Chemical Industry and Engineering Progress ›› 2024, Vol. 43 ›› Issue (6): 3322-3335.DOI: 10.16085/j.issn.1000-6613.2023-0787
• Resources and environmental engineering • Previous Articles
LI Siwen1(), LEI Min1, LIU Yushuang1, DONG Zhaoqi1, XUE Lili1, ZHAO Jianshe2
Received:
2023-05-11
Revised:
2023-11-06
Online:
2024-07-02
Published:
2024-06-15
Contact:
LI Siwen
李斯文1(), 雷敏1, 刘玉霜1, 董兆琪1, 薛丽丽1, 赵建社2
通讯作者:
李斯文
作者简介:
李斯文(1990—)女,讲师,研究方向为工业催化。E-mail: swli@chd.edu.cn。
基金资助:
CLC Number:
LI Siwen, LEI Min, LIU Yushuang, DONG Zhaoqi, XUE Lili, ZHAO Jianshe. Research progress of ionic liquid-based heteropolyacids in fuel oxidation desulfurization[J]. Chemical Industry and Engineering Progress, 2024, 43(6): 3322-3335.
李斯文, 雷敏, 刘玉霜, 董兆琪, 薛丽丽, 赵建社. 离子液体多酸在燃油氧化脱硫中的研究进展[J]. 化工进展, 2024, 43(6): 3322-3335.
Add to citation manager EndNote|Ris|BibTeX
URL: https://hgjz.cip.com.cn/EN/10.16085/j.issn.1000-6613.2023-0787
循环次数 | 脱硫率/% | 循环次数 | 脱硫率/% |
---|---|---|---|
1 | 99.2 | 6 | 98.2 |
2 | 99.0 | 7 | 98.1 |
3 | 98.7 | 8 | 97.5 |
4 | 98.5 | 9 | 97.3 |
5 | 98.4 | 10 | 97.1 |
循环次数 | 脱硫率/% | 循环次数 | 脱硫率/% |
---|---|---|---|
1 | 99.2 | 6 | 98.2 |
2 | 99.0 | 7 | 98.1 |
3 | 98.7 | 8 | 97.5 |
4 | 98.5 | 9 | 97.3 |
5 | 98.4 | 10 | 97.1 |
离子液体多酸 | 萃取剂 | 氧化剂 | n(催化剂)/n(S) | n(O)∶n(S) | 反应时间/min | 反应温度/℃ | 脱除物质 | 脱硫率/% |
---|---|---|---|---|---|---|---|---|
[HMIM]5PMo10V2O40 | — | H2O2 | 0.062 | 4∶1 | 100 | 60 | DBT | 99.10 |
[HMIM]3PMo12O40 | [BMIM][PF6] | H2O2 | 0.040 | 4∶1 | 90 | 60 | DBT | 87.80 |
[HMIM]3PMoO40 | 乙腈 | H2O2 | 0.040 | 6∶1 | 90 | 70 | BT | 84.60 |
[C8MIM]2Mo2O11 | C8MIMBF4 | H2O2 | 0.005 | 6∶1 | 30 | 40 | DBT | 98.83 |
离子液体多酸 | 萃取剂 | 氧化剂 | n(催化剂)/n(S) | n(O)∶n(S) | 反应时间/min | 反应温度/℃ | 脱除物质 | 脱硫率/% |
---|---|---|---|---|---|---|---|---|
[HMIM]5PMo10V2O40 | — | H2O2 | 0.062 | 4∶1 | 100 | 60 | DBT | 99.10 |
[HMIM]3PMo12O40 | [BMIM][PF6] | H2O2 | 0.040 | 4∶1 | 90 | 60 | DBT | 87.80 |
[HMIM]3PMoO40 | 乙腈 | H2O2 | 0.040 | 6∶1 | 90 | 70 | BT | 84.60 |
[C8MIM]2Mo2O11 | C8MIMBF4 | H2O2 | 0.005 | 6∶1 | 30 | 40 | DBT | 98.83 |
制备方法 | 优点 | 缺点 |
---|---|---|
一步法 | ||
固液混合法 | 反应直接;方便操作 | 均一复合结构不易形成 |
液液混合法 | 操作简单;所得产物结构均匀;能进一步加工 | 适用于可溶物质 |
多步法 | ||
原位聚合 | 可设计原材料和聚合方法 | 操作复杂 |
原位转化 | 可设计;可控制材料中物质的大小和空间分布 | 合成复杂;在前一步反应过程中要求聚离子液体化学稳定性好 |
制备方法 | 优点 | 缺点 |
---|---|---|
一步法 | ||
固液混合法 | 反应直接;方便操作 | 均一复合结构不易形成 |
液液混合法 | 操作简单;所得产物结构均匀;能进一步加工 | 适用于可溶物质 |
多步法 | ||
原位聚合 | 可设计原材料和聚合方法 | 操作复杂 |
原位转化 | 可设计;可控制材料中物质的大小和空间分布 | 合成复杂;在前一步反应过程中要求聚离子液体化学稳定性好 |
1 | 商讯. 公安部交管局:截至2022年9月底, 全国汽车保有量达3.15亿辆, 其中新能源汽车占比3.65%[J]. 商用汽车, 2022(10): 7. |
SHANG Xun. Traffic Management Bureau of the Ministry of Public Security: By the end of September 2022, the number of cars in China had reached 315 million, of which new energy vehicles accounted for 3.65%[J]. Commercial Vehicle, 2022(10): 7. | |
2 | 陈艳玲, 王敏, 吴启豪. 燃油氧化脱硫研究进展[J]. 当代化工, 2022, 51(1): 181-184. |
CHEN Yanling, WANG Min, WU Qihao. Research progress in oxidative desulfurization of fuel oil[J]. Contemporary Chemical Industry, 2022, 51(1): 181-184. | |
3 | 姚厅厅. 汽车尾气污染与控制研究[J]. 黑龙江环境通报, 2020, 33(2): 58-59. |
YAO Tingting. Research on automobile exhaust pollution and control[J]. Heilongjiang Environmental Journal, 2020, 33(2): 58-59. | |
4 | 姜十万. 汽车尾气排放控制现状分析[J]. 汽车维修, 2022(2): 7-10. |
JIANG Shiwan. Analysis on the present situation of automobile exhaust emission control[J]. Automobile Maintenance, 2022(2): 7-10. | |
5 | 熊卫东, 向亦华. 汽车尾气排放控制现状与对策建议[J]. 绿色科技, 2020(22): 129-131. |
XIONG Weidong, XIANG Yihua. Present situation and countermeasures of automobile exhaust emission control[J]. Journal of Green Science and Technology, 2020(22): 129-131. | |
6 | 于志庆, 黄文斌, 王晓晗, 等. B掺杂Al2O3@C负载CoMo型加氢脱硫催化剂性能[J]. 化工进展, 2023, 42(7): 3550-3560. |
YU Zhiqing, HUANG Wenbin, WANG Xiaohan, et al. B-doped Al2O3@C support for CoMo hydrodesulfurization catalyst and their hydrodesulfurization performance[J]. Chemical Industry and Engineering Progress, 2023, 42(7): 3550-3560. | |
7 | 苟俊杰. 基于杂多酸的催化剂合成及氧化脱硫性能评价[J]. 当代化工, 2023, 52(2): 356-360. |
GOU Junjie. Synthesis of heteropolyacid-based catalysts and evaluation of oxidative desulfurization performance[J]. Contemporary Chemical Industry, 2023, 52(2): 356-360. | |
8 | TANG Haolin, PAN Mu, LU Shanfu, et al. One-step synthesized HPW/meso-silica inorganic proton exchange membranes for fuelcells[J]. Chemical Communications, 2010, 46(24): 4351-4353. |
9 | 陈光, 黄新露, 吴子明, 等. 加氢工艺处理煤液化加氢稳定油的研究[J]. 炼油技术与工程, 2019, 49(6): 8-11. |
CHEN Guang, HUANG Xinlu, WU Ziming, et al. Study on hydrogenation technology for treating coal liquefaction hydrogenation stabilized oil[J]. Petroleum Refinery Engineering, 2019, 49(6): 8-11. | |
10 | 王光耀, 李伟林, 赵渊. 煤液化油加氢脱硫反应动力学研究[J]. 煤质技术, 2022, 37(5): 1-8. |
WANG Guangyao, LI Weilin, ZHAO Yuan. Study on hydrodesulfurization kinetics of coal liquefaction oil[J]. Coal Quality Technology, 2022, 37(5): 1-8. | |
11 | 李斯文. “三元嵌入式”固载杂多酸催化剂的制备及其氧化脱除DBT的研究[D]. 西安: 西北大学, 2019. |
LI Siwen. Synthesis of “ternary embedded system”loaded-heteropoly acid catalysts and their research on DBT removal in oxidative desulfurization process[D]. Xi’an: Northwest University, 2019. | |
12 | 吕树祥, 刘昊, 王超. 燃油氧化脱硫催化剂的研究进展[J]. 天津科技大学学报, 2022, 37(3): 1-11. |
Shuxiang LYU, LIU Hao, WANG Chao. Research progress of catalysts in oxidative desulfurization of fuel[J]. Journal of Tianjin University of Science & Technology, 2022, 37(3): 1-11. | |
13 | 王勇, 申海平, 任磊, 等. 燃料油氧化脱硫机理的研究进展[J]. 化工进展, 2019, 38(S1): 95-103. |
WANG Yong, SHEN Haiping, REN Lei, et al. Research progress of the oxidation desulfurization mechanism for fuel oil[J]. Chemical Industry and Engineering Progress, 2019, 38(S1): 95-103. | |
14 | 李冠东, 林超, 唐琳, 等. 车用燃油脱硫技术研究进展[J]. 化学工程与装备, 2020(6): 218-220. |
LI Guandong, LIN Chao, TANG Lin, et al. Research progress in vehicle fuel desulfurization technology[J]. Chemical Engineering & Equipment, 2020(6): 218-220. | |
15 | 张铭, 高永康, 纪德龙, 等. 多酸材料在燃油脱硫中的研究进展[J]. 化工进展, 2022, 41(9): 4782-4789. |
ZHANG Ming, GAO Yongkang, JI Delong, et al. Research progress of polyoxometalate materials for fuel oil desulfurization[J]. Chemical Industry and Engineering Progress, 2022, 41(9): 4782-4789. | |
16 | 李艳秋, 马川兰, 郭志芳. 咪唑类离子液体的合成及应用研究进展[J]. 农产品加工, 2022(14): 85-88, 93. |
LI Yanqiu, MA Chuanlan, GUO Zhifang. Progress on the synthesis and application of imidazoles ionic liquids[J]. Farm Products Processing, 2022(14): 85-88, 93. | |
17 | DING Yong, MA Baochun, GAO Qiang, et al. A spectroscopic study on the 12-heteropolyacids of molybdenum and tungsten (H3PMo12- n W n O40) combined with cetylpyridinium bromide in the epoxidation of cyclopentene[J]. Journal of Molecular Catalysis A: Chemical, 2005, 230(1/2): 121-128. |
18 | 韦岳伽. 杂多酸离子液体催化剂的制备及其催化性能的研究[D]. 广州: 广东工业大学, 2021. |
WEI Yuejia. Preparation and catalytic performance of heteropoly acid ionic liquid catalyst[D].Guangzhou: Guangdong University of Technology, 2021. | |
19 | 王涛, 余文卉, 李谭香凝, 等. 离子液体在萃取氧化脱硫中的应用与研究进展[J]. 应用化工, 2020, 49(2): 452-457. |
WANG Tao, YU Wenhui, LI Tanxiangning, et al. Application and research progress of extraction-oxidation desulfurization using ionic liquids[J]. Applied Chemical Industry, 2020, 49(2): 452-457. | |
20 | 包德才, 窦立超, 任冬梅, 等. 多金属氧酸盐催化氧化脱硫研究进展[J]. 渤海大学学报(自然科学版), 2017, 38(3): 211-217. |
BAO Decai, DOU Lichao, REN Dongmei, et al. Review in catalytic oxidation desulfurization by polyoxometalates[J]. Journal of Bohai University (Natural Science Edition), 2017, 38(3): 211-217. | |
21 | 郭田甜, 王志亮, 张效龙, 等. 离子液体催化剂及其催化作用[J]. 山东化工, 2010, 39(6): 28-31. |
GUO Tiantian, WANG Zhiliang, ZHANG Xiaolong, et al. Ionic liquids and its catalysis[J]. Shandong Chemical Industry, 2010, 39(6): 28-31. | |
22 | 贺建宏, 郑长征, 丁涛, 等. 硅钨基离子液体催化剂的合成及催化氧化脱硫研究[J]. 应用化工, 2020, 49(10): 2527-2532. |
HE Jianhong, ZHENG Changzheng, DING Tao, et al. Preparation and catalytic oxidative desulfurization of silicon tungsten-based ionic liquid catalysts[J]. Applied Chemical Industry, 2020, 49(10): 2527-2532. | |
23 | 吴沛文. 一个化学专业学生综合设计实验——过氧磷钼酸离子液体催化剂用于燃油氧化脱硫[J]. 教育教学论坛, 2020(28): 391-392. |
WU Peiwen. A comprehensive design experiment for chemistry students: Peroxophosphorus molybdate acid ionic liquid catalyst for oxidative desulfurization of fuel oil[J]. Education Teaching Forum, 2020(28): 391-392. | |
24 | 孙丽, 柴文, 谢小龙, 等. 新型Bronsted酸性杂多酸类离子液体的合成及其催化缩醛反应[J]. 常熟理工学院学报, 2020, 34(2): 97-102. |
SUN Li, CHAI Wen, XIE Xiaolong, et al. Synthesis of novel Bronsted acid heteropoly acids ionic liquids and study on catalytic acetalization[J]. Journal of Changshu Institute of Technology, 2020, 34(2): 97-102. | |
25 | 江春涛, 戚红亮, 李猛, 等. 杂多酸离子液体在催化有机合成反应中的研究进展[J]. 精细石油化工进展, 2014, 15(5): 47-54. |
JIANG Chuntao, QI Hongliang, LI Meng, et al. Progress on synthesis of heteropolyanion-based ionic liquid catalysts and their application in organic reaction[J]. Advances in Fine Petrochemicals, 2014, 15(5): 47-54. | |
26 | 王敏. 表面活性杂多酸离子液体的制备及其催化燃油脱硫性能研究[D]. 北京: 北京理工大学, 2015. |
WANG Min. Synthesis of surface active heteropolyacids-based ionic liquids and catalytic performancefor desulfurization of fuel oil[D]. Beijing: Beijing Institute of Technology, 2015. | |
27 | 夏鸣, 张卫东, 王猛, 等. 离子液体中过氧钼酸盐催化燃油深度氧化脱硫[J]. 化工进展, 2016, 35(10): 3207-3211. |
XIA Ming, ZHANG Weidong, WANG Meng, et al. Deep oxidative desulfurization of fuels using peroxomolybdate as a catalyst in ionic liquids[J]. Chemical Industry and Engineering Progress, 2016, 35(10): 3207-3211. | |
28 | 张铭, 谭豪杰, 刘嘉琪, 等. 磷钼钒离子液体活化氧气催化氧化脱硫实验[J]. 化工管理, 2020(14): 16-17. |
ZHANG Ming, TAN Haojie, LIU Jiaqi, et al. Experimental study on desulfurization by catalytic oxidation of oxygen activated by phosphorus, molybdenum and vanadium ionic liquid[J]. Chemical Enterprise Management, 2020(14): 16-17. | |
29 | 齐玉欢, 毕维强, 王旭, 等. 离子液体催化氧化脱硫技术进展[J]. 石化技术与应用, 2019, 37(2): 144-148. |
QI Yuhuan, BI Weiqiang, WANG Xu, et al. Progress in catalytic oxidation and desulfurization of ionic liquids technology[J]. Petrochemical Technology & Application, 2019, 37(2): 144-148. | |
30 | 钱文静, 袁超, 郭江娜, 等. 聚离子液体功能材料研究进展[J]. 化学学报, 2015, 73(4): 310-315. |
QIAN Wenjing, YUAN Chao, GUO Jiangna, et al. A review of poly(ionic liquid)s based functional materials[J]. Acta Chimica Sinica, 2015, 73(4): 310-315. | |
31 | GREEN Omar, GRUBJESIC Simonida, LEE Sungwon, et al. The design of polymeric ionic liquids for the preparation of functional materials[J]. Polymer Reviews, 2009, 49(4): 339-360. |
32 | 田晴. 聚离子液体复合材料性能及制备方法的研究进展[J]. 广州化工, 2022, 50(13): 20-22, 26. |
TIAN Qing. Research progress on properties and preparation methods of poly(ionic liquid)s composites[J]. Guangzhou Chemical Industry, 2022, 50(13): 20-22, 26. | |
33 | YUAN Jiayin, ANTONIETTI Markus. Poly(ionic liquid)s: Polymers expanding classical property profiles[J]. Polymer, 2011, 52(7): 1469-1482. |
34 | 刘文勇, 廖希智, 李春涛, 等. 聚离子液体的合成及其在吸附分离领域中的应用研究进展[J]. 包装学报, 2021, 13(2): 62-73. |
LIU Wenyong, LIAO Xizhi, LI Chuntao, et al. Progress in synthesis of poly(ionic liquid)s and applications in the field of adsorption and separation[J]. Packaging Journal, 2021, 13(2): 62-73. | |
35 | 钱文静, 郭江娜, 严锋. 功能化聚离子液体的设计合成及应用研究[J]. 高分子通报, 2015(10): 94-104. |
QIAN Wenjing, GUO Jiangna, YAN Feng. Design, synthesis and application of poly(ionic liquid)-based functional materials[J]. Polymer Bulletin, 2015(10): 94-104. | |
36 | 李佳蓉. SiO2@聚离子液体-杂多酸催化剂的设计合成及其氧化脱硫性能研究[D]. 西安: 西北大学, 2021. |
LI Jiarong. The study on the design, preparation and performance of SiO2@poly(ionic liquid)s-heteropolyacids catalysts for oxidative desulfurization[D]. Xi’an: Northwest University, 2021. | |
37 | 廖婉莹. 多酸聚离子液态材料催化氧化燃油深度脱硫的研究[D]. 镇江: 江苏大学, 2021. |
LIAO Wanying. Deep catalytic oxidation desulfurization of fuel by polyoxometalate-based poly(ionic liquids)[D]. Zhenjiang: Jiangsu University, 2021. | |
38 | 许慧慧. 吡啶基聚合离子液体的制备及其在燃油深度脱硫中的应用[D]. 北京: 北京化工大学, 2016. |
XU Huihui. Preparation of pyridinium based poly ionic liquids and their application in deep desulfurization of fuel oil[D]. Beijing: Beijing University of Chemical Technology, 2016. | |
39 | 陈勇. 聚合离子液体催化剂在柴油催化氧化深度脱硫中的应用[D]. 北京: 北京化工大学, 2017. |
CHEN Yong. The application of poly ionic liquids catalysts in deep catalytic oxidative desulfurization of diesel[D]. Beijing: Beijing University of Chemical Technology, 2017. | |
40 | 徐然. 杂多酸聚合离子液体的制备及其在燃油催化氧化脱硫中的应用[D]. 北京: 北京化工大学, 2018. |
XU Ran. Preparation of heteropoly acid based poly ionic liquids and their application in catalytic oxidative desulfurization of fuel oil[D]. Beijing: Beijing University of Chemical Technology, 2018. | |
41 | 郭国庆. 酸性离子液体/Zr-MOFs复合材料的制备及其在模拟汽油中的脱硫应用[D]. 广州: 华南理工大学, 2020. |
GUO Guoqing. Preparation of acidic ILs/Zr-MOFs composites and its application in desulfurization of simulated gasoline[D]. Guangzhou: South China University of Technology, 2020. | |
42 | 蒋善良. 负载型杂多酸离子液体催化氧化脱硫[D]. 北京: 中国石油大学(北京), 2017. |
JIANG Shanliang. Supported heteropoly acid ionic liquid catalytic oxidation desulfurization[D]. Beijing: China University of Petroleum, 2017. | |
43 | 陈定宁, 沈昊宇, 成瑾瑾, 等. “枣糕状” 结构杂多酸离子液体负载磁性复合材料的制备及超声脱硫的催化性能[J]. 材料导报, 2021, 35(12): 12181-12189. |
CHEN Dingning, SHEN Haoyu, CHENG Jinjin, et al. Preparation of jujube-cake-like structured heteropoly acid ionic liquids supported magnetic composite and its catalytic property for ultrasound-assisted desulfurization[J]. Materials Reports, 2021, 35(12): 12181-12189. | |
44 | 魏文英, 方键, 孔海宁, 等. 金属有机骨架材料的合成及应用[J]. 化学进展, 2005, 17(6): 1110-1115. |
WEI Wenying, FANG Jian, KONG Haining, et al. Synthesis and applications for materials of metallorganic frameworks[J]. Progress in Chemistry, 2005, 17(6): 1110-1115. | |
45 | 常甜, 王宇, 赵作桐, 等. MOFs基多孔材料吸附去除VOCs的研究进展[J]. 环境工程, 2022, 40(11): 237-250. |
CHANG Tian, WANG Yu, ZHAO Zuotong, et al. Research progress of MOFs-based porous materials in adsorptive removal of vocs[J]. Environmental Engineering, 2022, 40(11): 237-250. | |
46 | 罗青. ZIF-基金属有机框架纳米晶的可控合成及机理分析[D]. 南京: 南京邮电大学, 2021. |
LUO Qing. Controllable synthesis and mechanism analysis of ZIF- based metal organic framework nanocrystals[D].Nanjing: Nanjing University of Posts and Telecommunications, 2021. | |
47 | 周义朋, 王晓伟, 贾铭椿, 等. MOFs材料去除水中放射性核素的研究进展[J]. 现代化工, 2022, 42(2): 117-121. |
ZHOU Yipeng, WANG Xiaowei, JIA Mingchun, et al. Advances in MOFs materials for removal of radionuclides from water[J]. Modern Chemical Industry, 2022, 42(2): 117-121. | |
48 | 刘旭. 功能化MIL-101金属有机框架的制备及其苯气体吸附性能研究[D]. 常州: 常州大学, 2022. |
LIU Xu. Preparation of functionalized MIL-101 metal-organic framework and its adsorption properties for benzene gas[D]. Changzhou: Changzhou University, 2022. | |
49 | 何爱宁. 基于MOFs前驱体构筑的磁性合金/碳基复合材料及其电磁波吸收性能[D]. 呼和浩特: 内蒙古大学, 2022. |
HE Aining. The construction and electronmagnetic wave absorption properties of magnetic alloy/carbon-based composites derived from MOFs[D]. Hohhot: Inner Mongolia University, 2022. | |
50 | 王永. 基于功能化金属有机框架(MOFs)的血清中茶碱和NO电化学痕量检测新方法研究[D]. 成都: 成都大学, 2022. |
WANG Yong. Electrochemical trace detection of theophylline and NO in serum based on functionalized metal-organic frameworks(MOFs)[D]. Chengdu: Chengdu University,, 2022. | |
51 | 丁琳. 锆基金属有机框架材料的可控制备及其选择性捕获废水中Ag(Ⅰ)机理研究[D]. 武汉: 华中科技大学, 2020. |
DING Lin. Study on the controllable preparation of zirconium-based metal-organic frameworks and mechanism of selective capture of Ag(Ⅰ) from wastewater[D]. Wuhan: Huazhong University of Science and Technology, 2020. | |
52 | 薛晓晓, 杨世诚, 张正廷, 等. 金属有机骨架材料的研究进展[J]. 工业催化, 2020, 28(11): 9-14. |
XUE Xiaoxiao, YANG Shicheng, ZHANG Zhengting, et al. Research progress on metal organic framework[J]. Industrial Catalysis, 2020, 28(11): 9-14. | |
53 | 刘艳丽. 锆基MOFs及MOFs-GO复合材料对PVDF膜的亲水改性研究[D]. 大庆: 东北石油大学, 2021. |
LIU Yanli. Study on hydrophilic modification of PVDF membrane by zirconium based MOFs and MOFs-GO composite[D]. Daqing: the Northeast Petroleum University, 2021. | |
54 | Won-jin SON, KIM Jun, KIM Jaheon, et al. Sonochemical synthesis of MOF-5[J]. Chemical Communications, 2008(47): 6336-6338. |
55 | 袁媛. 杂多酸离子液体的固载合成及其汽油脱硫性能研究[D]. 广州: 华南理工大学, 2017. |
YUAN Yuan. Heteropolyacid ionic liquid: Immobilization and their application in gasoline desulfurization[D]. Guangzhou: South China University of Technology, 2017. | |
56 | QI Zhaoyang, HUANG Zhixian, WANG Hongxing, et al. In situ bridging encapsulation of a carboxyl-functionalized phosphotungstic acid ionic liquid in UiO-66: A remarkable catalyst for oxidative desulfurization[J]. Chemical Engineering Science, 2020, 225: 115818. |
57 | 胡丹蕾, 杨钮钮, 张傲雪, 等. 介孔材料的合成及其在药物传递中的研究进展[J]. 中国畜牧兽医, 2021, 48(4): 1498-1505. |
HU Danlei, YANG Niuniu, ZHANG Aoxue, et al. Adavance in synthesis and applications of mesoporous materials as drug delivery system[J]. China Animal Husbandry & Veterinary Medicine, 2021, 48(4): 1498-1505. | |
58 | 王乐楠. 功能介孔材料的合成及其催化性能研究[D]. 长春: 长春工业大学, 2022. |
WANG Yuenan. Synthesis of functional mesoporous materials and study for their catalytic properties[D]. Changchun: Changchun University of Technology, 2022. | |
59 | 樊培伟. 复合介孔功能材料的合成及其催化性能研究[D]. 长春: 吉林大学, 2008. |
FAN Peiwei. Synthesis and catalysis of mesoporous functional composite[D]. Changchun: Jilin University, 2008. | |
60 | 李鹏刚, 王靖轩, 郭飞飞, 等. 介孔碳的研究进展及应用[J]. 化工进展, 2018, 37(1): 149-158. |
LI Penggang, WANG Jingxuan, GUO Feifei, et al. Recent progress in the synthesis and applications of mesoporous carbon materials[J]. Chemical Industry and Engineering Progress, 2018, 37(1): 149-158. | |
61 | 郭涛. 磁性核壳介孔硅负载杂多酸离子液体催化氧化柴油脱硫的研究[D]. 镇江: 江苏大学, 2018. |
GUO Tao. Oxidative desulfurization process with heteropolyacid ionic liquids supported on magnetic core-shell mesoporous silicon[D]. Zhenjiang: Jiangsu University, 2018. | |
62 | 汤玲. 固载化杂多酸催化氧化脱硫的研究[D]. 石河子: 石河子大学, 2013. |
TANG Ling. Study of supported heteropoly acid catalysts for catalytic oxidation desulfurization[D]. Shihezi: Shihezi University, 2013. | |
63 | GAO Guohua, CHENG Shifu, AN Ying, et al. Oxidative desulfurization of aromatic sulfur compounds over titanosilicates[J]. ChemCatChem, 2010, 2(4): 459-466. |
64 | 庄江洲. 固载型磷钼钒杂多酸离子液体催化氧化脱硫性能研究[D]. 武汉: 湖北工业大学, 2015. |
ZHUANG Jiangzhou. Oxidative desulfurization of molybdovanadophosphate-based ionic liquid catalyst[D]. Wuhan: Hubei University of Technology, 2015. | |
65 | 王彦娟, 梁飞雪, 白金, 等. SiO2负载磷钨钒杂多酸杂化材料的制备及其氧化脱硫性能的研究[J]. 燃料化学学报, 2016, 44(9): 1099-1104. |
WANG Yanjuan, LIANG Feixue, BAI Jin, et al. Study on the oxidative desulfurization performance of SiO2-supported divanadium-substituted phosphotungstate hybrid material[J]. Journal of Fuel Chemistry and Technology, 2016, 44(9): 1099-1104. | |
66 | LI Meng, ZHANG Ming, WEI Aimin, et al. Facile synthesis of amphiphilic polyoxometalate-based ionic liquid supported silica induced efficient performance in oxidative desulfurization[J]. Journal of Molecular Catalysis A: Chemical, 2015, 406: 23-30. |
67 | 曲浩楠, 鄢景森, 王泽青, 等. 负载型磷钨钒杂多酸及其杂化材料催化氧化脱硫[J]. 辽宁科技学院学报, 2019, 21(5): 19-22, 66. |
QU Haonan, YAN Jingsen, WANG Zeqing, et al. Oxidative desulfurization catalyzed by supported tungstovanadophosphoric heteropoly acid and its hybrid material[J]. Journal of Liaoning Institute of Science and Technology, 2019, 21(5): 19-22, 66. | |
68 | 李化全, 邱贵宝, 吕学伟. 脱硝催化剂载体二氧化钛的制备与表征[J]. 钢铁钒钛, 2022, 43(3): 26-32. |
LI Huaquan, QIU Guibao, Xuewei LYU. Preparation and characterization of titanium dioxide as catalyst support for denitration[J]. Iron Steel Vanadium Titanium, 2022, 43(3): 26-32. | |
69 | 陈元哲. 负载杂多酸离子液体磁性催化剂的制备及氧化脱硫活性研究[D]. 兰州: 兰州大学, 2014. |
CHEN Yuanzhe. Preparation of heteropoly acids containing ionic liquid immobilized on magnetically catalyst for oxidative desulfurization[D]. Lanzhou: Lanzhou University, 2014. | |
70 | 荀苏杭, 李华明, 朱文帅, 等. 一种负载型杂多酸离子液体及其制备方法和应用: 201610208011.8[P]. 2016-09-21. |
XUN Suhang, LI Huaming, ZHU Wenshuai, et al. A loaded heteropolyacid ionic liquid and its preparation method and application: 201610208011.8[P]. 2016-09-21. |
[1] | ZHOU Aiguo, ZHENG Jiale, YANG Chuanruo, YANG Xiaoyi, ZHAO Junde, LI Xingchun. Industrial progress in direct air CO2 capture technology [J]. Chemical Industry and Engineering Progress, 2024, 43(6): 2928-2939. |
[2] | HE Shikun, ZHANG Wenhao, FENG Junfeng, PAN Hui. Directional conversion of lignocellulosic biomass to methyl levulinate over supported metal solid acid [J]. Chemical Industry and Engineering Progress, 2024, 43(6): 3042-3050. |
[3] | CHEN Fuqiang, ZHONG Zhaoping, QI Renzhi. Research progress on copper-based catalysts for electrochemical reduction of carbon dioxide to formic acid [J]. Chemical Industry and Engineering Progress, 2024, 43(6): 3051-3060. |
[4] | ZENG Zhuang, LI Kezhi, YUAN Zhiwei, DU Jintao, LI Zhuoshi, WANG Yue. Advances in modified Fischer-Tropsch synthesis catalysts for CO/CO2 hydrogenation to higher alcohols [J]. Chemical Industry and Engineering Progress, 2024, 43(6): 3061-3079. |
[5] | FENG Zhanxiong, ZHANG Chuang, LIU Dezheng, WANG Yun, MA Qiang, WANG Cheng. Effect of different atmosphere heat treatment on the oxygen reduction performance of Pt/C catalysts prepared by continuous pipeline microwave technology [J]. Chemical Industry and Engineering Progress, 2024, 43(6): 3080-3092. |
[6] | ZHOU Hao, WANG Xurui, ZHAO Huishuang, WEN Nini, SU Yaxin. Selective catalytic reduction of nitric oxide with propylene over CuCe-SAPO-34 catalysts under diesel engine exhaust [J]. Chemical Industry and Engineering Progress, 2024, 43(6): 3093-3099. |
[7] | WAN Chengfeng, LI Zhida, ZHANG Chunyue, LU Lu. Highly efficient electrocatalytic water splitting by MXene supported CoP nanorods [J]. Chemical Industry and Engineering Progress, 2024, 43(6): 3232-3239. |
[8] | WANG Tao, GAO Xiang, GAO Jifeng, DENG Haiquan, YU Xianyong, ZHOU Zhenhua, TANG Ling, LYU Hang. Application of modified Cu-BTC-based mixed matrix membrane in CO2 separation [J]. Chemical Industry and Engineering Progress, 2024, 43(6): 3240-3246. |
[9] | YANG Lei, QIU Guangwei, LI Siyan, GE Hongcheng, SUN Yuanyuan, WANG Fei, FAN Xiaoguang. Insulin controlled release carriers based on temperature and glucose dual-response copolymer microcapsules [J]. Chemical Industry and Engineering Progress, 2024, 43(6): 3277-3284. |
[10] | XIAO Zisheng, LI Jinling, CHEN Yirui, LAN Zhili, YIN Dulin. g-C3N4 anchored Cu(Ⅰ) highly selective catalytic synthesis of 2,4,4,4-tetrachlorobutyronitrile using CCl4 and acrylonitrile [J]. Chemical Industry and Engineering Progress, 2024, 43(6): 3293-3300. |
[11] | FENG Yongqiang, WANG Jieru, WANG Chaoxian, LI Fang, SU Wanting, SUN Yu, ZHAO Binran. Influence of Ni, Fe, and Cu loaded on γ-Al2O3 in CO2/CH4 conversion via dielectric barrier discharge plasma [J]. Chemical Industry and Engineering Progress, 2024, 43(5): 2705-2713. |
[12] | ZHOU Yuntao, WANG Hongxing, LI Xingang, CUI Lifeng. Application and research progress of CeO2 support in CO2 hydrogenation to methanol [J]. Chemical Industry and Engineering Progress, 2024, 43(5): 2723-2738. |
[13] | HUANG Peng, ZOU Ying, WANG Baohuan, WANG Xiaoyan, ZHAO Yong, LAING Xin, HU Di. Research progress of electrocatalysts towards electrocatalytic reduction reaction of carbon dioxide to syngas [J]. Chemical Industry and Engineering Progress, 2024, 43(5): 2760-2775. |
[14] | LU Xinxin, CAI Dongren, ZHAN Guowu. Research progress in the construction of integrated catalysts based on solid precursors and their application in CO2 hydrogenation [J]. Chemical Industry and Engineering Progress, 2024, 43(5): 2786-2802. |
[15] | LI Haipeng, WU Tong, WANG Qi, GAO Shiwang, WANG Xiaolong, LI Xu, GAO Xinhua, NIAN Pei, WEI Yibin. Effective methanol production by CO2 hydrogenation using water-permeable NaA zeolite membrane [J]. Chemical Industry and Engineering Progress, 2024, 43(5): 2834-2842. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||
京ICP备12046843号-2;京公网安备 11010102001994号 Copyright © Chemical Industry and Engineering Progress, All Rights Reserved. E-mail: hgjz@cip.com.cn Powered by Beijing Magtech Co. Ltd |