Chemical Industry and Engineering Progress ›› 2024, Vol. 43 ›› Issue (10): 5403-5414.DOI: 10.16085/j.issn.1000-6613.2023-1659
• Chemical processes and equipment • Previous Articles
WANG Ji(), LI Pujiang, ZHANG Ting, ZHU Chenyang, ZHANG Yuning
Received:
2023-09-19
Revised:
2023-11-21
Online:
2024-10-29
Published:
2024-10-15
Contact:
WANG Ji
通讯作者:
王吉
作者简介:
王吉(1989—),男,博士,副教授,博士生导师,研究方向为微尺度相变换热。E-mail:wangji@cup.edu.cn。
基金资助:
CLC Number:
WANG Ji, LI Pujiang, ZHANG Ting, ZHU Chenyang, ZHANG Yuning. Simulation of CO2 and water convective heat transfer in single fracture of practical rock sample[J]. Chemical Industry and Engineering Progress, 2024, 43(10): 5403-5414.
王吉, 李普江, 张婷, 朱晨阳, 张宇宁. 水和CO2在真实粗糙岩样单裂隙内对流传热的仿真分析[J]. 化工进展, 2024, 43(10): 5403-5414.
Add to citation manager EndNote|Ris|BibTeX
URL: https://hgjz.cip.com.cn/EN/10.16085/j.issn.1000-6613.2023-1659
参数 | 数值 |
---|---|
岩石密度/kg·m-3 | 2650 |
岩石比热容/J·kg-1·k-1 | 1000 |
岩石热导率/W·m-1·k-1 | 2.8 |
岩石渗透率/m2 | 1×10-15 |
岩石孔隙度 | 0.01 |
岩石初始温度/℃ | 200 |
注入流速/ mL·min-1 | 20 |
参数 | 数值 |
---|---|
岩石密度/kg·m-3 | 2650 |
岩石比热容/J·kg-1·k-1 | 1000 |
岩石热导率/W·m-1·k-1 | 2.8 |
岩石渗透率/m2 | 1×10-15 |
岩石孔隙度 | 0.01 |
岩石初始温度/℃ | 200 |
注入流速/ mL·min-1 | 20 |
开度 /μm | 注入流速 /mm·s-1 | 注入温度 /℃ | 出口温度/℃ | ||
---|---|---|---|---|---|
实验数据 | 模拟数据 | 相对误差/% | |||
19.17 | 10.63 | 42 | 87 | 89.88 | 3.31 |
15.31 | 42 | 87 | 89.83 | 3.26 | |
20.52 | 41 | 87 | 89.76 | 3.17 | |
25.54 | 40 | 87 | 89.67 | 3.07 | |
30.08 | 39 | 87 | 89.57 | 2.95 | |
50.26 | 37 | 87 | 87.09 | 2.11 | |
76.46 | 34 | 87 | 87.10 | 0.11 | |
24.66 | 21.06 | 41 | 88 | 89.63 | 1.85 |
28.21 | 40 | 88 | 89.39 | 1.58 | |
35.20 | 38 | 88 | 89.04 | 1.18 | |
49.20 | 36 | 88 | 88.06 | 0.07 |
开度 /μm | 注入流速 /mm·s-1 | 注入温度 /℃ | 出口温度/℃ | ||
---|---|---|---|---|---|
实验数据 | 模拟数据 | 相对误差/% | |||
19.17 | 10.63 | 42 | 87 | 89.88 | 3.31 |
15.31 | 42 | 87 | 89.83 | 3.26 | |
20.52 | 41 | 87 | 89.76 | 3.17 | |
25.54 | 40 | 87 | 89.67 | 3.07 | |
30.08 | 39 | 87 | 89.57 | 2.95 | |
50.26 | 37 | 87 | 87.09 | 2.11 | |
76.46 | 34 | 87 | 87.10 | 0.11 | |
24.66 | 21.06 | 41 | 88 | 89.63 | 1.85 |
28.21 | 40 | 88 | 89.39 | 1.58 | |
35.20 | 38 | 88 | 89.04 | 1.18 | |
49.20 | 36 | 88 | 88.06 | 0.07 |
1 | 雷治红. 青海共和盆地干热岩储层特征及压裂试验模型研究[D]. 长春: 吉林大学, 2020. |
LEI Zhihong. Study on reservoir characteristics and fracturing test model of dry-hot rocks in Gonghe Basin, Qinghai Province[D]. Changchun: Jilin University, 2020. | |
2 | ZHANG Le, JIANG Peixue, WANG Zhenchuan, et al. Convective heat transfer of supercritical CO2 in a rock fracture for enhanced geothermal systems[J]. Applied Thermal Engineering, 2017, 115: 923-936. |
3 | NIKHIL BAGALKOT, SURESH KUMAR G. Thermal front propagation in variable aperture fracture-matrix system: A numerical study[J]. Sadhana, 2015, 40(2): 605-622. |
4 | HE Yuanyuan, BAI Bing, HU Shaobin, et al. Effects of surface roughness on the heat transfer characteristics of water flow through a single granite fracture[J]. Computers and Geotechnics, 2016, 80: 312-321. |
5 | DE LA BERNARDIE J, BOUR O, LE BORGNE T, et al. Thermal attenuation and lag time in fractured rock: Theory and field measurements from joint heat and solute tracer tests[J]. Water Resources Research, 2018, 54(12): 10053-10075. |
6 | SONG Xianzhi, SHI Yu, LI Gensheng, et al. Numerical simulation of heat extraction performance in enhanced geothermal system with multilateral wells[J]. Applied Energy, 2018, 218: 325-337. |
7 | SHI Yu, SONG Xianzhi, LI Jiacheng, et al. Numerical investigation on heat extraction performance of a multilateral-well enhanced geothermal system with a discrete fracture network[J]. Fuel, 2019, 244: 207-226. |
8 | LUO Yinfei, XU Weilin, LEI Yude, et al. Experimental study of heat transfer by water flowing through smooth and rough rock fractures[J]. Energy Reports, 2019, 5: 1025-1029. |
9 | YAO Chi, SHAO Yulong, YANG Jianhua, et al. Effects of fracture density, roughness, and percolation of fracture network on heat-flow coupling in hot rock masses with embedded three-dimensional fracture network[J]. Geothermics, 2020, 87: 101846. |
10 | 惠峥, 冯子军, 武治盛, 等. 多级围压下砂岩单裂隙渗流传热试验研究[J]. 矿业研究与开发, 2020, 40(9): 105-110. |
HUI Zheng, FENG Zijun, WU Zhisheng, et al. Experimental study on seepage and heat transfer of sandstone with single fracture under multi-level confining pressure[J]. Mining Research and Development, 2020, 40(9): 105-110. | |
11 | 肖鹏, 窦斌, 田红, 等. 地热储层单裂隙岩体渗流传热数值模拟研究[J]. 钻探工程, 2021, 48(2): 16-28. |
XIAO Peng, DOU Bin, TIAN Hong, et al. Numerical simulation of seepage and heat transfer in single fractured rock mass of geothermal reservoirs[J]. Drilling Engineering, 2021, 48(2): 16-28. | |
12 | 张博, 曲占庆, 郭天魁, 等. 粗糙单裂隙换热特征及全局灵敏度分析研究[J]. 地球物理学进展, 2022, 37(4): 1520-1527. |
ZHANG Bo, QU Zhanqing, GUO Tiankui, et al. Study on heat transfer characteristics and global sensitivity analysis of a rough single fracture[J]. Progress in Geophysics, 2022, 37(4): 1520-1527. | |
13 | 单丹丹, 闫铁, 李玮, 等. 单裂隙热储热流耦合数值模拟分析[J]. 当代化工, 2020, 49(4): 716-719, 723. |
SHAN Dandan, YAN Tie, LI Wei, et al. Numerical simulation and analysis of thermal-hydraulic coupling in a single-fracture thermal reservoir[J]. Contemporary Chemical Industry, 2020, 49(4): 716-719, 723. | |
14 | ZHANG Ze, WANG Shuhong, YANG Tianjiao, et al. A fully coupled seepage-heat transfer model including a dynamic heat transfer coefficient in fractured rock sample with a single fissure[J]. Geomatics, Natural Hazards and Risk, 2021, 12(1): 2253-2276. |
15 | SONG Guofeng, SONG Xianzhi, XU Fuqiang, et al. Numerical parametric investigation of thermal extraction from the enhanced geothermal system based on the thermal-hydraulic-chemical coupling model[J]. Journal of Cleaner Production, 2022, 352: 131609. |
16 | SPAN Roland, WAGNER Wolfgang. A new equation of state for carbon dioxide covering the fluid region from the triple-point temperature to 1100 K at pressures up to 800MPa[J]. Journal of Physical and Chemical Reference Data, 1996, 25(6): 1509-1596. |
17 | HUBER M L, SYKIOTI E A, ASSAEL M J, et al. Reference correlation of the thermal conductivity of carbon dioxide from the triple point to 1100K and up to 200MPa[J]. Journal of Physical and Chemical Reference Data, 2016, 45(1): 013102. |
18 | ARNO Laesecke, MUZNY Chris D. Reference correlation for the viscosity of carbon dioxide[J]. Journal of Physical and Chemical Reference Data, 2017, 46: 013107. |
19 | 李裴晨, 张慢来, 黄新宇, 等. 超临界二氧化碳热物性参数计算研究[J]. 内江科技, 2020, 41(1): 79-80. |
LI Peichen, ZHANG Manlai, HUANG Xinyu, et al. Study on calculation of thermophysical parameters of supercritical carbon dioxide[J]. Nei Jiang Science & Technology, 2020, 41(1): 79-80. | |
20 | 司杨, 张学林, 梅生伟, 等. 干热岩发电技术及青海共和干热岩应用初探[J]. 全球能源互联网, 2018, 1(3): 322-329. |
SI Yang, ZHANG Xuelin, MEI Shengwei, et al. Exploration of hot dry rock power generation technology and application in Qinghai Gonghe Basin[J]. Journal of Global Energy Interconnection, 2018, 1(3): 322-329. | |
21 | 许天福, 袁益龙, 姜振蛟, 等. 干热岩资源和增强型地热工程: 国际经验和我国展望[J]. 吉林大学学报(地球科学版), 2016, 46(4): 1139-1152. |
XU Tianfu, YUAN Yilong, JIANG Zhenjiao, et al. Hot dry rock and enhanced geothermal engineering: International experience and China prospect[J]. Journal of Jilin University (Earth Science Edition), 2016, 46(4): 1139-1152. | |
22 | PARK Eui-Seob. Case studies of enhanced geothermal system: Fenton hill in USA and hijiori in Japan[J]. Journal of Korean Society for Rock Mechanics, 2013, 23(6): 547-560. |
23 | KELKAR Sharad, WOLDEGABRIEL Giday, REHFELDT Kenneth. Lessons learned from the pioneering hot dry rock project at Fenton Hill, USA[J]. Geothermics, 2016, 63: 5-14. |
[1] | LI Yimeng, CHEN Yunquan, HE Chang, ZHANG Bingjian, CHEN Qinglin. Forward and reverse problems of methane dehydro-aromatization based on physics-informed neural network [J]. Chemical Industry and Engineering Progress, 2024, 43(9): 4817-4823. |
[2] | CUI Yi, LI Mengyuan, YANG Lu, LI Haidong, ZHANG Qiqi, CHANG Chenglin, WANG Yufei. New method for automatic design of intensified shell and tube heat exchanger with twisted-tape insert [J]. Chemical Industry and Engineering Progress, 2024, 43(9): 4824-4832. |
[3] | LIAO Xu, ZHOU Jun, LUO Jie, ZENG Ruilin, WANG Zeyu, LI Zunhua, LIN Jinqing. Research progress on CO2 cycloaddition reaction catalyzed by porous ionic polymers [J]. Chemical Industry and Engineering Progress, 2024, 43(9): 4925-4940. |
[4] | CAO Shuyang, SHI Jingbo, DONG Youming, LYU Jianxiong. Water adsorption and desorption isotherms and thermodynamic properties of Eucalyptus obliqua woods at different temperatures [J]. Chemical Industry and Engineering Progress, 2024, 43(9): 5095-5105. |
[5] | WANG Yanan, LIU Linlin, ZHUANG Yu, DU Jian. Synchronous optimization and heat integration of the production process from EO to EG based on surrogate model [J]. Chemical Industry and Engineering Progress, 2024, 43(9): 5234-5241. |
[6] | ZHENG Qingyu, JIN Guangyuan, FENG Wenkai, ZHU Zhengshan, ZHOU Yifan, TENG Houchang, LI Zhenfeng, SONG Chunfang, SONG Feihu, LI Jing. Numerical analysis of mixed characteristics of chaotic C-type geometric flows coupling electromagnetic thermal characteristics [J]. Chemical Industry and Engineering Progress, 2024, 43(8): 4262-4272. |
[7] | XIE Juan, HE Wen, ZHAO Xucheng, LI Shuaihui, LU Zhenzhen, DING Zheyu. Research progress on the application of molecular dynamics simulation in asphalt systems [J]. Chemical Industry and Engineering Progress, 2024, 43(8): 4432-4449. |
[8] | HUAI Liye, ZHONG Zhaoping, YANG Yuxuan. Characteristics and mechanism of desulfurization gypsum to α-hemihydrate gypsum: Experiments and simulations [J]. Chemical Industry and Engineering Progress, 2024, 43(8): 4694-4703. |
[9] | GUO Changbin, LI Mengmeng, FENG Menghan, YUAN Tian, ZHANG Keqiang, LUO Yanli, WANG Feng. Preparation of Ce-doped La-based perovskite and its adsorption properties for phosphate and phytic acid in water [J]. Chemical Industry and Engineering Progress, 2024, 43(8): 4748-4756. |
[10] | JIANG Jingzhi, SHAO Guowei, CUI Haiting, LI Hongtao, YANG Qi. Analysis of enhanced heat transfer characteristics of finned triplex-tube phase change heat storage unit [J]. Chemical Industry and Engineering Progress, 2024, 43(8): 4210-4221. |
[11] | WANG Shiwei, WANG Chao, GUO Qi, DING Hongbing. Image reconstruction of flow field for supersonic separator based on model modification and algorithm optimization of ECT [J]. Chemical Industry and Engineering Progress, 2024, 43(8): 4222-4229. |
[12] | DING Lu, WANG Peiyao, KONG Lingxue, BAI Jin, YU Guangsuo, LI Wen, WANG Fuchen. Progress on reaction models for coal gasification processes [J]. Chemical Industry and Engineering Progress, 2024, 43(7): 3593-3612. |
[13] | LUO Congjia, DOU Yibo, WEI Min. Research progress on structural regulation of layered double hydroxides for photocatalytic CO2 reduction [J]. Chemical Industry and Engineering Progress, 2024, 43(7): 3891-3909. |
[14] | ZHAO Weigang, ZHANG Qianqian, LAN Yuling, YAN Wen, ZHOU Xiaojian, FAN Mizi, DU Guanben. Research progress and prospect of the core materials for vacuum insulation panel [J]. Chemical Industry and Engineering Progress, 2024, 43(7): 3910-3922. |
[15] | TANG Anqi, WEI Xin, DING Liming, WANG Yujie, XU Yixiao, LIU Yiqun. Discussing physical aging phenomenon of polyimide gas separation membranes [J]. Chemical Industry and Engineering Progress, 2024, 43(7): 3923-3933. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||
京ICP备12046843号-2;京公网安备 11010102001994号 Copyright © Chemical Industry and Engineering Progress, All Rights Reserved. E-mail: hgjz@cip.com.cn Powered by Beijing Magtech Co. Ltd |