Chemical Industry and Engineering Progress ›› 2024, Vol. 43 ›› Issue (10): 5381-5392.DOI: 10.16085/j.issn.1000-6613.2023-1567
• Chemical processes and equipment • Previous Articles
XU Jinyang1(), HONG Fangjun1(
), ZHANG Chaoyang2
Received:
2023-09-06
Revised:
2023-12-06
Online:
2024-10-29
Published:
2024-10-15
Contact:
HONG Fangjun
通讯作者:
洪芳军
作者简介:
许锦阳(1996—),男,博士研究生,研究方向为高热流电子元件散热。E-mail:xjy908019482@sjtu.edu.cn。
基金资助:
CLC Number:
XU Jinyang, HONG Fangjun, ZHANG Chaoyang. Effects of microporous copper surface parameters on pool boiling enhancement with self-induced jet impingement[J]. Chemical Industry and Engineering Progress, 2024, 43(10): 5381-5392.
许锦阳, 洪芳军, 张朝阳. 微多孔铜表面参数对自驱射流强化池沸腾的影响[J]. 化工进展, 2024, 43(10): 5381-5392.
名称 | 表面类型 | 粒径分布 范围/μm | 微多孔层厚度/μm | 厚度与粒径之比 | 孔隙率/% |
---|---|---|---|---|---|
SSB | 喷砂 | — | — | — | — |
SMP-101-4 | 微多孔 | 96~106 | 412 | 4.08 | 68.2 |
SMP-66-4 | 微多孔 | 58~74 | 265 | 4.02 | 73.2 |
SMP-43-4 | 微多孔 | 38~48 | 180 | 4.19 | 76.3 |
SMP-43-6 | 微多孔 | 38~48 | 270 | 6.28 | 70.9 |
SMP-43-10 | 微多孔 | 38~48 | 440 | 10.2 | 69.4 |
名称 | 表面类型 | 粒径分布 范围/μm | 微多孔层厚度/μm | 厚度与粒径之比 | 孔隙率/% |
---|---|---|---|---|---|
SSB | 喷砂 | — | — | — | — |
SMP-101-4 | 微多孔 | 96~106 | 412 | 4.08 | 68.2 |
SMP-66-4 | 微多孔 | 58~74 | 265 | 4.02 | 73.2 |
SMP-43-4 | 微多孔 | 38~48 | 180 | 4.19 | 76.3 |
SMP-43-6 | 微多孔 | 38~48 | 270 | 6.28 | 70.9 |
SMP-43-10 | 微多孔 | 38~48 | 440 | 10.2 | 69.4 |
项目 | 33.4℃ | 45℃ | 60℃ | |||
---|---|---|---|---|---|---|
液相 | 汽相 | 液相 | 汽相 | 液相 | 汽相 | |
密度/kg·m-3 | 1342.4 | 6.827 | 1314.8 | 10.024 | 1268.6 | 15.826 |
热导率/W·m-1·K-1 | 0.07615 | 0.01881 | 0.07385 | 0.01999 | 0.07097 | 0.02157 |
动力黏度/Pa·s | 3.55×10-4 | 1.59×10-5 | 3.10×10-4 | 1.65×10-5 | 2.63×10-4 | 1.72×10-5 |
饱和压力/MPa | 0.101 | 0.151 | 0.244 | |||
相变潜热/kJ·kg-1 | 164.76 | 159.85 | 152.98 | |||
表面张力系数/mN·m-1 | 12.75 | 11.43 | 9.774 |
项目 | 33.4℃ | 45℃ | 60℃ | |||
---|---|---|---|---|---|---|
液相 | 汽相 | 液相 | 汽相 | 液相 | 汽相 | |
密度/kg·m-3 | 1342.4 | 6.827 | 1314.8 | 10.024 | 1268.6 | 15.826 |
热导率/W·m-1·K-1 | 0.07615 | 0.01881 | 0.07385 | 0.01999 | 0.07097 | 0.02157 |
动力黏度/Pa·s | 3.55×10-4 | 1.59×10-5 | 3.10×10-4 | 1.65×10-5 | 2.63×10-4 | 1.72×10-5 |
饱和压力/MPa | 0.101 | 0.151 | 0.244 | |||
相变潜热/kJ·kg-1 | 164.76 | 159.85 | 152.98 | |||
表面张力系数/mN·m-1 | 12.75 | 11.43 | 9.774 |
参数 | 数值 | 不确定度 |
---|---|---|
Ti,n | — | ±0.1K |
T0 | — | ±0.1K |
W1 | 10mm | ±0.025mm |
W2 | 20mm | ±0.025mm |
kCu,heating | 355W/(m·K) | ±3.55W/(m·K) |
kCu,testing | 405W/(m·K) | ±4.05W/(m·K) |
∆x1,3 | 20mm | ±0.025mm |
∆xwall | 4.2mm | ±0.025mm |
pop | — | ±0.0004MPa |
参数 | 数值 | 不确定度 |
---|---|---|
Ti,n | — | ±0.1K |
T0 | — | ±0.1K |
W1 | 10mm | ±0.025mm |
W2 | 20mm | ±0.025mm |
kCu,heating | 355W/(m·K) | ±3.55W/(m·K) |
kCu,testing | 405W/(m·K) | ±4.05W/(m·K) |
∆x1,3 | 20mm | ±0.025mm |
∆xwall | 4.2mm | ±0.025mm |
pop | — | ±0.0004MPa |
1 | ANDERSON T M, MUDAWAR I. Microelectronic cooling by enhanced pool boiling of a dielectric fluorocarbon liquid[J]. ASME Journal of Heat and Mass Transfer, 1989, 111(3): 752-759. |
2 | MUDAWAR I, ANDERSON T M. Parametric investigation into the effects of pressure, subcooling, surface augmentation and choice of coolant on pool boiling in the design of cooling systems for high-power-density electronic chips[J]. ASME Journal of Electronic Packaging, 1990, 112(4): 375-382. |
3 | MUDAWAR I, ANDERSON T M. Optimization of enhanced surfaces for high flux chip cooling by pool boiling[J]. ASME Journal of Electronic Packaging, 1993, 115(1): 89-100. |
4 | LIANG Gangtao, MUDAWAR Issam. Review of pool boiling enhancement by surface modification[J]. International Journal of Heat and Mass Transfer, 2019, 128: 892-933. |
5 | SAJJAD Uzair, SADEGHIANJAHROMI Ali, Hafiz Muhammad ALI, et al. Enhanced pool boiling of dielectric and highly wetting liquids—A review on enhancement mechanisms[J]. International Communications in Heat and Mass Transfer, 2020, 119: 104950. |
6 | THIAGARAJAN Suraj Joottu, YANG Ronggui, KING Charles, et al. Bubble dynamics and nucleate pool boiling heat transfer on microporous copper surfaces[J]. International Journal of Heat and Mass Transfer, 2015, 89: 1297-1315. |
7 | XU Jinyang, HONG Fangjun, ZHANG Chaoyang. Experimental investigation on self-induced jet impingement boiling using R1336mzz(Z)[J]. International Journal of Heat and Mass Transfer, 2024, 220: 124963. |
8 | SARANGI SUCHISMITA, WEIBEL JUSTIN A, GARIMELLA SURESH V. Effect of particle morphology on pool boiling from surfaces coated with sintered particles[C]//Proceedings of ASME 2015 International Mechanical Engineering Congress and Exposition. Houston, 2015: 13-19. |
9 | WEBB Ralph. Nucleate boiling on porous coated surfaces[J]. Heat Transfer Engineering, 1981, 4(3): 71-82. |
10 | ZHOU Jie, LIU Bin, QI Baojin, et al. Experimental investigations of bubble behaviors and heat transfer performance on micro/nanostructure surfaces[J]. International Journal of Thermal Sciences, 2019, 135: 133-147. |
11 | Matic MOŽE, Matevž ZUPANČIČ, Iztok GOLOBIČ. Investigation of the scatter in reported pool boiling CHF measurements including analysis of heat flux and measurement uncertainty evaluation methodology[J]. Applied Thermal Engineering, 2020, 169: 114938. |
12 | EL-GENK Mohamed S, POURGHASEMI Mahyar. Experimental investigation of saturation boiling of HFE-7000 dielectric liquid on rough copper surfaces[J]. Thermal Science and Engineering Progress, 2020, 15: 100428. |
13 | KANDLIKAR Satish G. A theoretical model to predict pool boiling CHF incorporating effects of contact angle and orientation[J]. Journal of Heat Transfer, 2001, 123(6): 1071-1079. |
14 | LIANG Gangtao, MUDAWAR Issam. Pool boiling critical heat flux (CHF)—Part 2: Assessment of models and correlations[J]. International Journal of Heat and Mass Transfer, 2018, 117: 1368-1383. |
15 | HSU Y Y. On the size range of active nucleation cavities on a heating surface[J]. Journal of Heat Transfer, 1962, 84(3): 207-213. |
16 | LIU Bin, LIU Jie, ZHOU Jie, et al. Experimental study of subcooled boiling pool heat transfer and its “hook back” phenomenon on micro/nanostructured surfaces[J]. International Communications in Heat and Mass Transfer, 2019, 100: 73-82. |
17 | JAIKUMAR A, KANDLIKAR S G. Pool boiling enhancement through bubble induced convective liquid flow in feeder microchannels[J]. Applied Physics Letters, 2016, 108(4): 041604. |
18 | CAREY Van P. Liquid-vapor phase-change phenomena: An introduction to the thermophysics of vaporization and condensation processes in heat transfer equipment[M]. 2nd Ed. Boca Raton: CRC Press, 2018. |
19 | JI Xinyu, MA Xiang, YANG Xiaoping, et al. Jet array impingement boiling in compact space for high heat flux cooling[J]. Applied Thermal Engineering, 2023, 219: 119538. |
20 | LIU Yi, TANG Jiaqi, LI Linxuan, et al. Design of cassie-wetting nucleation sites in pool boiling[J]. International Journal of Heat and Mass Transfer, 2019, 132: 25-33. |
21 | TANG Heng, TANG Yong, YUAN Wei, et al. Fabrication and capillary characterization of axially micro-grooved wicks for aluminium flat-plate heat pipes[J]. Applied Thermal Engineering, 2018, 129: 907-915. |
22 | KAVIANY M. Principles of heat transfer in porous media[M]. 2nd Ed. New York: Springer New York, 1995. |
23 | Md Mahamudur Rahman, RIDWAN Shakerur, FEHLINGER Donald, et al. Wicking enhanced critical heat flux for highly wetting fluids on structured surfaces[J]. Langmuir, 2020, 36(32): 9643-9648. |
24 | CAO Zhen, LIU Bin, PREGER Calle, et al. Nanoparticle-assisted pool boiling heat transfer on micro-pin-fin surfaces[J]. Langmuir, 2021, 37(3): 1089-1101. |
[1] | CUI Yi, LI Mengyuan, YANG Lu, LI Haidong, ZHANG Qiqi, CHANG Chenglin, WANG Yufei. New method for automatic design of intensified shell and tube heat exchanger with twisted-tape insert [J]. Chemical Industry and Engineering Progress, 2024, 43(9): 4824-4832. |
[2] | ZHENG Qingyu, JIN Guangyuan, FENG Wenkai, ZHU Zhengshan, ZHOU Yifan, TENG Houchang, LI Zhenfeng, SONG Chunfang, SONG Feihu, LI Jing. Numerical analysis of mixed characteristics of chaotic C-type geometric flows coupling electromagnetic thermal characteristics [J]. Chemical Industry and Engineering Progress, 2024, 43(8): 4262-4272. |
[3] | PAN Hanting, XU Hongtao, XU Duo, LUO Zhuqing. Analysis of thermal insulation characteristics of lithium-ion batteries based on phase change materials under low temperature [J]. Chemical Industry and Engineering Progress, 2024, 43(8): 4333-4341. |
[4] | JIANG Jingzhi, SHAO Guowei, CUI Haiting, LI Hongtao, YANG Qi. Analysis of enhanced heat transfer characteristics of finned triplex-tube phase change heat storage unit [J]. Chemical Industry and Engineering Progress, 2024, 43(8): 4210-4221. |
[5] | HAN Dan, ZHANGJian , LUO Haoming, LIU Peng, WANG Shiwei. A review on preparation of spinel transparent ceramic by reactive sintering [J]. Chemical Industry and Engineering Progress, 2024, 43(7): 3637-3646. |
[6] | ZHAO Weigang, ZHANG Qianqian, LAN Yuling, YAN Wen, ZHOU Xiaojian, FAN Mizi, DU Guanben. Research progress and prospect of the core materials for vacuum insulation panel [J]. Chemical Industry and Engineering Progress, 2024, 43(7): 3910-3922. |
[7] | JIANG Huizhen, LUO Kai, WANG Yan, FEI Hua, WU Dengke, YE Zhuocheng, CAO Xiongjin. Construction and application of waste biomass composite phase change materials [J]. Chemical Industry and Engineering Progress, 2024, 43(7): 3934-3945. |
[8] | HE Haijun, WANG Naiji. Determination of optimal steam pipe network insulation structure based on experiments and simulations [J]. Chemical Industry and Engineering Progress, 2024, 43(7): 4164-4172. |
[9] | MU Lianbo, WANG Suilin, LU Junhui, LIU Guichang, ZHAO Liqiu, LIU Jincheng, HAO Anfeng, ZHANG Tong. Analysis of flue gas deep waste heat recovery with cooperative flue gas pressure control for alkane dehydrogenation heating furnace [J]. Chemical Industry and Engineering Progress, 2024, 43(6): 3029-3041. |
[10] | HE Ruiqiang, FANG Min, ZHOU Jianduo, FEI Hua, YANG Kai. Research progress of TPE-based flexible composite phase change materials for thermal management of lithium batteries [J]. Chemical Industry and Engineering Progress, 2024, 43(6): 3159-3173. |
[11] | TIAN Xiaodie, HE Zhaoyu, ZHANG Peng. Preperation of an intelligent thermo-regulatory textile with hydrophobic surface and its performance study [J]. Chemical Industry and Engineering Progress, 2024, 43(6): 3247-3255. |
[12] | LIANG Ximei, FEI Hua, LI Yuanlin, YONG Fan, GUO Mengqian, ZHOU Jiahong. Preparation and thermal properties of lauric acid-based binary low compatible energy storage materials [J]. Chemical Industry and Engineering Progress, 2024, 43(6): 3256-3267. |
[13] | YANG Lei, QIU Guangwei, LI Siyan, GE Hongcheng, SUN Yuanyuan, WANG Fei, FAN Xiaoguang. Insulin controlled release carriers based on temperature and glucose dual-response copolymer microcapsules [J]. Chemical Industry and Engineering Progress, 2024, 43(6): 3277-3284. |
[14] | JIANG Andi, DING Xuexing, WANG Shipeng, DING Junhua, LI Ning. Research progress on thermodynamic performance of supercritical CO2 dry gas seal [J]. Chemical Industry and Engineering Progress, 2024, 43(5): 2354-2369. |
[15] | ZHANG Jinpeng, QU Ting, JING Jieying, LI Wenying. Composite catalyst of sorption enhanced water gas shift for hydrogen production: A review [J]. Chemical Industry and Engineering Progress, 2024, 43(5): 2629-2644. |
Viewed | ||||||||||||||||||||||||||||||||||||||||||||||||||
Full text 132
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||
Abstract 147
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||
京ICP备12046843号-2;京公网安备 11010102001994号 Copyright © Chemical Industry and Engineering Progress, All Rights Reserved. E-mail: hgjz@cip.com.cn Powered by Beijing Magtech Co. Ltd |