Chemical Industry and Engineering Progress ›› 2024, Vol. 43 ›› Issue (7): 4005-4014.DOI: 10.16085/j.issn.1000-6613.2023-0919
• Resources and environmental engineering • Previous Articles Next Articles
WANG Juan1(
), BIAN Chunlin1,2, CHEN Xiangyu2,3, WANG Ying2,3, WANG Xindong1, ZUO Yanxin4, XIAO Benyi2,3(
)
Received:2023-06-05
Revised:2023-10-20
Online:2024-08-14
Published:2024-07-25
Contact:
XIAO Benyi
王娟1(
), 卞春林1,2, 陈翔宇2,3, 王莹2,3, 王新东1, 左彦鑫4, 肖本益2,3(
)
通讯作者:
肖本益
作者简介:王娟(1987-),女,博士,副教授,研究方向为有机固体废弃物资源化、水环境污染治理。E-mail:wangjuan@imut.edu.cn。
基金资助:CLC Number:
WANG Juan, BIAN Chunlin, CHEN Xiangyu, WANG Ying, WANG Xindong, ZUO Yanxin, XIAO Benyi. Research advances of microaerobic anaerobic digestion[J]. Chemical Industry and Engineering Progress, 2024, 43(7): 4005-4014.
王娟, 卞春林, 陈翔宇, 王莹, 王新东, 左彦鑫, 肖本益. 微好氧厌氧消化研究进展[J]. 化工进展, 2024, 43(7): 4005-4014.
Add to citation manager EndNote|Ris|BibTeX
URL: https://hgjz.cip.com.cn/EN/10.16085/j.issn.1000-6613.2023-0919
基质 类型 | 传统厌氧消化系统 | 参考 文献 | |||||||
|---|---|---|---|---|---|---|---|---|---|
| 细菌(属) | 古菌 | ||||||||
玉米 秸秆 | Sinibacillus | Tepidimicrobium | Clostridium | Methanothrix | Methanobacterium | Methanomassiliicoccus | [ | ||
畜禽 废水 | Ruminofilibacter(19.2%) | Clostridium | Treponema | Methanosaeta (92.5%) | Methanospirillum | [ | |||
水稻 秸秆 | Christensenellaceae(2.99%) | Paludibacter (1.42%) | Sedimentibacter (0.8%) | Methanospirillum (59.4%~63.6%) | Methanothrix (42.4%~59.4%) | [ | |||
玉米 秸秆 | Clostridium (16.36%) | Sinibacillus | Tepidimicrobium | Methanothrix | Methanobacterium | Methanomassiliicoccus | Methanosphaera | [ | |
工业 废水 | Lactococcus (7.64%) | Blastocatella (3.01%) | Nitrosomonadaceae (2.86%) | Nitrospira (2.83%) | — | [ | |||
| 废纸 | Clostridium (40.37%) | Staphylococcus(31.52%) | Bacillus (6.82%) | Methanosarcina | Methanosaeta | [ | |||
基质 类型 | 微好氧厌氧消化系统 | 参考 文献 | |||||||
| 细菌(属) | 古菌 | ||||||||
玉米 秸秆 | Sinibacillus | Tepidimicrobium | Clostridium | Dethiobacter | Methanobacterium | Methanomassiliicoccus | Methanothrix | [ | |
畜禽 废水 | Clostridium | Ruminofilibacter | Treponema | Turicibacter | Methanosaeta (86.0%) | Methanospirillum (7.6%) | Methanobacterium | [ | |
水稻 秸秆 | Christensenellaceae (4.78%) | Paludibacter(3.33%) | Sedimentibacter (2.07%) | Methanospirillum (70.3%~71.0%) | Methanothrix (58.5%~62.1%) | [ | |||
玉米 秸秆 | Clostridium (20.66%) | Sinibacillus | Bacillus | Methanothrix | Methanobacterium | Methanomassiliicoccus | [ | ||
工业 废水 | Anaerolineaceae(7.10%) | Sulfuritalea (5.60%) | Ottowia (4.16%) | Blastocatella(3.46%) | — | [ | |||
| 废纸 | Staphylococcus(51.42%) | Bacillus (9.07%) | Macellibacteroides | Acinetobacter | Methanosarcina | Methanosaeta | Methanomassiliicoccus | [ | |
基质 类型 | 传统厌氧消化系统 | 参考 文献 | |||||||
|---|---|---|---|---|---|---|---|---|---|
| 细菌(属) | 古菌 | ||||||||
玉米 秸秆 | Sinibacillus | Tepidimicrobium | Clostridium | Methanothrix | Methanobacterium | Methanomassiliicoccus | [ | ||
畜禽 废水 | Ruminofilibacter(19.2%) | Clostridium | Treponema | Methanosaeta (92.5%) | Methanospirillum | [ | |||
水稻 秸秆 | Christensenellaceae(2.99%) | Paludibacter (1.42%) | Sedimentibacter (0.8%) | Methanospirillum (59.4%~63.6%) | Methanothrix (42.4%~59.4%) | [ | |||
玉米 秸秆 | Clostridium (16.36%) | Sinibacillus | Tepidimicrobium | Methanothrix | Methanobacterium | Methanomassiliicoccus | Methanosphaera | [ | |
工业 废水 | Lactococcus (7.64%) | Blastocatella (3.01%) | Nitrosomonadaceae (2.86%) | Nitrospira (2.83%) | — | [ | |||
| 废纸 | Clostridium (40.37%) | Staphylococcus(31.52%) | Bacillus (6.82%) | Methanosarcina | Methanosaeta | [ | |||
基质 类型 | 微好氧厌氧消化系统 | 参考 文献 | |||||||
| 细菌(属) | 古菌 | ||||||||
玉米 秸秆 | Sinibacillus | Tepidimicrobium | Clostridium | Dethiobacter | Methanobacterium | Methanomassiliicoccus | Methanothrix | [ | |
畜禽 废水 | Clostridium | Ruminofilibacter | Treponema | Turicibacter | Methanosaeta (86.0%) | Methanospirillum (7.6%) | Methanobacterium | [ | |
水稻 秸秆 | Christensenellaceae (4.78%) | Paludibacter(3.33%) | Sedimentibacter (2.07%) | Methanospirillum (70.3%~71.0%) | Methanothrix (58.5%~62.1%) | [ | |||
玉米 秸秆 | Clostridium (20.66%) | Sinibacillus | Bacillus | Methanothrix | Methanobacterium | Methanomassiliicoccus | [ | ||
工业 废水 | Anaerolineaceae(7.10%) | Sulfuritalea (5.60%) | Ottowia (4.16%) | Blastocatella(3.46%) | — | [ | |||
| 废纸 | Staphylococcus(51.42%) | Bacillus (9.07%) | Macellibacteroides | Acinetobacter | Methanosarcina | Methanosaeta | Methanomassiliicoccus | [ | |
| 基质类型 | 通氧量/溶解氧 | OLR | VS降解率/% | COD降解率/% | 甲烷产率/mL·(g·VS)-1 | 硫化氢去除率/% | 参考文献 | |||
|---|---|---|---|---|---|---|---|---|---|---|
| 厌氧 | 微好氧 | 厌氧 | 微好氧 | 厌氧 | 微好氧 | |||||
| 青贮饲料 | 2.5L空气·min-1 | — | 27 | 37 | 32.12 | 36.36 | 5.25 | 7.35 | — | [ |
| 餐厨垃圾 | 0.0375L氧气·L-1·d-1 | — | — | ↑10 | — | ↑56 | 0.13±0.02 | 0.20±0.03 | — | [ |
| 餐厨垃圾 | 258L空气·(kg TS)-1·d-1 | — | 61.2 | 66.3 | 43.2 | 59.7 | 0.23 | 0.27 | — | [ |
| 混合污泥 | 4g TS·min-1 | — | 18.3±2.6 | 24.5±3.6 | 44.84±5.24 | 53.7±5.41 | 109.3±16.1 | 93.9±17.8 | — | [ |
| 混合污泥 | 50L·h-1 | 2.15±0.75g Vs·L-1·d-1 | 41 | 45 | 59.33 | 57.78 | 20.538 | 21.19 | >90 | [ |
| 剩余污泥 | 0.35L空气·L-1·min-1 | 10g VS·L-1·d-1 | 11.5 | 23.6 | — | ↑17 | 16.35 | 35 | — | [ |
| 剩余污泥 | 1.6L空气·d-1 | 2.0g VS·L-1·d-1 | 65.2±4.7 | 63.6±4.1 | — | ↑33 | 195±28 | 188±21 | 99.7±0.2 | [ |
| 玉米秸秆 | 12.5mL 空气·L-1·d-1 | — | 49.22 | 54.3 | — | — | 186.03 | 216.8 | — | [ |
| 纸浆废水 | 3~6mL空气·L-1·min-1 | 8kg COD·m-3·d -1 | — | — | 40 | 80 | — | — | >30 | [ |
| 石化废水 | DO=0.2~0.3mg·L-1 | (0.352±0.06)g VS·L-1·d-1 | — | — | 10.9 | 31.6 | — | — | >99 | [ |
| 合成废水 | 0.2mL空气·min-1 | — | — | — | 90±7 | 89±6 | 33.4±3.29 | 28.6±5.31 | 93 | [ |
| 啤酒废水 | 1L空气·d-1 | 8g COD·L-1·d-1 | — | — | 89±5 | 90±4 | 8.5±2.0 | 9.6±1.6 | 73 | [ |
| 基质类型 | 通氧量/溶解氧 | OLR | VS降解率/% | COD降解率/% | 甲烷产率/mL·(g·VS)-1 | 硫化氢去除率/% | 参考文献 | |||
|---|---|---|---|---|---|---|---|---|---|---|
| 厌氧 | 微好氧 | 厌氧 | 微好氧 | 厌氧 | 微好氧 | |||||
| 青贮饲料 | 2.5L空气·min-1 | — | 27 | 37 | 32.12 | 36.36 | 5.25 | 7.35 | — | [ |
| 餐厨垃圾 | 0.0375L氧气·L-1·d-1 | — | — | ↑10 | — | ↑56 | 0.13±0.02 | 0.20±0.03 | — | [ |
| 餐厨垃圾 | 258L空气·(kg TS)-1·d-1 | — | 61.2 | 66.3 | 43.2 | 59.7 | 0.23 | 0.27 | — | [ |
| 混合污泥 | 4g TS·min-1 | — | 18.3±2.6 | 24.5±3.6 | 44.84±5.24 | 53.7±5.41 | 109.3±16.1 | 93.9±17.8 | — | [ |
| 混合污泥 | 50L·h-1 | 2.15±0.75g Vs·L-1·d-1 | 41 | 45 | 59.33 | 57.78 | 20.538 | 21.19 | >90 | [ |
| 剩余污泥 | 0.35L空气·L-1·min-1 | 10g VS·L-1·d-1 | 11.5 | 23.6 | — | ↑17 | 16.35 | 35 | — | [ |
| 剩余污泥 | 1.6L空气·d-1 | 2.0g VS·L-1·d-1 | 65.2±4.7 | 63.6±4.1 | — | ↑33 | 195±28 | 188±21 | 99.7±0.2 | [ |
| 玉米秸秆 | 12.5mL 空气·L-1·d-1 | — | 49.22 | 54.3 | — | — | 186.03 | 216.8 | — | [ |
| 纸浆废水 | 3~6mL空气·L-1·min-1 | 8kg COD·m-3·d -1 | — | — | 40 | 80 | — | — | >30 | [ |
| 石化废水 | DO=0.2~0.3mg·L-1 | (0.352±0.06)g VS·L-1·d-1 | — | — | 10.9 | 31.6 | — | — | >99 | [ |
| 合成废水 | 0.2mL空气·min-1 | — | — | — | 90±7 | 89±6 | 33.4±3.29 | 28.6±5.31 | 93 | [ |
| 啤酒废水 | 1L空气·d-1 | 8g COD·L-1·d-1 | — | — | 89±5 | 90±4 | 8.5±2.0 | 9.6±1.6 | 73 | [ |
| 基质类型 | 反应规模 | 水力停留时间 | 通氧量/溶解氧 | 效果 | 性能提升原因 | 参考文献 |
|---|---|---|---|---|---|---|
| 剩余污泥 | 中试 (200L) | 20d | 0.013~0.024L/d | 硫化氢去除率超99% | 微好氧抑制硫酸盐还原菌的生长,减少了硫化氢的产生 | [ |
| 剩余污泥 | 中试 (250L) | 18d | 50L/h | 提高系统稳定性 | 微好氧促进氢营养性产甲烷菌生长,微生物活性提高,加速有机物转化 | [ |
| 城市固体废弃物 | 中试 (375L) | 18d | 1L/min | 甲烷产率提升66% | 微好氧加速了水解/酸化进程,为产甲烷菌提供了底物 | [ |
| 牛粪 | 中试 (104L) | 17d | 5~150mL/min | 硫化氢去除率超85.79% | 气/液接触面积增大,表面生成生物膜,加速了硫氧化菌的生长 | [ |
| 石化废水 | 中试 (14.5m³) | — | 5.5~13.8L/m³ | 有机物去除率超78.3% | 水解酸化菌群落丰度和多样性均得到提高,加速了反应速率 | [ |
| 牛粪 | 工程应用 (338m³) | 14h | 1%沼气产率 | 硫化氢去除率超68.2% | 气液交界处与硫化物氧化及硫单质生成相关的两种菌种大量繁殖 | [ |
| 工厂废水 | 工程应用 (100000m³) | 17~24d | DO=0.4~0.5mg/L | 去除硫化氢 | 氧气促进了硫循环,降低了硫酸盐产量,减少了硫化氢的产生 | [ |
| 剩余污泥 | 工程应用 (4500m³) | 44~71d | DO=0.2~2.0mg/L | 硫化氢去除率100% | 高浓度总氮、氨氮限制了硫酸盐还原菌的产生 | [ |
| 城市废水 | 工程应用 (30000m³) | — | 0.28~6.0m³/h | 硫化氢去除率超74% | 硫化物氧化菌将硫酸盐转换 | [ |
| 基质类型 | 反应规模 | 水力停留时间 | 通氧量/溶解氧 | 效果 | 性能提升原因 | 参考文献 |
|---|---|---|---|---|---|---|
| 剩余污泥 | 中试 (200L) | 20d | 0.013~0.024L/d | 硫化氢去除率超99% | 微好氧抑制硫酸盐还原菌的生长,减少了硫化氢的产生 | [ |
| 剩余污泥 | 中试 (250L) | 18d | 50L/h | 提高系统稳定性 | 微好氧促进氢营养性产甲烷菌生长,微生物活性提高,加速有机物转化 | [ |
| 城市固体废弃物 | 中试 (375L) | 18d | 1L/min | 甲烷产率提升66% | 微好氧加速了水解/酸化进程,为产甲烷菌提供了底物 | [ |
| 牛粪 | 中试 (104L) | 17d | 5~150mL/min | 硫化氢去除率超85.79% | 气/液接触面积增大,表面生成生物膜,加速了硫氧化菌的生长 | [ |
| 石化废水 | 中试 (14.5m³) | — | 5.5~13.8L/m³ | 有机物去除率超78.3% | 水解酸化菌群落丰度和多样性均得到提高,加速了反应速率 | [ |
| 牛粪 | 工程应用 (338m³) | 14h | 1%沼气产率 | 硫化氢去除率超68.2% | 气液交界处与硫化物氧化及硫单质生成相关的两种菌种大量繁殖 | [ |
| 工厂废水 | 工程应用 (100000m³) | 17~24d | DO=0.4~0.5mg/L | 去除硫化氢 | 氧气促进了硫循环,降低了硫酸盐产量,减少了硫化氢的产生 | [ |
| 剩余污泥 | 工程应用 (4500m³) | 44~71d | DO=0.2~2.0mg/L | 硫化氢去除率100% | 高浓度总氮、氨氮限制了硫酸盐还原菌的产生 | [ |
| 城市废水 | 工程应用 (30000m³) | — | 0.28~6.0m³/h | 硫化氢去除率超74% | 硫化物氧化菌将硫酸盐转换 | [ |
| 1 | CHEN Yang, YIN Yanan, WANG Jianlong. Recent advance in inhibition of dark fermentative hydrogen production[J]. International Journal of Hydrogen Energy, 2021, 46(7): 5053-5073. |
| 2 | 秦丞志, 张奇, 赵建伟, 等. 餐厨垃圾干式厌氧发酵技术研究进展及展望[J]. 现代化工, 2022, 42(2): 1-5, 9. |
| QIN Chengzhi, ZHANG Qi, ZHAO Jianwei, et al. Research progress and prospect in dry anaerobic fermentation technology for kitchen waste[J]. Modern Chemical Industry, 2022, 42(2): 1-5, 9. | |
| 3 | 武鹏崑, 崔常桂, 查凯, 等. PFS对污泥厌氧消化中沼气脱硫的影响[J]. 中国给水排水, 2020, 36(17): 75-78. |
| WU Pengkun, CUI Changgui, ZHA Kai, et al. Effect of polychloride ferric sulfate on desulfurization of biogas in sludge anaerobic digestion[J]. China Water & Wastewater, 2020, 36(17): 75-78. | |
| 4 | 袁志强, 尹常凯, 徐佳佳, 等. 污泥炭强化微生物电解池提高污泥厌氧消化甲烷产率与系统稳定性[J]. 环境工程学报, 2022, 16(1): 253-263. |
| YUAN Zhiqiang, YIN Changkai, XU Jiajia, et al. Sludge-derived biochar enhanced microbial electrolysis cell for improving biomethane productivity and system stability in anaerobic digestion of waste activated sludge[J]. Chinese Journal of Environmental Engineering, 2022, 16(1): 253-263. | |
| 5 | 傅翔, 戴翎翎, 张栋, 等. 污泥产短链脂肪酸微生物的研究进展[J]. 环境工程, 2015, 33(5): 5-9, 53. |
| FU Xiang, DAI Lingling, ZHANG Dong, et al. Research progress of microorganisms related to short-chain fatty acids production from sludge[J]. Environmental Engineering, 2015, 33(5): 5-9, 53. | |
| 6 | AHMAD Talha, AADIL Rana Muhammad, AHMED Haassan, et al. Treatment and utilization of dairy industrial waste: A review[J]. Trends in Food Science & Technology, 2019, 88: 361-372. |
| 7 | PIRT S J, LEE Y K. Enhancement of methanogenesis by traces of oxygen in bacterial digestion of biomass[J]. FEMS Microbiology Letters, 1983, 18(1/2): 61-63. |
| 8 | CHEN Qing, WU Wanqing, QI Dacheng, et al. Review on microaeration-based anaerobic digestion: State of the art, challenges, and prospectives[J]. Science of the Total Environment, 2020, 710: 136388. |
| 9 | NGUYEN Duc, KHANAL Samir Kumar. A little breath of fresh air into an anaerobic system: How microaeration facilitates anaerobic digestion process[J]. Biotechnology Advances, 2018, 36(7): 1971-1983. |
| 10 | KRAYZELOVA Lucie, BARTACEK Jan, Israel DÍAZ, et al. Microaeration for hydrogen sulfide removal during anaerobic treatment: A review[J]. Reviews in Environmental Science and Bio/Technology, 2015, 14(4): 703-725. |
| 11 | BRIOUKHANOV A L, NETRUSOV A I. Aerotolerance of strictly anaerobic microorganisms and factors of defense against oxidative stress: A review[J]. Applied Biochemistry and Microbiology, 2007, 43(6): 567-582. |
| 12 | HUNGATE R E. Chapter Ⅳ A roll tube method for cultivation of strict anaerobes[M]//Methods in Microbiology. Amsterdam: Elsevier, 1969: 117-132. |
| 13 | SONG Chao, LI Wanwu, CAI Fanfan, et al. Anaerobic and microaerobic pretreatment for improving methane production from paper waste in anaerobic digestion[J]. Frontiers in Microbiology, 2021, 12: 688290. |
| 14 | WANG Zhiqiang, LIU Jinming, TAN Feng. Effect of microaeration combined with ferric chloride pretreatment on anaerobic digestion of corn stalk[J]. Energy Sources, Part A: Recovery, Utilization, and Environmental Effects, 2022: doi.org/10.1080/15567036.2022.2039330. |
| 15 | SHRESTHA Shilva, FONOLL Xavier, KHANAL Samir Kumar, et al. Biological strategies for enhanced hydrolysis of lignocellulosic biomass during anaerobic digestion: Current status and future perspectives[J]. Bioresource Technology, 2017, 245: 1245-1257. |
| 16 | JIANG Guangming, ZHOU Mi, CHIU Tsz Ho, et al. Wastewater-enhanced microbial corrosion of concrete sewers[J]. Environmental Science & Technology, 2016, 50(15): 8084-8092. |
| 17 | FU Shanfei, WANG Fei, YUAN Xianzheng, et al. The thermophilic (55℃) microaerobic pretreatment of corn straw for anaerobic digestion[J]. Bioresource Technology, 2015, 175: 203-208. |
| 18 | FU Shanfei, LIAN Shujuan, ANGELIDAKI Irini, et al. Micro-aeration: An attractive strategy to facilitate anaerobic digestion[J]. Trends in Biotechnology, 2023, 41(5): 714-726. |
| 19 | VICKERS Neil J. Animal communication: When I’m calling You, will You answer too?[J]. Current Biology, 2017, 27(14): R713-R715. |
| 20 | MAHDY Ahmed, SONG Yunlong, SALAMA Ali, et al. Simultaneous H2S mitigation and methanization enhancement of chicken manure through the introduction of the micro-aeration approach[J]. Chemosphere, 2020, 253: 126687. |
| 21 | ZHU Rong, WANG Donghui, ZHENG Yi, et al. Understanding the mechanisms behind micro-aeration to enhance anaerobic digestion of corn straw[J]. Fuel, 2022, 318: 123604. |
| 22 | MATHEWS Stephanie L, PAWLAK Joel, GRUNDEN Amy M. Bacterial biodegradation and bioconversion of industrial lignocellulosic streams[J]. Applied Microbiology and Biotechnology, 2015, 99(7): 2939-2954. |
| 23 | RUAN Danian, ZHOU Zhen, PANG Hongjian, et al. Enhancing methane production of anaerobic sludge digestion by microaeration: Enzyme activity stimulation, semi-continuous reactor validation and microbial community analysis[J]. Bioresource Technology, 2019, 289: 121643. |
| 24 | YANG Hongnan, DENG Liangwei. Using air instead of biogas for mixing and its effect on anaerobic digestion of animal wastewater with high suspended solids[J]. Bioresource Technology, 2020, 318: 124047. |
| 25 | SIQUEIRA João Paulo S, PEREIRA Andrey M, DUTRA Amanda Maria M, et al. Process bioengineering applied to BTEX degradation in microaerobic treatment systems[J]. Journal of Environmental Management, 2018, 223: 426-432. |
| 26 | KHAN Aman, CHEN Zhengjun, ZHAO Shuai, et al. Micro-aeration in anode chamber promotes p-nitrophenol degradation and electricity generation in microbial fuel cell[J]. Bioresource Technology, 2019, 285: 121291. |
| 27 | KRAYZELOVA Lucie, BARTACEK Jan, KOLESAROVA Nina, et al. Microaeration for hydrogen sulfide removal in UASB reactor[J]. Bioresource Technology, 2014, 172: 297-302. |
| 28 | FDZ-POLANCO M, DÍAZ I, PÉREZ S I, et al. Hydrogen sulphide removal in the anaerobic digestion of sludge by micro-aerobic processes: Pilot plant experience[J]. Water Science and Technology, 2009, 60(12): 3045-3050. |
| 29 | FAN Fuqiang, XU Ronghua, WANG Depeng, et al. Application of activated sludge for odor control in wastewater treatment plants: Approaches, advances and outlooks[J]. Water Research, 2020, 181: 115915. |
| 30 | Lucie POKORNA-KRAYZELOVA, Dana VEJMELKOVÁ, SELAN Lara, et al. Final products and kinetics of biochemical and chemical sulfide oxidation under microaerobic conditions[J]. Water Science and Technology, 2018, 78(9): 1916-1924. |
| 31 | JENICEK P, CELIS C A, KOUBOVA J, et al. Comparison of microbial activity in anaerobic and microaerobic digesters[J]. Water Science and Technology, 2011, 63(10): 2244-2249. |
| 32 | RASHVANLOU Reza Barati, REZAEE Abbas, FARZADKIA Mahdi, et al. Effect of micro-aerobic process on improvement of anaerobic digestion sewage sludge treatment: Flow cytometry and ATP assessment[J]. RSC Advances, 2020, 10(59): 35718-35728. |
| 33 | FU Shanfei, WANG Fei, SHI Xiaoshuang, et al. Impacts of microaeration on the anaerobic digestion of corn straw and the microbial community structure[J]. Chemical Engineering Journal, 2016, 287: 523-528. |
| 34 | RAMOS I, FDZ-POLANCO M. The potential of oxygen to improve the stability of anaerobic reactors during unbalanced conditions: Results from a pilot-scale digester treating sewage sludge[J]. Bioresource Technology, 2013, 140: 80-85. |
| 35 | ZHEN Feng, LUO Xinjian, XING Tao, et al. Performance evaluation and microbial community analysis of microaerobic pretreatment on thermophilic dry anaerobic digestion[J]. Biochemical Engineering Journal, 2021, 167: 107873. |
| 36 | AMIN Farrukh Raza, KHALID Habiba, LI Wanwu, et al. Enhanced methane production and energy potential from rice straw by employing microaerobic pretreatment via anaerobic digestion[J]. Journal of Cleaner Production, 2021, 296: 126434. |
| 37 | AHMADI M, VAHABZADEH F, BONAKDARPOUR B, et al. Application of the central composite design and response surface methodology to the advanced treatment of olive oil processing wastewater using Fenton’s peroxidation[J]. Journal of Hazardous Materials, 2005, 123(1/2/3): 187-195. |
| 38 | YANG Qi, XIONG Panpan, DING Pengyuan, et al. Treatment of petrochemical wastewater by microaerobic hydrolysis and anoxic/oxic processes and analysis of bacterial diversity[J]. Bioresource Technology, 2015, 196: 169-175. |
| 39 | JAGADABHI Padma Shanthi, KAPARAJU Prasad, RINTALA Jukka. Effect of micro-aeration and leachate replacement on COD solubilization and VFA production during mono-digestion of grass-silage in one-stage leach-bed reactors[J]. Bioresource Technology, 2010, 101(8): 2818-2824. |
| 40 | GUIMARÃES DE OLIVEIRA Maurício, MARQUES MOURÃO José Marcos, MARQUES DE OLIVEIRA Ana Katherinne, et al. Microaerophilic treatment enhanced organic matter removal and methane production rates during swine wastewater treatment: A long-term engineering evaluation[J]. Renewable Energy, 2021, 180: 691-699. |
| 41 | XU Suyun, SELVAM Ammaiyappan, WONG Jonathan W C. Optimization of micro-aeration intensity in acidogenic reactor of a two-phase anaerobic digester treating food waste[J]. Waste Management, 2014, 34(2): 363-369. |
| 42 | MONTALVO Silvio, OJEDA Felipe, César HUILIÑIR, et al. Performance evaluation of micro-aerobic hydrolysis of mixed sludge: Optimum aeration and effect on its biochemical methane potential[J]. Journal of Environmental Science and Health, Part A, 2016, 51(14): 1269-1277. |
| 43 | JENICEK P, CELIS C A, KRAYZELOVA L, et al. Improving products of anaerobic sludge digestion by microaeration[J]. Water Science and Technology, 2014, 69(4): 803-809. |
| 44 | ZHOU Weili, IMAI Tsuyoshi, UKITA Masao, et al. Effect of limited aeration on the anaerobic treatment of evaporator condensate from a sulfite pulp mill[J]. Chemosphere, 2007, 66(5): 924-929. |
| 45 | WU Changyong, ZHOU Yuexi, WANG Peichao, et al. Improving hydrolysis acidification by limited aeration in the pretreatment of petrochemical wastewater[J]. Bioresource Technology, 2015, 194: 256-262. |
| 46 | SOUSA M R, OLIVEIRA C J S, LOPES A C, et al. Technical, economical, and microbiological aspects of the microaerobic process on H2S removal for low sulfate concentration wastewaters[J]. Applied Biochemistry and Biotechnology, 2016, 180(7): 1386-1400. |
| 47 | NIELFA A, CANO R, FDZ-POLANCO M. Theoretical methane production generated by the co-digestion of organic fraction municipal solid waste and biological sludge[J]. Biotechnology Reports, 2015, 5: 14-21. |
| 48 | Lucie POKORNA-KRAYZELOVA, MAMPAEY Kris E, VANNECKE Thomas P W, et al. Model-based optimization of microaeration for biogas desulfurization in UASB reactors[J]. Biochemical Engineering Journal, 2017, 125: 171-179. |
| 49 | MENEZES Osmar, BRITO Rhayssa, HALLWASS Fernando, et al. Coupling intermittent micro-aeration to anaerobic digestion improves tetra-azo dye Direct Black 22 treatment in sequencing batch reactors[J]. Chemical Engineering Research and Design, 2019, 146: 369-378. |
| 50 | TARTAKOVSKY B, MEHTA P, J-S BOURQUE, et al. Electrolysis-enhanced anaerobic digestion of wastewater[J]. Bioresource Technology, 2011, 102(10): 5685-5691. |
| 51 | KHANAL Samir Kumar, HUANG Juchang. Online oxygen control for sulfide oxidation in anaerobic treatment of high-sulfate wastewater[J]. Water Environment Research, 2006, 78(4): 397-408. |
| 52 | ALEXANDER John, ADAM Brookes, IRENE Carra, et al. Microbubbles and their application to ozonation in water treatment: A critical review exploring their benefit and future application[J]. Critical Reviews in Environmental Science and Technology, 2022, 52(9): 1561-1603. |
| 53 | LIU Wenzong, CAI Weiwei, GUO Zechong, et al. Microbial electrolysis contribution to anaerobic digestion of waste activated sludge, leading to accelerated methane production[J]. Renewable Energy, 2016, 91: 334-339. |
| 54 | MULBRY Walter, SELMER Kaitlyn, LANSING Stephanie. Effect of liquid surface area on hydrogen sulfide oxidation during micro-aeration in dairy manure digesters[J]. PLoS One, 2017, 12(10): e0185738. |
| 55 | GIORDANO Andrea, DI CAPUA Francesco, ESPOSITO Giovanni, et al. Long-term biogas desulfurization under different microaerobic conditions in full-scale thermophilic digesters co-digesting high-solid sewage sludge[J]. International Biodeterioration & Biodegradation, 2019, 142: 131-136. |
| 56 | LOUGHRIN John, LOVANH Nanh. Aeration to improve biogas production by recalcitrant feedstock[J]. Environments, 2019, 6(4): 44. |
| 57 | César HUILIÑIR, Jhosané PAGÉS-DÍAZ, VARGAS Gustavo, et al. Microaerobic condition as pretreatment for improving anaerobic digestion: A review[J]. Bioresource Technology, 2023, 384: 129249. |
| 58 | NGUYEN P H L, KURUPARAN P, VISVANATHAN C. Anaerobic digestion of municipal solid waste as a treatment prior to landfill[J]. Bioresource Technology, 2007, 98(2): 380-387. |
| 59 | CHU Libing, DING Pengyuan, DING Mingcong. Pilot-scale microaerobic hydrolysis-acidification and anoxic-oxic processes for the treatment of petrochemical wastewater[J]. Environmental Science and Pollution Research, 2021, 28(41): 58677-58687. |
| 60 | KOBAYASHI Takuro, LI Yuyou, KUBOTA Kengo, et al. Characterization of sulfide-oxidizing microbial mats developed inside a full-scale anaerobic digester employing biological desulfurization[J]. Applied Microbiology and Biotechnology, 2012, 93(2): 847-857. |
| 61 | WU Changyong, LI Yanan, ZHOU Yuexi, et al. Upgrading the Chinese biggest petrochemical wastewater treatment plant: Technologies research and full scale application[J]. Science of the Total Environment, 2018, 633: 189-197. |
| 62 | JENÍČEK P, HOREJŠ J, POKORNÁ-KRAYZELOVÁ L, et al. Simple biogas desulfurization by microaeration—Full scale experience[J]. Anaerobe, 2017, 46: 41-45. |
| [1] | QIN Fei, ZHANG Zhi, SONG Guangchun, WANG Wuchang, LI Yuxing, WANG Shixin, HE Sicheng, WANG Jiangyan. Advances in research on the molecular dynamics behaviors of hydrate-based hydrogen storage [J]. Chemical Industry and Engineering Progress, 2025, 44(S1): 112-123. |
| [2] | MA Xiaobiao, LIU Han, WANG Weihuan, MIAO Peipei, JI Yinghui, CHEN Boyang, PENG Xiaowei, XU Qiang, JIN Fengying, MA Mingchao, WANG Yinbin, GUO Chunlei. Effect of acid and phosphorus composite modification on the catalytic cracking performance of ZSM-5 molecular sieve [J]. Chemical Industry and Engineering Progress, 2025, 44(S1): 197-204. |
| [3] | WANG Lu, HE Yangdong, LI Yaxin, FAN Rui, CHENG Shijin, ZHANG Jie. Structural design and performance optimization of high-performance polymeric membranes for He/CH4 and He/N2 separation [J]. Chemical Industry and Engineering Progress, 2025, 44(S1): 261-276. |
| [4] | SHI Peixin, XIE Jing, DIAO Rongjun, HE Rong, XIE Li. Recent advances on the application of hydrolysis acidification process in the treatment of emerging contaminants [J]. Chemical Industry and Engineering Progress, 2025, 44(S1): 451-461. |
| [5] | CHEN Zizhao, HE Fangshu, HU Qiang, YANG Yang, CHEN Hanping, YANG Haiping. Research progress on anti-carbon deposition Ni-based catalysts for dry reforming of methane [J]. Chemical Industry and Engineering Progress, 2025, 44(9): 4968-4978. |
| [6] | WANG Zhen, ZHANG Yaoyuan, WU Qin, SHI Daxin, CHEN Kangcheng, LI Hansheng. Development of Ni/Al2O3-based catalysts for the dry reforming of methane [J]. Chemical Industry and Engineering Progress, 2025, 44(9): 4979-4998. |
| [7] | LI Zhifu, YANG Xiaodong, WANG Baocai, HU Changliu, PEI Jikai, YAN Longfang, WU Ruifang, ZHANG Changsheng, WANG Yongzhao. Synthesis and properties of high temperature retarder HJ-1 [J]. Chemical Industry and Engineering Progress, 2025, 44(9): 5092-5100. |
| [8] | WANG Xiaoguang, DONG Qing, LANG Wenli, HONG Xiangxin, HUANG Zhenxiang, TAN Fengyu, LEI Yizhu, YU Ziyi. Progress on emission reduction and resource utilization of ultra-low concentration methane [J]. Chemical Industry and Engineering Progress, 2025, 44(9): 5363-5376. |
| [9] | YANG Jiacong, CHENG Guangxu, JIA Tonghua, JIANG Zhao. Simulation and techno-economic analysis of new efficient coupling processes between coal to methanol and green hydrogen [J]. Chemical Industry and Engineering Progress, 2025, 44(8): 4657-4668. |
| [10] | ZHANG Wei, LIANG Yaocheng, WU Qiao, FU Yehao, YIN Yanshan, CHENG Shan, RUAN Min, LIU Tao, ZHOU Zhaoyi, ZHANG Kaikai, LI Dancong. Metal ion modified Cu-SSZ-13 catalyst for NH3-selective catalytic reduction of NO x [J]. Chemical Industry and Engineering Progress, 2025, 44(7): 3879-3891. |
| [11] | WANG Hui, LIU Jiaxu. Research progress on the synthesis of SSZ-39 zeolite and NH3-SCR application [J]. Chemical Industry and Engineering Progress, 2025, 44(7): 3892-3906. |
| [12] | LU Peng, ZHANG Di, LIU Yaoyao, YU Wanjin, LIU Wucan, ZHANG Jianjun. Research progress of catalysts for gas-phase dehydrofluorination to synthesize C2 hydrofluoroolefins [J]. Chemical Industry and Engineering Progress, 2025, 44(7): 3907-3916. |
| [13] | GAO Jiaojiao, YAN Shiyu, YANG Taishun, XIE Shangzhi, YANG Yanjuan, XU Jing. Effect of alumina support crystal structure of Ru-based catalysts on polyethylene hydrogenolysis performance [J]. Chemical Industry and Engineering Progress, 2025, 44(7): 3917-3927. |
| [14] | TANG Xuan, BAI Xiaowei, ZHANG Feifei, LI Jinping, YANG Jiangfeng. Research progress on zeolite for CO2-N2-CH4 sieving separation [J]. Chemical Industry and Engineering Progress, 2025, 44(7): 3938-3949. |
| [15] | LI Xiang, WU Zhangyong, JIANG Jiajun, ZHU Qichen, GONG Qiu. Tribological properties of seawater-based MoS2/SiC binary nanofluids [J]. Chemical Industry and Engineering Progress, 2025, 44(7): 4050-4060. |
| Viewed | ||||||
|
Full text |
|
|||||
|
Abstract |
|
|||||
|
京ICP备12046843号-2;京公网安备 11010102001994号 Copyright © Chemical Industry and Engineering Progress, All Rights Reserved. E-mail: hgjz@cip.com.cn Powered by Beijing Magtech Co. Ltd |