Chemical Industry and Engineering Progress ›› 2024, Vol. 43 ›› Issue (7): 3891-3909.DOI: 10.16085/j.issn.1000-6613.2023-0996
• Materials science and technology • Previous Articles Next Articles
LUO Congjia(
), DOU Yibo(
), WEI Min
Received:2023-06-16
Revised:2023-10-12
Online:2024-08-14
Published:2024-07-25
Contact:
DOU Yibo
通讯作者:
豆义波
作者简介:罗丛佳(1999—),女,硕士研究生,研究方向为光催化二氧化碳还原。E-mail:congjiabjhg0728@163.com。
基金资助:CLC Number:
LUO Congjia, DOU Yibo, WEI Min. Research progress on structural regulation of layered double hydroxides for photocatalytic CO2 reduction[J]. Chemical Industry and Engineering Progress, 2024, 43(7): 3891-3909.
罗丛佳, 豆义波, 卫敏. 水滑石光催化剂结构调控用于二氧化碳还原的研究进展[J]. 化工进展, 2024, 43(7): 3891-3909.
Add to citation manager EndNote|Ris|BibTeX
URL: https://hgjz.cip.com.cn/EN/10.16085/j.issn.1000-6613.2023-0996
| 还原半反应 | E⊖/V |
|---|---|
| CO2+e- | -1.85 |
| CO2+2H++2e- | -0.61 |
| CO2+2H++2e- | -0.53 |
| CO2+4H++4e- | -0.48 |
| CO2+4H++4e- | -0.20 |
| CO2+6H++6e- | -0.38 |
| CO2+8H++8e- | -0.24 |
| 还原半反应 | E⊖/V |
|---|---|
| CO2+e- | -1.85 |
| CO2+2H++2e- | -0.61 |
| CO2+2H++2e- | -0.53 |
| CO2+4H++4e- | -0.48 |
| CO2+4H++4e- | -0.20 |
| CO2+6H++6e- | -0.38 |
| CO2+8H++8e- | -0.24 |
| 1 | LIU Zhu, DENG Zhu, DAVIS S, et al. Monitoring global carbon emissions in 2022[J]. Nature Reviews Earth & Environment, 2023, 4(4): 205-206. |
| 2 | ARESTA M, DIBENEDETTO A, ANGELINI A. Catalysis for the valorization of exhaust carbon: From CO2 to chemicals, materials, and fuels. Technological use of CO2 [J]. Chemical Reviews, 2014, 114(3): 1709-1742. |
| 3 | WANG Ligang, WANG Dingsheng, LI Yadong. Single-atom catalysis for carbon neutrality[J]. Carbon Energy, 2022, 4(6): 1021-1079. |
| 4 | SHEN Xiaojun, ZHANG Chaofeng, HAN Buxing, et al. Catalytic self-transfer hydrogenolysis of lignin with endogenous hydrogen: Road to the carbon-neutral future[J]. Chemical Society Reviews, 2022, 51(5): 1608-1628. |
| 5 | PRAJAPATI A, SARTAPE R, ROJAS T, et al. Migration-assisted, moisture gradient process for ultrafast, continuous CO2 capture from dilute sources at ambient conditions[J]. Energy & Environmental Science, 2022, 15(2): 680-692. |
| 6 | SONG Tao, ZHAI Zhanmiao, LIU Junchen, et al. Laboratory evaluation of a novel self-healable polymer gel for CO2 leakage remediation during CO2 storage and CO2 flooding[J]. Chemical Engineering Journal, 2022, 444: 136635. |
| 7 | GAO Peng, DANG Shanshan, LI Shenggang, et al. Direct production of lower olefins from CO2 conversion via bifunctional catalysis[J]. ACS Catalysis, 2018, 8(1): 571-578. |
| 8 | 李泽洋, 杨宇森, 卫敏. 二氧化碳还原电催化剂的结构设计及性能研究进展[J]. 化学学报, 2022, 80(2): 199-213. |
| LI Zeyang, YANG Yusen, WEI Min. Structural design and performance of electrocatalysts for carbon dioxide reduction: A review[J]. Acta Chimica Sinica, 2022, 80(2): 199-213. | |
| 9 | GAN Wentian, GUO Xiangjun, HUANG Yun, et al. Temperature-controlled bacteria biofilm adhesion and formation for CO/CO2 bioconversion to ethanol by grafting N-isopropylacrylamide@SiC[J]. Chemical Engineering Journal, 2023, 451: 138602. |
| 10 | HAM R, NIELSEN C J, PULLEN S, et al. Supramolecular coordination cages for artificial photosynthesis and synthetic photocatalysis[J]. Chemical Reviews, 2023, 123(9): 5225-5261. |
| 11 | LI Xin, WEN Jiuqing, Jingxiang LOW, et al. Design and fabrication of semiconductor photocatalyst for photocatalytic reduction of CO2 to solar fuel[J]. Science China Materials, 2014, 57(1): 70-100. |
| 12 | ZHAO Yufei, WATERHOUSE G I N, CHEN Guangbo, et al. Two-dimensional-related catalytic materials for solar-driven conversion of CO x into valuable chemical feedstocks[J]. Chemical Society Reviews, 2019, 48(7): 1972-2010. |
| 13 | WANG Yiou, CHEN Enqi, TANG Junwang. Insight on reaction pathways of photocatalytic CO2 conversion[J]. ACS Catalysis, 2022, 12(12): 7300-7316. |
| 14 | CHANG Xiaoxia, WANG Tuo, GONG Jinlong. CO2 photo-reduction: Insights into CO2 activation and reaction on surfaces of photocatalysts[J]. Energy & Environmental Science, 2016, 9(7): 2177-2196. |
| 15 | LE TRI NGUYEN Dang, KIM Younghye, HWANG Yun Jeong, et al. Progress in development of electrocatalyst for CO2 conversion to selective CO production[J]. Carbon Energy, 2020, 2(1): 72-98. |
| 16 | SUN Zhenyu, TALREJA N, TAO Hengcong, et al. Catalysis of carbon dioxide photoreduction on nanosheets: Fundamentals and challenges[J]. Angewandte Chemie International Edition, 2018, 57(26): 7610-7627. |
| 17 | SCHNEIDER J, MATSUOKA M, TAKEUCHI M, et al. Understanding TiO2 photocatalysis: Mechanisms and materials[J]. Chemical Reviews, 2014, 114(19): 9919-9986. |
| 18 | ZHAO Junjie, LI Yuhang, LIU Pengfei, et al. Local coulomb attraction for enhanced H2 evolution stability of metal sulfide photocatalysts[J]. Applied Catalysis B: Environmental, 2018, 221: 152-157. |
| 19 | MA Xiaohong, LI Danyang, JIANG Yuheng, et al. Fiber-like ZnO with highly dispersed Pt nanoparticles for enhanced photocatalytic CO2 reduction[J]. Journal of Colloid and Interface Science, 2022, 628: 768-776. |
| 20 | HE Lang, ZHANG Wenyuan, LIU Sheng, et al. Three-dimensional porous N-doped graphitic carbon framework with embedded CoO for photocatalytic CO2 reduction[J]. Applied Catalysis B: Environmental, 2021, 298: 120546. |
| 21 | Eun Cheol RA, KIM Kwang Young, KIM Eun Hyup, et al. Recycling carbon dioxide through catalytic hydrogenation: Recent key developments and perspectives[J]. ACS Catalysis, 2020, 10(19): 11318-11345. |
| 22 | MENG Aiyun, ZHANG Liuyang, CHENG Bei, et al. Dual cocatalysts in TiO2 photocatalysis[J]. Advanced Materials, 2019, 31(30): 1807660. |
| 23 | VIKRANT K, WEON Seunghyun, KIM Ki-Hyun, et al. Platinized titanium dioxide (Pt/TiO2) as a multi-functional catalyst for thermocatalysis, photocatalysis, and photothermal catalysis for removing air pollutants[J]. Applied Materials Today, 2021, 23: 100993. |
| 24 | CHEN Shilong, ABDEL-MAGEED A M, MOCHIZUKI C, et al. Controlling the O-vacancy formation and performance of Au/ZnO catalysts in CO2 reduction to methanol by the ZnO particle size[J]. ACS Catalysis, 2021, 11(15): 9022-9033. |
| 25 | DONG Wenwen, JIA Jing, WANG Ye, et al. Visible-light-driven solvent-free photocatalytic CO2 reduction to CO by Co-MOF/Cu2O heterojunction with superior selectivity[J]. Chemical Engineering Journal, 2022, 438: 135622. |
| 26 | ZHAO Yufei, LI Bei, WANG Qiang, et al. NiTi-Layered double hydroxides nanosheets as efficient photocatalysts for oxygen evolution from water using visible light[J]. Chemical Science, 2014, 5(3): 951-958. |
| 27 | ZHAO Yufei, ZHAO Yunxuan, WATERHOUSE G I N, et al. Photocatalysts: Layered-double-hydroxide nanosheets as efficient visible-light-driven photocatalysts for dinitrogen fixation[J]. Advanced Materials, 2017, 29(42): 1703828. |
| 28 | ZHANG Guanhua, ZHANG Xueqiang, MENG Yue, et al. Layered double hydroxides-based photocatalysts and visible-light driven photodegradation of organic pollutants: A review[J]. Chemical Engineering Journal, 2020, 392: 123684. |
| 29 | 寇佳伟, 程淑艳, 程芳琴. 类水滑石基催化剂光催化二氧化碳还原研究进展[J]. 化工进展, 2022, 41(S1): 190-198. |
| KOU Jiawei, CHENG Shuyan, CHENG Fangqin. Research advance of hydrotalcite-based catalysts in photocatalytic reduction of carbon dioxide[J]. Chemical Industry and Engineering Progress, 2022, 41(S1): 190-198. | |
| 30 | XU Ming, WEI Min. Layered double hydroxide-based catalysts: Recent advances in preparation, structure, and applications[J]. Advanced Functional Materials, 2018, 28(47): 1802943. |
| 31 | ZHANG Shiming, RONG Yiyuan, WEI Jingwen, et al. Flower-like microspheres Z-scheme Bi2Sn2O7/NiAl-LDH heterojunction for boosting photocatalytic CO2 reduction under visible light[J]. Journal of Colloid and Interface Science, 2023, 629: 604-615. |
| 32 | WANG Kefu, ZHANG Ling, SU Yang, et al. Photoreduction of carbon dioxide of atmospheric concentration to methane with water over CoAl-layered double hydroxide nanosheets[J]. Journal of Materials Chemistry A, 2018, 6(18): 8366-8373. |
| 33 | IGUCHI S, TERAMURA K, HOSOKAWA S, et al. Photocatalytic conversion of CO2 in water using fluorinated layered double hydroxides as photocatalysts[J]. Applied Catalysis A: General, 2016, 521: 160-167. |
| 34 | QIU Bocheng, DU Mengmeng, MA Yingxin, et al. Integration of redox cocatalysts for artificial photosynthesis[J]. Energy & Environmental Science, 2021, 14(10): 5260-5288. |
| 35 | LI Xin, YU Jiaguo, JARONIEC M, et al. Cocatalysts for selective photoreduction of CO2 into solar fuels[J]. Chemical Reviews, 2019, 119(6): 3962-4179. |
| 36 | LEI Qinqin, YUAN Huiqing, DU Jiehao, et al. Photocatalytic CO2 reduction with aminoanthraquinone organic dyes[J]. Nature Communications, 2023, 14: 1087. |
| 37 | WANG Yanjie, HE Tao. Recent advances in and comprehensive consideration of the oxidation half reaction in photocatalytic CO2 conversion[J]. Journal of Materials Chemistry A, 2021, 9(1): 87-110. |
| 38 | KONG Tingting, JIANG Yawen, XIONG Yujie. Photocatalytic CO2 conversion: What can we learn from conventional CO x hydrogenation?[J]. Chemical Society Reviews, 2020, 49(18): 6579-6591. |
| 39 | IKREEDEEGH R R, TAHIR M. A critical review in recent developments of metal-organic-frameworks (MOFs) with band engineering alteration for photocatalytic CO2 reduction to solar fuels[J]. Journal of CO2 Utilization, 2021, 43: 101381. |
| 40 | 陈钱, 匡勤, 谢兆雄. 二维材料在光催化二氧化碳还原中的研究进展[J]. 化学学报, 2021, 79(1): 10-22. |
| CHEN Qian, KUANG Qin, XIE Zhaoxiong. Research progress of photocatalytic CO2 reduction based on two-dimensional materials[J]. Acta Chimica Sinica, 2021, 79(1): 10-22. | |
| 41 | KIM K, KIM S, MOON B, et al. Quadruple metal-based layered structure as the photocatalyst for conversion of carbon dioxide into a value added carbon monoxide with high selectivity and efficiency[J]. Journal of Materials Chemistry A, 2017, 18(5):8274-8279. |
| 42 | XIONG Xuyang, ZHAO Yufei, SHI Run, et al. Selective photocatalytic CO2 reduction over Zn-based layered double hydroxides containing tri or tetravalent metals[J]. Science Bulletin, 2020, 65(12): 987-994. |
| 43 | SU Senda, LI Xiaoman, TAN Mengyao, et al. Enhancement of the properties of ZnAl-LDHs for photocatalytic nitrogen reduction reaction by controlling anion intercalation[J]. Inorganic Chemistry Frontiers, 2023, 10(3): 869-879. |
| 44 | XU Simin, PAN Ting, DOU Yibo, et al. Theoretical and experimental study on MⅡMⅢ-layered double hydroxides as efficient photocatalysts toward oxygen evolution from water[J]. The Journal of Physical Chemistry C, 2015, 119(33): 18823-18834. |
| 45 | ZHAO Yufei, JIA Xiaodan, WATERHOUSE G I N, et al. Layered double hydroxide nanostructured photocatalysts for renewable energy production[J]. Advanced Energy Materials, 2016, 6(6): 1501974. |
| 46 | JIAO Xingchen, ZHENG Kai, LIANG Liang, et al. Fundamentals and challenges of ultrathin 2D photocatalysts in boosting CO2 photoreduction[J]. Chemical Society Reviews, 2020, 49(18): 6592-6604. |
| 47 | CHEN Weiyi, HAN Bin, XIE Yili, et al. Ultrathin Co-Co LDHs nanosheets assembled vertically on MXene: 3D nanoarrays for boosted visible-light-driven CO2 reduction[J]. Chemical Engineering Journal, 2020, 391: 123519. |
| 48 | GUO Qiangsheng, ZHANG Qinghong, WANG Hongzhi, et al. Core-shell structured ZnO@Cu-Zn-Al layered double hydroxides with enhanced photocatalytic efficiency for CO2 reduction[J]. Catalysis Communications, 2016, 77: 118-122. |
| 49 | KHAN A ALI, TAHIR M. Construction of an S-scheme heterojunction with oxygen-vacancy-rich trimetallic CoAlLa-LDH anchored on titania-sandwiched Ti3C2 multilayers for boosting photocatalytic CO2 reduction under visible light[J]. Industrial & Engineering Chemistry Research, 2021, 60(45): 16201-16223. |
| 50 | WANG Yifei, HAN Peng, LV Ximeng, et al. Defect and interface engineering for aqueous electrocatalytic CO2 reduction[J]. Joule, 2018, 2(12): 2551-2582. |
| 51 | ZHU Jiayi, LI Ting, WANG Shaohong, et al. Lattice-distortion active sites of Ni-doped CuMgFe LDH for benzotraizole degradation[J]. Journal of Environmental Chemical Engineering, 2022, 10(3): 107903. |
| 52 | TAVARES S R, NANGOI I M, LEITÃO A A. Computational investigation of two-dimensional LDHs and the modification of their electronic structure induced by defects[J]. Applied Surface Science, 2020, 532: 147159. |
| 53 | BAI Sha, NING Chenjun, WANG Huijuan, et al. VO4-modified layered double hydroxides nanosheets for highly selective photocatalytic CO2 reduction to C1 products[J]. Small, 2022, 18(40): e2203787. |
| 54 | KHAN A ALI, TAHIR M. Synergistic effect of Co/La in oxygen vacancy rich ternary CoAlLa layered double hydroxide with enhanced reductive sites for selective photoreduction of CO2 to CH4 [J]. Energy & Fuels, 2021, 35(10): 8922-8943. |
| 55 | ZHAO Yufei, CHEN Guangbo, BIAN Tong, et al. Photoreduction: Defect-rich ultrathin ZnAl-layered double hydroxide nanosheets for efficient photoreduction of CO2 to CO with water[J]. Advanced Materials, 2015, 27(47): 7823. |
| 56 | GUO Jiaqing, SHEN Haochen, WU Guang, et al. Synergy of various defects in CoAl-layered double hydroxides photocatalyzed CO2 reduction: A first-principles study[J]. Catalysis Letters, 2023, 153(4): 933-944. |
| 57 | PENG Lishan, YANG Na, YANG Yuqi, et al. Atomic cation-vacancy engineering of NiFe-layered double hydroxides for improved activity and stability towards the oxygen evolution reaction[J]. Angewandte Chemie International Edition, 2021, 60(46): 24612-24619. |
| 58 | XU Jie, LIU Xiaowei, ZHOU Zijian, et al. Surface defects introduced by metal doping into layered double hydroxide for CO2 photoreduction: The effect of metal species in light absorption, charge transfer and CO2 reduction[J]. Chemical Engineering Journal, 2022, 442: 136148. |
| 59 | XU Dongcun, FU Gang, LI Zhongming, et al. Functional regulation of ZnAl-LDHs and mechanism of photocatalytic reduction of CO2: A DFT study[J]. Molecules, 2023, 28(2): 738. |
| 60 | TAN Ling, XU Simin, WANG Zelin, et al. Highly selective photoreduction of CO2 with suppressing H2 evolution over monolayer layered double hydroxide under irradiation above 600 nm[J]. Angewandte Chemie International Edition, 2019, 58(34): 11860-11867. |
| 61 | TAN Ling, XU Simin, WANG Zelin, et al. 600nm induced nearly 99% selectivity of CH4 from CO2 photoreduction using defect-rich monolayer structures[J]. Cell Reports Physical Science, 2021, 2(2): 100322. |
| 62 | YANG Junshan, LI Chao, LIANG Derui, et al. Central-collapsed structure of CoFeAl layered double hydroxides and its photocatalytic performance[J]. Journal of Colloid and Interface Science, 2021, 590: 571-579. |
| 63 | ZHANG Lei, XIE Zhaoxiong, GONG Jinlong. Shape-controlled synthesis of Au-Pd bimetallic nanocrystals for catalytic applications[J]. Chemical Society Reviews, 2016, 45(14): 3916-3934. |
| 64 | 杨冬, 周致远, 丁菲, 等. 特殊形貌g-C3N4基光催化材料的研究进展[J]. 化工进展, 2019, 38(1): 495-504. |
| YANG Dong, ZHOU Zhiyuan, DING Fei, et al. Research advances of g-C3N4-based photocatalytic materials with special morphologies[J]. Chemical Industry and Engineering Progress, 2019, 38(1): 495-504. | |
| 65 | WANG Dingsheng, LI Yadong. Bimetallic nanocrystals: Liquid-phase synthesis and catalytic applications[J]. Advanced Materials, 2011, 23(9): 1044-1060. |
| 66 | WANG Ruonan, WANG Zhen, WAN Shipeng, et al. Facile layer regulation strategy of layered double hydroxide nanosheets for artificial photosynthesis and mechanism insight[J]. Chemical Engineering Journal, 2022, 434: 134434. |
| 67 | BAI Sha, LI Tian, WANG Huijuan, et al. Scale-up synthesis of monolayer layered double hydroxide nanosheets via separate nucleation and aging steps method for efficient CO2 photoreduction[J]. Chemical Engineering Journal, 2021, 419: 129390. |
| 68 | ZHANG Lianyang, MENG Yue, PAN Guoxiang, et al. Experimental and theoretical investigations into the performance and mechanism of CO2 capture by 3D and 2D ZnAl layered double hydroxides[J]. Inorganic Chemistry, 2020, 59(23): 17722-17731. |
| 69 | WANG Qiang, O'HARE D. Large-scale synthesis of highly dispersed layered double hydroxide powders containing delaminated single layer nanosheets[J]. Chemical Communications, 2013, 49(56): 6301-6303. |
| 70 | AN Jiamin, SHEN Tianyang, CHANG Wen, et al. Defect engineering of NiCo-layered double hydroxide hollow nanocages for highly selective photoreduction of CO2 to CH4 with suppressing H2 evolution[J]. Inorganic Chemistry Frontiers, 2021, 8(4): 996-1004. |
| 71 | SHI Qunrong, HUANG Junjie, YANG Yong, et al. In-situ construction of urchin-like hierarchical g-C3N4/NiAl-LDH hybrid for efficient photoreduction of CO2 [J]. Materials Letters, 2020, 268: 127560. |
| 72 | Wankuen JO, MORU S, TONDA S. A green approach to the fabrication of a TiO2/NiAl-LDH core-shell hybrid photocatalyst for efficient and selective solar-powered reduction of CO2 into value-added fuels[J]. Journal of Materials Chemistry A, 2020, 8(16): 8020-8032. |
| 73 | FAZAL H, IQBAL A, CAO Yucai, et al. Porous urchin-like 3D Co(Ⅱ)Co(Ⅲ) layered double hydroxides for high performance heterogeneous Fenton degradation[J]. CrystEngComm, 2021, 23(5): 1234-1242. |
| 74 | HONG Jindui, ZHANG Wei, WANG Yabo, et al. Photocatalytic reduction of carbon dioxide over self-assembled carbon nitride and layered double hydroxide: The role of carbon dioxide enrichment[J]. ChemCatChem, 2014, 6(8): 2315-2321. |
| 75 | WANG Mengmeng, CHEN Dongyun, LI Najun, et al. Ni-Co bimetallic hydroxide nanosheet arrays anchored on graphene for adsorption-induced enhanced photocatalytic CO2 reduction[J]. Advanced Materials, 2022, 34(28): e2202960. |
| 76 | TONDA S, KUMAR S, BHARDWAJ M, et al. g-C3N4/NiAl-LDH 2D/2D hybrid heterojunction for high-performance photocatalytic reduction of CO2 into renewable fuels[J]. ACS Applied Materials & Interfaces, 2018, 10(3): 2667-2678. |
| 77 | ZHANG Liuyang, ZHANG Jianjun, YU Huogen, et al. Emerging S-scheme photocatalyst[J]. Advanced Materials, 2022, 34(11): e2107668. |
| 78 | LIU Jun, MA Nanke, WU Wei, et al. Recent progress on photocatalytic heterostructures with full solar spectral responses[J]. Chemical Engineering Journal, 2020, 393: 124719. |
| 79 | KUMAR S, ISAACS M A, TROFIMOVAITE R, et al. P25@CoAl layered double hydroxide heterojunction nanocomposites for CO2 photocatalytic reduction[J]. Applied Catalysis B: Environmental, 2017, 209: 394-404. |
| 80 | YANG Min, WANG Peng, LI Youji, et al. Graphene aerogel-based NiAl-LDH/g-C3N4 with ultratight sheet-sheet heterojunction for excellent visible-light photocatalytic activity of CO2 reduction[J]. Applied Catalysis B: Environmental, 2022, 306: 121065. |
| 81 | MIAO Yufang, GUO Ruitang, GU Jingwen, et al. Fabrication of β-In2S3/NiAl-LDH heterojunction photocatalyst with enhanced separation of charge carriers for efficient CO2 photocatalytic reduction[J]. Applied Surface Science, 2020, 527: 146792. |
| 82 | JI Xiangyin, GUO Ruitang, TANG Junying, et al. Construction of full solar-spectrum-driven Cu2– x S/Ni-Al-LDH heterostructures for efficient photocatalytic CO2 reduction[J]. ACS Applied Energy Materials, 2022, 5(3): 2862-2872. |
| 83 | HAN Xinxin, LU Bingjie, HUANG Xin, et al. Novel p- and n-type S-scheme heterojunction photocatalyst for boosted CO2 photoreduction activity[J]. Applied Catalysis B: Environmental, 2022, 316: 121587. |
| 84 | YANG Yong, WU Jiajia, XIAO Tingting, et al. Urchin-like hierarchical CoZnAl-LDH/RGO/g-C3N4 hybrid as a Z-scheme photocatalyst for efficient and selective CO2 reduction[J]. Applied Catalysis B: Environmental, 2019, 255: 117771. |
| 85 | ZHU Biao, XU Qianxin, BAO Xiaoyan, et al. g-C3N4/CoNiFe-LDH Z-scheme heterojunction for efficient CO2 photoreduction and MB dye photodegradation[J]. Catalysis Science & Technology, 2021, 11(23): 7727-7739. |
| 86 | WU Yujie, GONG Yinyan, LIU Jiahao, et al. Constructing NiFe-LDH wrapped Cu2O nanocube heterostructure photocatalysts for enhanced photocatalytic dye degradation and CO2 reduction via Z-scheme mechanism[J]. Journal of Alloys and Compounds, 2020, 831: 154723. |
| [1] | ZHAO Yulong, CAI Kai, YU Shanqing. Influence of pore structure of alumina on the adsorption, diffusion and reactivity of hydrocarbon molecules in catalytic cracking [J]. Chemical Industry and Engineering Progress, 2025, 44(S1): 213-221. |
| [2] | LI Junliang, LI Yue, SUN Daolai. Hydrodeoxygenation of 1,2-butanediol to 1-butanol over Cu/SiO2-Al2O3 catalyst [J]. Chemical Industry and Engineering Progress, 2025, 44(S1): 222-231. |
| [3] | LIU Chao, DING Chengao, WU Baoshun, LEI Xinyu, WANG Guangying, YU Zhengwei. Effect of TiO2 support particle size on the denitrification and water/sulfur poisoning resistance of RuO x -V2O5-WO3/TiO2 catalyst [J]. Chemical Industry and Engineering Progress, 2025, 44(S1): 232-242. |
| [4] | ZHANG Hanlin, YUE Xuehai, LIU Junxi, YIN Fengjun. Fabrication of high stability electrocatalyst for oxygen evolution reaction by Ru-Sr-Ir electrodeposition [J]. Chemical Industry and Engineering Progress, 2025, 44(S1): 243-251. |
| [5] | ZHANG Hongwu, HU Qihui, ZHAO Xuefeng, LI Yuxing, MENG Lan, ZHANG Lijun, ZHU Jianlu, WANG Wuchang. Research progress on leakage risk of onshore CO2 pipeline [J]. Chemical Industry and Engineering Progress, 2025, 44(S1): 462-477. |
| [6] | LIU Zhe, ZHOU Shunli, LI Yongxiang, ZHANG Chengxi, LIU Yipeng. Research progress on alkyl naphthalene synthesis catalysts [J]. Chemical Industry and Engineering Progress, 2025, 44(S1): 144-158. |
| [7] | LIN Yijie, QIAO Peng, LI Xinrui, ZHANG Hongbin, WANG Xueqin. Construction and application of heterostructures of photocatalyst TiO2 nanomaterials [J]. Chemical Industry and Engineering Progress, 2025, 44(S1): 159-177. |
| [8] | WANG Tao, ZHANG Xuebing, ZHANG Qi, CHEN Qiang, ZHANG Kui, MEN Zhuowu. Effects of reduction-carburization temperature and inlet CO concentration on industrial precipitated iron-based catalyst for Fischer-Tropsch synthesis [J]. Chemical Industry and Engineering Progress, 2025, 44(S1): 178-184. |
| [9] | BAO Xinde, LIU Biye, HUANG Renwei, HONG Yuhao, GUAN Xin, LIN Jinguo. Preparation of biomass-based@CuNiOS composite catalysts for the reduction of organic dye [J]. Chemical Industry and Engineering Progress, 2025, 44(S1): 185-196. |
| [10] | ZHAO Siyang, LI Chenran, LIU Yang. Process optimization for regulating diene selectivity of MTO regenerated catalyst through pre-carbon deposition using C4 by-product [J]. Chemical Industry and Engineering Progress, 2025, 44(S1): 205-212. |
| [11] | LIU Kefeng, DONG Weigang, HU Xuesheng, LIU Taoran, ZHOU Huaqun, SHI Wen, WAN Zi’an, GAO Fei. Policies and measures to promote the development of CCUS [J]. Chemical Industry and Engineering Progress, 2025, 44(9): 4879-4897. |
| [12] | XUE Zijie, WU Yan, CUI Ziyuan, XU Guanxin, TANG Shuo, WANG Yufei, MA Mingyan. Long cycle green ammonia synthesis model based on economic analysis: Considering the impact of continuous changes in grid carbon emission factors [J]. Chemical Industry and Engineering Progress, 2025, 44(9): 4917-4927. |
| [13] | CHEN Zizhao, HE Fangshu, HU Qiang, YANG Yang, CHEN Hanping, YANG Haiping. Research progress on anti-carbon deposition Ni-based catalysts for dry reforming of methane [J]. Chemical Industry and Engineering Progress, 2025, 44(9): 4968-4978. |
| [14] | WANG Zhen, ZHANG Yaoyuan, WU Qin, SHI Daxin, CHEN Kangcheng, LI Hansheng. Development of Ni/Al2O3-based catalysts for the dry reforming of methane [J]. Chemical Industry and Engineering Progress, 2025, 44(9): 4979-4998. |
| [15] | ZHANG Haipeng, QIN Shanshan, WANG Yuxuan, YU Haibiao. Preparation of 3.0F-Ag x Co catalysts for N2O decomposition [J]. Chemical Industry and Engineering Progress, 2025, 44(9): 4999-5005. |
| Viewed | ||||||
|
Full text |
|
|||||
|
Abstract |
|
|||||
|
京ICP备12046843号-2;京公网安备 11010102001994号 Copyright © Chemical Industry and Engineering Progress, All Rights Reserved. E-mail: hgjz@cip.com.cn Powered by Beijing Magtech Co. Ltd |