Chemical Industry and Engineering Progress ›› 2024, Vol. 43 ›› Issue (10): 5441-5456.DOI: 10.16085/j.issn.1000-6613.2023-1675
• Energy processes and technology • Previous Articles
HUANG Xurui1(), LEI Jinyong1, PAN Jun1, YU Fengyuan1, XU Yuhao2, TU Zhengkai2
Received:
2023-09-21
Revised:
2023-10-16
Online:
2024-10-29
Published:
2024-10-15
Contact:
HUANG Xurui
黄旭锐1(), 雷金勇1, 潘军1, 于丰源1, 许余浩2, 涂正凯2
通讯作者:
黄旭锐
作者简介:
黄旭锐(1991—),男,硕士,工程师,研究方向为电氢耦合系统、综合能源。E-mail:huangxurui@hotmail.com。
基金资助:
CLC Number:
HUANG Xurui, LEI Jinyong, PAN Jun, YU Fengyuan, XU Yuhao, TU Zhengkai. Research progress and prospects on flow field design and optimization of reversible solid oxide cells[J]. Chemical Industry and Engineering Progress, 2024, 43(10): 5441-5456.
黄旭锐, 雷金勇, 潘军, 于丰源, 许余浩, 涂正凯. 可逆固体氧化物电池流场设计及优化的研究进展与展望[J]. 化工进展, 2024, 43(10): 5441-5456.
Add to citation manager EndNote|Ris|BibTeX
URL: https://hgjz.cip.com.cn/EN/10.16085/j.issn.1000-6613.2023-1675
1 | 邹洋, 王剑晓, 戴璟, 等. 欧洲能源危机成因、影响与应对措施[J]. 电力系统自动化, 2023, 47(17): 1-13. |
ZOU Yang, WANG Jianxiao, DAI Jing, et al. Causes, impacts and mitigation measures of European energy crisis[J]. Automation of Electric Power Systems, 2023, 47(17): 1-13. | |
2 | YOLCAN Oguz Ozan. World energy outlook and state of renewable energy: 10-Year evaluation[J]. Innovation and Green Development, 2023, 2(4): 100070. |
3 | 张力菠, 吴一锴, 王群伟. 考虑碳中和目标与成本优化的可再生能源大规模发展规划[J]. 广东电力, 2023, 36(7): 31-39. |
ZHANG Libo, WU Yikai, WANG Qunwei. Large-scale development of renewable energy in consideration of carbon neutrality and cost optimization[J]. Guangdong Electric Power, 2023, 36(7): 31-39. | |
4 | 李洪言, 于淼, 郑一鸣, 等. 基于情景的2050年世界能源供需展望分析——基于《BP世界能源展望(2023年版)》[J]. 天然气与石油, 2023, 41(5): 131-137. . |
LI Hongyan, YU Miao, ZHENG Yiming, et al. Analysis on the outlook for global energy supply and demand in 2050 based on scenarios—Based on bp World Energy Outlook (2023 edition)[J]. Natural Gas and Oil, 2023, 41(5): 131-137. . | |
5 | KHAN Irfan, ZAKARI Abdulrasheed, DAGAR Vishal, et al. World energy trilemma and transformative energy developments as determinants of economic growth amid environmental sustainability[J]. Energy Economics, 2022, 108: 105884. |
6 | 张传捷. 碳中和的“变”与“坚持”——基于英国应对能源危机战略的思考[J]. 国际金融, 2023: (5): 38-43. |
ZHANG Chuanjie. "Change" and "persistence" of Carbon Neutralization—Thinking based on the UK’s strategy to deal with the energy crisis[J]. International Finance, 2023(5): 38-43. | |
7 | 骆钊, 刘德文, 贾芸睿, 等. 考虑绿色氢能证书和水电制氢的综合能源系统优化运行[J]. 电网技术, 2024, 48(4): 1445-1458. |
LUO Zhao, LIU Dewen, JIA Yunrui, et al. Optimal operation of integrated energy system considering green hydrogen certificate and hydrogen production by hydropower[J]. Power System Technology, 2024, 48(4): 1445-1458. | |
8 | 陈福, 陈兆民, 续芯如, 等. 氢能技术应用研究及发展方向[J]. 玻璃, 2023, 50(8): 6-10. |
CHEN Fu, CHEN Zhaomin, XU Xinru, et al. Green hydrogen industry development status and application[J]. Glass, 2023, 50(8): 6-10. | |
9 | 编辑部. “氢能走廊” 已初现雏形,加氢站发展前景广阔[J]. 汽车与配件, 2023(15): 55. |
BIAN Jibu. The "hydrogen energy corridor" has begun to take shape, and the development prospect of hydrogen refueling stations is broad[J]. Automobile & Parts, 2023(15): 55. | |
10 | 殷超凡, 刘峥嵘, 孙跃跃, 等. 质子导体型可逆固体氧化物电池材料的研究进展[J]. 硅酸盐学报, 2023, 51(10): 2700-2711. |
YIN Chaofan, LIU Zhengrong, SUN Yueyue, et al. Research progress on proton-conducting reversible solid oxide cells materials[J]. Journal of the Chinese Ceramic Society, 2023, 51(10): 2700-2711. | |
11 | 黄祯媛, 高赐威, 陈涛, 等. 基于可逆固体氧化物电池的气电双向耦合统一调度优化[J]. 中国电机工程学报, 2024, 44(5): 1860-1872. |
HUANG Zhenyuan, GAO Ciwei, CHEN Tao, et al. Unified scheduling optimization of gas-electric bidirectional coupled system based on reversible solid oxide cells[J]. Proceedings of the CSEE, 2024, 44(5): 1860-1872. | |
12 | SHEN Minghai, AI Fujin, MA Hailing, et al. Progress and prospects of reversible solid oxide fuel cell materials[J]. iScience, 2021, 24(12): 103464. |
13 | 杨晓幸, 苗鹤, 袁金良. 可逆固体氧化物燃料电池氧电极材料的研究进展[J]. 化工进展, 2021, 40(9): 4904-4917. |
YANG Xiaoxing, MIAO He, YUAN Jinliang. Research progress on oxygen electrode materials for reversible solid oxide fuel cells[J]. Chemical Industry and Engineering Progress, 2021, 40(9): 4904-4917. | |
14 | 朱冕, 赵加佩, 李欣珂, 等. 可逆固体氧化物燃料电池(rSOFC)技术的研究进展[J]. 电源技术, 2020, 44(3): 469-474. |
ZHU Mian, ZHAO Jiapei, LI Xinke, et al. Research status and prospects of reversible solid oxide fuel cell (rSOFC) technology[J]. Chinese Journal of Power Sources, 2020, 44(3): 469-474. | |
15 | MANSO A P, MARZO F F, BARRANCO J, et al. Influence of geometric parameters of the flow fields on the performance of a PEM fuel cell. A review[J]. International Journal of Hydrogen Energy, 2012, 37(20): 15256-15287. |
16 | 白虎, 冯宇, 叶晓峰, 等. 平板型固体氧化物燃料电池的流场设计及优化概述[J]. 陶瓷学报, 2022, 43(1): 28-44. |
BAI Hu, FENG Yu, YE Xiaofeng, et al. Progress in flow field design and optimization of solid oxide fuel cells[J]. Journal of Ceramics, 2022, 43(1): 28-44. | |
17 | HSIEH Shou-Shing, YANG Shenghuang, KUO Jenn-Kun, et al. Study of operational parameters on the performance of micro PEMFCs with different flow fields[J]. Energy Conversion and Management, 2006, 47(13/14): 1868-1878. |
18 | 刘艺辉, 李世安, 魏荣强, 等. 固体氧化物燃料电池流道结构的研究进展[J]. 化学通报, 2021, 84(7): 698-703. |
LIU Yihui, LI Shian, WEI Rongqiang, et al. Research progress of flow channel structure of solid oxide fuel cell[J]. Chemistry, 2021, 84(7): 698-703. | |
19 | 陆佳宙, 夏玉珍, 雷航伟, 等. 质子交换膜燃料电池三种流场结构的性能研究[J]. 电源技术, 2023, 47(4): 502-504. |
LU Jiazhou, XIA yuzhen, LEI Hangwei, et al. Performance study of PEMFC with three different flow fields[J]. Chinese Journal of Power Sources, 2023, 47(4): 502-504. | |
20 | MANGLIK Raj M, MAGAR Yogesh N. Heat and mass transfer in planar anode-supported solid oxide fuel cells: Effects of interconnect fuel/oxidant channel flow cross section[J]. Journal of Thermal Science and Engineering Applications, 2015, 7(4): 041003. |
21 | KHAZAEE I, RAVA A. Numerical simulation of the performance of solid oxide fuel cell with different flow channel geometries[J]. Energy, 2017, 119: 235-244. |
22 | HESAMI Hanieh, BORJI Mehdi, REZAPOUR Javad. Three-dimensional numerical investigation on the effect of interconnect design on the performance of internal reforming planar solid oxide fuel cell[J]. Korean Journal of Chemical Engineering, 2021, 38(12): 2423-2435. |
23 | XU Yuhao, ZHANG Jian, TU Zhengkai. Numerical simulation of flow channel geometries optimization for the planar solid oxide electrolysis cell[J]. International Journal of Hydrogen Energy, 2024, 52: 288-301. |
24 | ZHANG Zhen, GUAN Chengzhi, XIE Leidong, et al. Design and analysis of a novel opposite trapezoidal flow channel for solid oxide electrolysis cell stack[J]. Energies, 2022, 16(1): 159. |
25 | BI Wuxi, CHEN Daifen, LIN Zijing. A key geometric parameter for the flow uniformity in planar solid oxide fuel cell stacks[J]. International Journal of Hydrogen Energy, 2009, 34(9): 3873-3884. |
26 | LI Wenying, SHI Yixiang, LUO Yu, et al. Theoretical modeling of air electrode operating in SOFC mode and SOEC mode: The effects of microstructure and thickness[J]. International Journal of Hydrogen Energy, 2014, 39(25): 13738-13750. |
27 | 帅浚超, 沈檀, 蒋建华, 等. 多通道平板型固体氧化物燃料电池的逆流流场数值分析[J]. 陶瓷学报, 2017, 38(4): 460-465. |
SHUAI Junchao, SHEN Tan, JIANG Jianhua, et al. Numerical anylysis of multichannel counter-flow planar solid oxide fuel cell[J]. Journal of Ceramics, 2017, 38(4): 460-465. | |
28 | ZHAO Cheng, YANG Jiajun, ZHANG Tao, et al. Numerical modeling of manifold design and flow uniformity analysis of an external manifold solid oxide fuel cell stack[J]. International Journal of Hydrogen Energy, 2020, 45(28): 14440-14451. |
29 | HUANG Hongyan, HAN Zhen, LU Siyu, et al. The analysis of structure parameters of MOLB type solid oxide fuel cell[J]. International Journal of Hydrogen Energy, 2020, 45(39): 20351-20359. |
30 | RECKNAGLE K P, WILLIFORD R E, CHICK L A, et al. Three-dimensional thermo-fluid electrochemical modeling of planar SOFC stacks[J]. Journal of Power Sources, 2003, 113(1): 109-114. |
31 | KIM Youngjin, LEE Minchul. The influence of flow direction variation on the performance of a single cell for an anode-substrate flat-panel solid oxide fuel cell[J]. International Journal of Hydrogen Energy, 2020, 45(39): 20369-20381. |
32 | 黄雕, 邵俊, 蔡熊峰. 流道数量及布置形式对SOFC性能的影响[J]. 北京汽车, 2020 (6): 6-10. |
HUANG Diao, SHAO Jun, CAI Xiongfeng. Influence of the number of flow channels and arrangement form on SOFC performance[J]. Beijing Automotive Engineering, 2020 (6): 6-10. | |
33 | 宋明, 马帅, 杜传胜, 等. 不同流道布置的平板式固体氧化物燃料电池蠕变损伤研究[J]. 机械工程学报, 2023, 59(10): 76-84. |
SONG Ming, MA Shuai, DU Chuansheng, et al. Creep damage of planar solid oxide fuel cell with different arrangements of flow channels[J]. Journal of Mechanical Engineering, 2023, 59(10), 76-84 | |
34 | XU Zonglei, ZHANG Xiongwen, LI Guojun, et al. Comparative performance investigation of different gas flow configurations for a planar solid oxide electrolyzer cell[J]. International Journal of Hydrogen Energy, 2017, 42(16): 10785-10801. |
35 | 张磊. 流道形式对固体氧化物电解池共电解性能的影响机制研究[D]. 武汉: 华中科技大学, 2019. |
ZHANG Lei. Study on the influence mechanism of flow channel form on the co-electrolysis performance of solid oxide electrolysis cell[D]. Wuhan: Huazhong University of Science and Technology, 2019. | |
36 | BARATI Sara, KHOSHANDAM Behnam, GHAZI Mohsen Mehdipour. An investigation of channel blockage effects on hydrogen mass transfer in a proton exchange membrane fuel cell with various geometries and optimization by response surface methodology[J]. International Journal of Hydrogen Energy, 2018, 43(48): 21928-21939. |
37 | HAMRANG A, ABDOLLAHZADEH M, KERMANI M J, et al. Numerical simulation of the PEM fuel cell performance enhancement by various blockage arrangement of the cathode serpentine gas flow channel outlets/inlets[J]. International Journal of Heat Mass Transfer, 2022, 186: 122475. |
38 | YAHYA Abir, NAJI Hassane, DHAHRI Hacen. A lattice Boltzmann analysis of the performance and mass transport of a solid oxide fuel cell with a partially obstructed anode flow channel[J]. Fuel, 2023, 334: 126537. |
39 | CHELLEHBARI Yasinmehdizadeh, ADAVI Kazem, AMIN Javadsayyad, et al. A numerical simulation to effectively assess impacts of flow channels characteristics on solid oxide fuel cell performance[J]. Energy Conversion and Management, 2021, 244: 114280. |
40 | 徐琪, 缪馥星, 官万兵. 渐变型流道燃料电池热-电-力-化多场耦合数值模拟[J]. 力学季刊, 2023, 44(2): 316-328. |
XU Qi, MIAO Fuxing, GUAN Wanbing. Thermo-electro-mechanical-chemical multiphysics coupling model and numerical simulation on fuel cell with gradual flow channel[J]. Chinese Quarterly of Mechanics, 2023, 44(2): 316-328. | |
41 | 王珂, 李星辰, 王永庆, 等. 错列式流道固体氧化物燃料电池及其性能研究[J]. 电源技术, 2022, 46(12): 1438-1442. |
WANG Ke, LI Xingchen, WANG Yongqing, et al. Study on solid oxide fuel cell with staggered flow channel and its performance[J]. Chinese Journal of Power Sources, 2022, 46(12): 1438-1442. | |
42 | SAIED M, AHMED K, NEMAT-ALLA M, et al. Performance study of solid oxide fuel cell with various flow field designs: Numerical study[J]. International Journal of Hydrogen Energy, 2018, 43(45): 20931-20946. |
43 | KONG Wei, HAN Zhen, LU Siyu, et al. A novel interconnector design of SOFC[J]. International Journal of Hydrogen Energy, 2020, 45(39): 20329-20338. |
44 | XIA Lei, KHOSRAVI Ali, HAN Minfang, et al. Artificial intelligence based structural optimization of solid oxide fuel cell with three-dimensional reticulated trapezoidal flow field[J]. International Journal of Hydrogen Energy, 2023, 48(72): 28131-28149. |
45 | YUAN Wei, TANG Yong, YANG Xiaojun, et al. Porous metal materials for polymer electrolyte membrane fuel cells—A review[J]. Applied Energy, 2012, 94: 309-329. |
46 | VAZIFESHENAS Y, SEDIGHI K, SHAKERI M. Heat transfer in PEM cooling flow field with high porosity metal foam insert[J]. Applied Thermal Engineering, 2019, 147: 81-89. |
47 | HOSSAIN Mohammadsajid, SHABANI Bahman. Metal foams application to enhance cooling of open cathode polymer electrolyte membrane fuel cells[J]. Journal of Power Sources, 2015, 295: 275-291. |
48 | KANG Donggyun, LEE Dongkeun, CHOI Jongmin, et al. Study on the metal foam flow field with porosity gradient in the polymer electrolyte membrane fuel cell[J]. Renewable Energy, 2020, 156: 931-941. |
49 | ZHAO Jianguo, LIN Zihan, ZHOU Mingjue. Three-dimensional modeling and performance study of high temperature solid oxide electrolysis cell with metal foam[J]. Sustainability, 2022, 14(12): 7046. |
50 | WANG Yang, DU Yingmeng, NI Meng, et al. Three-dimensional modeling of flow field optimization for co-electrolysis solid oxide electrolysis cell[J]. Applied Thermal Engineering, 2020, 172: 114959. |
51 | 詹若冰. 基于泡沫流场的固体氧化物燃料电池三维数值模拟[D]. 天津: 天津大学, 2019. |
ZHAN Ruobing. Three-dimensional numerical simulation of solid oxide fuel cell based on foam flow field[D]. Tianjin: Tianjin University, 2019. | |
52 | 方大为, 王凯, 颜冬, 等. 外气道SOFC电堆流场的优化设计和数值模拟[J]. 电源技术, 2013, 37(9): 1550-1553. |
FANG Dawei, WANG Kai, YAN Dong, et al. Optimization design and numerical simulation of flow field in external channel SOFC stack[J]. Power technology, 2013, 37(9): 1550-1553. |
[1] | WU Yuqi, LI Jiangtao, DING Jianzhi, SONG Xiulan, SU Bingqin. Calcined Mg/Al hydrotalcites for CO2 removal in anaerobic digestion biogas: Performances and mechanisms [J]. Chemical Industry and Engineering Progress, 2024, 43(9): 5250-5261. |
[2] | SUN Qichao, NIE Meihua, WU Lianying, HU Yangdong. Optimal design and scheduling of integrated wind-photovoltaic-storage hydropower cogeneration system [J]. Chemical Industry and Engineering Progress, 2024, 43(9): 4882-4891. |
[3] | XIONG Yuanfan, LI Huashan, GONG Yulie. Multi-objective optimal design of evaporative condenser using zeotropic working fluid [J]. Chemical Industry and Engineering Progress, 2024, 43(6): 2950-2960. |
[4] | LIU Siyu, YANG Juan, CHEN Pei, CHEN Zutian, YAN Bin, LIU Yuhong, QIU Jieshan. Tuning N-doped configurations of N-enriched porous carbon nanosheets for high-performance zinc ion storage [J]. Chemical Industry and Engineering Progress, 2024, 43(5): 2673-2683. |
[5] | CHEN Junxian, LIU Zhen, JIAO Wenlei, ZHANG Tianyu, LYU Jiameng, JI Zhongli. Measurement method of liquid drop concentration in natural gas pipeline based on microwave resonance principle [J]. Chemical Industry and Engineering Progress, 2024, 43(2): 734-742. |
[6] | HENG Linyu, DENG Zhuoran, CHENG Daojian, WEI Bin, ZHAO Liqiang. Progress of high-throughput synthesis device for process reinforcement of metal catalyst preparation [J]. Chemical Industry and Engineering Progress, 2024, 43(1): 246-259. |
[7] | SUN Yuyu, CAI Xinlei, TANG Jihai, HUANG Jingjing, HUANG Yiping, LIU Jie. Optimization and energy-saving of a reactive distillation process for the synthesis of methyl methacrylate [J]. Chemical Industry and Engineering Progress, 2023, 42(S1): 56-63. |
[8] | WANG Chen, BAI Haoliang, KANG Xue. Performance study of high power UV-LED heat dissipation and nano-TiO2 photocatalytic acid red 26 coupling system [J]. Chemical Industry and Engineering Progress, 2023, 42(9): 4905-4916. |
[9] | LIU Xuanlin, WANG Yikai, DAI Suzhou, YIN Yonggao. Analysis and optimization of decomposition reactor based on ammonium carbamate in heat pump [J]. Chemical Industry and Engineering Progress, 2023, 42(9): 4522-4530. |
[10] | XUE Kai, WANG Shuai, MA Jinpeng, HU Xiaoyang, CHONG Daotong, WANG Jinshi, YAN Junjie. Planning and dispatch of distributed integrated energy systems for industrial parks [J]. Chemical Industry and Engineering Progress, 2023, 42(7): 3510-3519. |
[11] | LI Lanyu, HUANG Xinye, WANG Xiaonan, QIU Tong. Reflection and prospects on the intelligent transformation of chemical engineering research [J]. Chemical Industry and Engineering Progress, 2023, 42(7): 3325-3330. |
[12] | GU Shiya, DONG Yachao, LIU Linlin, ZHANG Lei, ZHUANG Yu, DU Jian. Design and optimization of pipeline system for carbon capture considering intermediate nodes [J]. Chemical Industry and Engineering Progress, 2023, 42(6): 2799-2808. |
[13] | LI Xue, WANG Yanjun, WANG Yuchao, TAO Shengyang. Recent advances in bionic surfaces for fog collection [J]. Chemical Industry and Engineering Progress, 2023, 42(5): 2486-2503. |
[14] | ZOU Yincai, LI Qingguo, WU Hui, ZHONG Xiaobing, CHEN Xianzhi. Heat transfer simulation and optimization of missile borne phase change heat sink [J]. Chemical Industry and Engineering Progress, 2023, 42(3): 1248-1256. |
[15] | SUN Xiao, ZHU Guangtao, PEI Aiguo. Industrialization and research progress of hydrogen liquefier [J]. Chemical Industry and Engineering Progress, 2023, 42(3): 1103-1117. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||
京ICP备12046843号-2;京公网安备 11010102001994号 Copyright © Chemical Industry and Engineering Progress, All Rights Reserved. E-mail: hgjz@cip.com.cn Powered by Beijing Magtech Co. Ltd |