ru-K-NaY catalyzed decarbonylation of dimethyl oxalate to dimethyl carbonate [J]. Chemical Industry and Engineering Progress, 2024, 43(S1): 382-390. |
[4] | LI Lin, HUANG Guoyong, XU Shengming, YU Fengshan, WENG Yaqing, CAO Caifang, WEN Jiawei, WANG Chunxia, WANG Junlian, GU Bintao, ZHANG Yuanhua, LIU Bin, WANG Caiping, PAN Jianming, XU Zeliang, WANG Chong, WANG Ke. Recovery and regeneration preparation of aluminum-based spent catalyst support [J]. Chemical Industry and Engineering Progress, 2024, 43(S1): 640-649. |
[5] | GENG Xiumei, ZHANG Feng, ZHANG Xiang, SHAN Meixia, ZHANG Yatao. Research progress on the stability of Pebax-based mixed matrix membranes for CO2 separation [J]. Chemical Industry and Engineering Progress, 2024, 43(9): 4996-5012. |
[6] | WANG Yufei, JIA Yu, ZHANG Yisheng, XUE Wei, LI Fang, WANG Yanji. Synthesis of p-aminophenol by transfer hydrogenation of nitrobenzene using formic acid as hydrogen source [J]. Chemical Industry and Engineering Progress, 2024, 43(8): 4421-4431. |
[7] | HUANG Jun, ZHANG Yingjuan, LIN Yintong, WEI Xuechun, WU Yutong, WU Gaobo, MO Junlin, ZHAO Zhenxia, ZHAO Zhongxing. Preparation of silkworm excrement-based porous biocarbon and synergistic adsorption and slow-release performance for monosultap and dinotefuran [J]. Chemical Industry and Engineering Progress, 2024, 43(7): 3964-3971. |
[8] | WANG Juan, BIAN Chunlin, CHEN Xiangyu, WANG Ying, WANG Xindong, ZUO Yanxin, XIAO Benyi. Research advances of microaerobic anaerobic digestion [J]. Chemical Industry and Engineering Progress, 2024, 43(7): 4005-4014. |
[9] | ZHANG Shirui, FAN Zhenlian, SONG Huiping, ZHANG Lina, GAO Hongyu, CHENG Shuyan, CHENG Fangqin. Research progress of fly ash supported photocatalytic materials [J]. Chemical Industry and Engineering Progress, 2024, 43(7): 4043-4058. |
[10] | GUO Peng, LI Hongwei, LI Guixian, JI Dong, WANG Dongliang, ZHAO Xinhong. Mechanisms and coping strategies on deactivation of anode catalysts for direct methanol fuel cells [J]. Chemical Industry and Engineering Progress, 2024, 43(7): 3812-3823. |
[11] | WAN Chengfeng, LI Zhida, ZHANG Chunyue, LU Lu. Highly efficient electrocatalytic water splitting by MXene supported CoP nanorods [J]. Chemical Industry and Engineering Progress, 2024, 43(6): 3232-3239. |
[12] | WANG Tao, GAO Xiang, GAO Jifeng, DENG Haiquan, YU Xianyong, ZHOU Zhenhua, TANG Ling, LYU Hang. Application of modified Cu-BTC-based mixed matrix membrane in CO2 separation [J]. Chemical Industry and Engineering Progress, 2024, 43(6): 3240-3246. |
[13] | YANG Lei, QIU Guangwei, LI Siyan, GE Hongcheng, SUN Yuanyuan, WANG Fei, FAN Xiaoguang. Insulin controlled release carriers based on temperature and glucose dual-response copolymer microcapsules [J]. Chemical Industry and Engineering Progress, 2024, 43(6): 3277-3284. |
[14] | LI Siwen, LEI Min, LIU Yushuang, DONG Zhaoqi, XUE Lili, ZHAO Jianshe. Research progress of ionic liquid-based heteropolyacids in fuel oxidation desulfurization [J]. Chemical Industry and Engineering Progress, 2024, 43(6): 3322-3335. |
[15] | ZHOU Aiguo, ZHENG Jiale, YANG Chuanruo, YANG Xiaoyi, ZHAO Junde, LI Xingchun. Industrial progress in direct air CO2 capture technology [J]. Chemical Industry and Engineering Progress, 2024, 43(6): 2928-2939. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||
京ICP备12046843号-2;京公网安备 11010102001994号 Copyright © Chemical Industry and Engineering Progress, All Rights Reserved. E-mail: hgjz@cip.com.cn Powered by Beijing Magtech Co. Ltd |