Chemical Industry and Engineering Progress ›› 2024, Vol. 43 ›› Issue (9): 4882-4891.DOI: 10.16085/j.issn.1000-6613.2023-1271
• Energy processes and technology • Previous Articles
SUN Qichao1,2(), NIE Meihua1,2, WU Lianying1,2(
), HU Yangdong1,2
Received:
2023-07-21
Revised:
2023-10-08
Online:
2024-09-30
Published:
2024-09-15
Contact:
WU Lianying
孙启超1,2(), 聂美华1,2, 伍联营1,2(
), 胡仰栋1,2
通讯作者:
伍联营
作者简介:
孙启超(1994—),男,博士研究生,研究方向为化工系统工程。E-mail:15762181963@163.com。
基金资助:
CLC Number:
SUN Qichao, NIE Meihua, WU Lianying, HU Yangdong. Optimal design and scheduling of integrated wind-photovoltaic-storage hydropower cogeneration system[J]. Chemical Industry and Engineering Progress, 2024, 43(9): 4882-4891.
孙启超, 聂美华, 伍联营, 胡仰栋. 风光储一体化水电联产系统的优化设计及调度[J]. 化工进展, 2024, 43(9): 4882-4891.
算法名称 | 特点 |
---|---|
粒子群算法 | 收敛速度快,但易陷入局部最优解 |
蚁群优化算法 | 参数设置复杂,如果参数设置不当,易偏离优质解 |
模拟退火算法 | 适合搭配粒子群算法、鲸鱼优化算法等使用,否则易陷入局部最优解 |
遗传算法 | 全局搜索能力强,能够以相对简单的计算方式得到整体状态空间中的全局最优解 |
算法名称 | 特点 |
---|---|
粒子群算法 | 收敛速度快,但易陷入局部最优解 |
蚁群优化算法 | 参数设置复杂,如果参数设置不当,易偏离优质解 |
模拟退火算法 | 适合搭配粒子群算法、鲸鱼优化算法等使用,否则易陷入局部最优解 |
遗传算法 | 全局搜索能力强,能够以相对简单的计算方式得到整体状态空间中的全局最优解 |
系统设计参数 | 春季 | 夏季 | 秋季 | 冬季 |
---|---|---|---|---|
光伏板的安装数量(Npv)/个 | 828 | 1519 | 748 | 0 |
风力机的安装数量(Nwt)/台 | 92 | 773 | 184 | 123 |
膜组件的数量(Nmem)/个 | 205 | 259 | 244 | 185 |
可逆式水泵水轮机(Pp-t) | 534 | 652 | 834 | 432 |
上游水库的容积(Vrc)/m3 | 4805 | 11533 | 9627 | 6346 |
水需求满足率(Fds,w) | 0.99 | 0.99 | 0.9921 | 0.9906 |
电需求满足率(Fds,e) | 0.9901 | 0.9934 | 0.99 | 0.99 |
能源过剩率(EXC) | 0.02 | 0.02 | 0.0198 | 0.02 |
光伏发电系统费用(LCCpv)/万元 | 94.91 | 174.12 | 85.74 | 0 |
风力发电系统费用(LCCwt)/万元 | 92.63 | 781.07 | 185.77 | 124.15 |
反渗透系统费用(LCCRO)/万元 | 309.63 | 376.39 | 358.09 | 284.24 |
抽水储能系统费用(LCCps)/万元 | 41.87 | 58.75 | 66.18 | 38.84 |
系统总年费(TAC)/万元 | 539.04 | 1390.33 | 695.78 | 447.23 |
系统设计参数 | 春季 | 夏季 | 秋季 | 冬季 |
---|---|---|---|---|
光伏板的安装数量(Npv)/个 | 828 | 1519 | 748 | 0 |
风力机的安装数量(Nwt)/台 | 92 | 773 | 184 | 123 |
膜组件的数量(Nmem)/个 | 205 | 259 | 244 | 185 |
可逆式水泵水轮机(Pp-t) | 534 | 652 | 834 | 432 |
上游水库的容积(Vrc)/m3 | 4805 | 11533 | 9627 | 6346 |
水需求满足率(Fds,w) | 0.99 | 0.99 | 0.9921 | 0.9906 |
电需求满足率(Fds,e) | 0.9901 | 0.9934 | 0.99 | 0.99 |
能源过剩率(EXC) | 0.02 | 0.02 | 0.0198 | 0.02 |
光伏发电系统费用(LCCpv)/万元 | 94.91 | 174.12 | 85.74 | 0 |
风力发电系统费用(LCCwt)/万元 | 92.63 | 781.07 | 185.77 | 124.15 |
反渗透系统费用(LCCRO)/万元 | 309.63 | 376.39 | 358.09 | 284.24 |
抽水储能系统费用(LCCps)/万元 | 41.87 | 58.75 | 66.18 | 38.84 |
系统总年费(TAC)/万元 | 539.04 | 1390.33 | 695.78 | 447.23 |
1 | MA Ting, SUN Siao, FU Guangtao, et al. Pollution exacerbates China’s water scarcity and its regional inequality[J]. Nature Communications, 2020, 11: 650. |
2 | ZHU Zhongfan, DOU Jie. Current status of reclaimed water in China: An overview[J]. Journal of Water Reuse and Desalination, 2018, 8(3): 293-307. |
3 | 朱波. 含分布式发电的电力市场分段竞价算法[D]. 长沙: 湖南大学, 2013. |
ZHU Bo. The block bidding algorithm of distributed generation power market[D]. Changsha: Hunan University, 2013. | |
4 | CANO Antonio, JURADO Francisco, Higinio SÁNCHEZ, et al. Optimal sizing of stand-alone hybrid systems based on PV/WT/FC by using several methodologies[J]. Journal of the Energy Institute, 2014, 87(4): 330-340. |
5 | KUSAKANA Kanzumba. Optimal scheduling for distributed hybrid system with pumped hydro storage[J]. Energy Conversion and Management, 2016, 111: 253-260. |
6 | BERMÚDEZ J M, RUISÁNCHEZ E, ARENILLAS A, et al. New concept for energy storage: Microwave-induced carbon gasification with CO2 [J]. Energy Conversion and Management, 2014, 78: 559-564. |
7 | DAIM Tugrul U, LI Xin, KIM Jisun, et al. Evaluation of energy storage technologies for integration with renewable electricity: Quantifying expert opinions[J]. Environmental Innovation and Societal Transitions, 2012, 3: 29-49. |
8 | 吴皓文, 王军, 龚迎莉, 等. 储能技术发展现状及应用前景分析[J]. 电力学报, 2021, 36(5): 434-443. |
WU Haowen, WANG Jun, GONG Yingli, et al. Development status and application prospect analysis of energy storage technology[J]. Journal of Electric Power, 2021, 36(5): 434-443. | |
9 | SPYROU Ioannis D, ANAGNOSTOPOULOS John S. Design study of a stand-alone desalination system powered by renewable energy sources and a pumped storage unit[J]. Desalination, 2010, 257(1/2/3): 137-149. |
10 | SHAHABI Maedeh P, MCHUGH Adam, ANDA Martin, et al. Environmental life cycle assessment of seawater reverse osmosis desalination plant powered by renewable energy[J]. Renewable Energy, 2014, 67: 53-58. |
11 | PALOMAR P, LOSADA I J. Desalination in Spain: Recent developments and recommendations[J]. Desalination, 2010, 255(1/2/3): 97-106. |
12 | GASCÓ G. Influence of state support on water desalination in Spain[J]. Desalination, 2004, 165: 111-122. |
13 | LIN Saisai, ZHAO Haiyang, ZHU Liping, et al. Seawater desalination technology and engineering in China: A review[J]. Desalination, 2021, 498: 114728. |
14 | David BORGE-DIEZ, GARCÍA-MOYA Francisco José, Pedro CABRERA-SANTANA, et al. Feasibility analysis of wind and solar powered desalination plants: An application to islands[J]. Science of the Total Environment, 2021, 764: 142878. |
15 | OKAMPO Ewaoche John, NWULU Nnamdi. Optimisation of renewable energy powered reverse osmosis desalination systems: A state-of-the-art review[J]. Renewable and Sustainable Energy Reviews, 2021, 140: 110712. |
16 | GHAITHAN Ahmed M, Ahmad AL-HANBALI, MOHAMMED Awsan, et al. Optimization of a solar-wind-grid powered desalination system in Saudi Arabia[J]. Renewable Energy, 2021, 178: 295-306. |
17 | ELMAADAWY Khaled, KOTB Kotb M, ELKADEEM M R, et al. Optimal sizing and techno-enviro-economic feasibility assessment of large-scale reverse osmosis desalination powered with hybrid renewable energy sources[J]. Energy Conversion and Management, 2020, 224: 113377. |
18 | PENG Wanxi, MALEKI Akbar, ROSEN Marc A, et al. Optimization of a hybrid system for solar-wind-based water desalination by reverse osmosis: Comparison of approaches[J]. Desalination, 2018, 442: 16-31. |
19 | ESFAHANI Janghorban Iman, YOO Chang Kyoo. An optimization algorithm-based pinch analysis and GA for an off-grid batteryless photovoltaic-powered reverse osmosis desalination system[J]. Renewable Energy, 2016, 91: 233-248. |
20 | KOUTROULIS E, KOLOKOTSA D. Design optimization of desalination systems power-supplied by PV and W/G energy sources[J]. Desalination, 2010, 258(1/2/3): 171-181. |
21 | 戴远航, 陈磊, 闵勇, 等. 风电场与含储热的热电联产联合运行的优化调度[J]. 中国电机工程学报, 2017, 37(12): 3470-3479. |
DAI Yuanhang, CHEN Lei, MIN Yong, et al. Optimal scheduling of combined operation of wind farm and cogeneration with heat storage[J]. Proceedings of the CSEE, 2017, 37(12): 3470-3479. | |
22 | 汪致洵, 林湘宁, 刘畅, 等. 基于光热电站水电联产的独立海岛综合供给系统容量优化配置[J]. 中国电机工程学报, 2020, 40(16): 5192-5203. |
WANG Zhixun, LIN Xiangning, LIU Chang, et al. Optimal allocation of capacity of independent island comprehensive supply system based on cogeneration of hydropower and thermal power station[J]. Proceedings of the CSEE, 2020, 40(16): 5192-5203. | |
23 | GHORBANI B, SHIRMOHAMMADI R, MEHRPOOYA M. Development of an innovative cogeneration system for fresh water and power production by renewable energy using thermal energy storage system[J]. Sustainable Energy Technologies and Assessments, 2020, 37: 100572. |
24 | PALENZUELA Patricia, ZARAGOZA Guillermo, Diego ALARCÓN, et al. Simulation and evaluation of the coupling of desalination units to parabolic-trough solar power plants in the Mediterranean region[J]. Desalination, 2011, 281: 379-387. |
25 | 王诗蔓. 基于可持续发展的政府投资光伏扶贫项目效益评价研究[D]. 北京: 华北电力大学, 2021. |
WANG Shiman. Research on benefit evaluation of government-invested photovoltaic poverty alleviation project based on sustainable development[D]. Beijing: North China Electric Power University, 2021. | |
26 | CHE Xiaojing, ZHOU P, CHAI Kah-Hin. Regional policy effect on photovoltaic (PV) technology innovation: Findings from 260 cities in China[J]. Energy Policy, 2022, 162: 112807. |
27 | JUSTUS C G. Wind energy statistics for large arrays of wind turbines (New England and Central U.S. Regions)[J]. Solar Energy, 1978, 20(5): 379-386. |
28 | BORHANAZAD Hanieh, MEKHILEF Saad, GOUNDER Ganapathy Velappa, et al. Optimization of micro-grid system using MOPSO[J]. Renewable Energy, 2014, 71: 295-306. |
29 | BAÑUELOS-RUEDAS F, ANGELES-CAMACHO C, RIOS-MARCUELLO S. Analysis and validation of the methodology used in the extrapolation of wind speed data at different heights[J]. Renewable and Sustainable Energy Reviews, 2010, 14(8): 2383-2391. |
30 | BECHRAKIS D A, SPARIS P D. Simulation of the wind speed at different heights using artificial neural networks[J]. Wind Engineering, 2000, 24(2): 127-136. |
31 | DAUD Abdel-Karim, ISMAIL Mahmoud S. Design of isolated hybrid systems minimizing costs and pollutant emissions[J]. Renewable Energy, 2012, 44: 215-224. |
32 | DIAF S, DIAF D, BELHAMEL M, et al. A methodology for optimal sizing of autonomous hybrid PV/wind system[J]. Energy Policy, 2007, 35(11): 5708-5718. |
33 | CARDONA E, PIACENTINO A, MARCHESE F. Energy saving in two-stage reverse osmosis systems coupled with ultrafiltration processes[J]. Desalination, 2005, 184(1/2/3): 125-137. |
34 | BENNETT Jeffrey A, TREVISAN Claire N, DECAROLIS Joseph F, et al. Extending energy system modelling to include extreme weather risks and application to hurricane events in Puerto Rico[J]. Nature Energy, 2021, 6(3): 240-249. |
35 | LIU Zuming, CHAKRABORTY Arijit, HE Tianbiao, et al. Technoeconomic and environmental optimization of combined heat and power systems with renewable integration for chemical plants[J]. Applied Thermal Engineering, 2023, 219: 119474. |
[1] | XIONG Yuanfan, LI Huashan, GONG Yulie. Multi-objective optimal design of evaporative condenser using zeotropic working fluid [J]. Chemical Industry and Engineering Progress, 2024, 43(6): 2950-2960. |
[2] | LIU Siyu, YANG Juan, CHEN Pei, CHEN Zutian, YAN Bin, LIU Yuhong, QIU Jieshan. Tuning N-doped configurations of N-enriched porous carbon nanosheets for high-performance zinc ion storage [J]. Chemical Industry and Engineering Progress, 2024, 43(5): 2673-2683. |
[3] | CHEN Junxian, LIU Zhen, JIAO Wenlei, ZHANG Tianyu, LYU Jiameng, JI Zhongli. Measurement method of liquid drop concentration in natural gas pipeline based on microwave resonance principle [J]. Chemical Industry and Engineering Progress, 2024, 43(2): 734-742. |
[4] | HENG Linyu, DENG Zhuoran, CHENG Daojian, WEI Bin, ZHAO Liqiang. Progress of high-throughput synthesis device for process reinforcement of metal catalyst preparation [J]. Chemical Industry and Engineering Progress, 2024, 43(1): 246-259. |
[5] | SUN Yuyu, CAI Xinlei, TANG Jihai, HUANG Jingjing, HUANG Yiping, LIU Jie. Optimization and energy-saving of a reactive distillation process for the synthesis of methyl methacrylate [J]. Chemical Industry and Engineering Progress, 2023, 42(S1): 56-63. |
[6] | WANG Chen, BAI Haoliang, KANG Xue. Performance study of high power UV-LED heat dissipation and nano-TiO2 photocatalytic acid red 26 coupling system [J]. Chemical Industry and Engineering Progress, 2023, 42(9): 4905-4916. |
[7] | LIU Xuanlin, WANG Yikai, DAI Suzhou, YIN Yonggao. Analysis and optimization of decomposition reactor based on ammonium carbamate in heat pump [J]. Chemical Industry and Engineering Progress, 2023, 42(9): 4522-4530. |
[8] | XUE Kai, WANG Shuai, MA Jinpeng, HU Xiaoyang, CHONG Daotong, WANG Jinshi, YAN Junjie. Planning and dispatch of distributed integrated energy systems for industrial parks [J]. Chemical Industry and Engineering Progress, 2023, 42(7): 3510-3519. |
[9] | LI Lanyu, HUANG Xinye, WANG Xiaonan, QIU Tong. Reflection and prospects on the intelligent transformation of chemical engineering research [J]. Chemical Industry and Engineering Progress, 2023, 42(7): 3325-3330. |
[10] | GU Shiya, DONG Yachao, LIU Linlin, ZHANG Lei, ZHUANG Yu, DU Jian. Design and optimization of pipeline system for carbon capture considering intermediate nodes [J]. Chemical Industry and Engineering Progress, 2023, 42(6): 2799-2808. |
[11] | LI Xue, WANG Yanjun, WANG Yuchao, TAO Shengyang. Recent advances in bionic surfaces for fog collection [J]. Chemical Industry and Engineering Progress, 2023, 42(5): 2486-2503. |
[12] | SUN Xiao, ZHU Guangtao, PEI Aiguo. Industrialization and research progress of hydrogen liquefier [J]. Chemical Industry and Engineering Progress, 2023, 42(3): 1103-1117. |
[13] | ZOU Yincai, LI Qingguo, WU Hui, ZHONG Xiaobing, CHEN Xianzhi. Heat transfer simulation and optimization of missile borne phase change heat sink [J]. Chemical Industry and Engineering Progress, 2023, 42(3): 1248-1256. |
[14] | YAN Zihan, CHEN Qunyun, LI Zhuo, FU Rongbing, LI Yanwei, WU Zhigen. Numerical analysis and optimization of the performance of an improved soil crushing and mixing structure [J]. Chemical Industry and Engineering Progress, 2022, 41(S1): 72-80. |
[15] | BAO Miaoqing. Research on Zhejiang manufacturing quality standard of styrene products [J]. Chemical Industry and Engineering Progress, 2022, 41(S1): 648-655. |
Viewed | ||||||||||||||||||||||||||||||||||||||||||||||||||
Full text 240
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||
Abstract 154
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||
京ICP备12046843号-2;京公网安备 11010102001994号 Copyright © Chemical Industry and Engineering Progress, All Rights Reserved. E-mail: hgjz@cip.com.cn Powered by Beijing Magtech Co. Ltd |