Chemical Industry and Engineering Progress ›› 2024, Vol. 43 ›› Issue (7): 4164-4172.DOI: 10.16085/j.issn.1000-6613.2024-0215
• Chemical industry park • Previous Articles
Received:
2024-01-29
Revised:
2024-04-16
Online:
2024-08-14
Published:
2024-07-10
Contact:
WANG Naiji
通讯作者:
王乃继
作者简介:
何海军(1979—),男,博士研究生,研究方向为燃烧、节能、环保。E-mail:hehaijun@cctegce.com。
基金资助:
CLC Number:
HE Haijun, WANG Naiji. Determination of optimal steam pipe network insulation structure based on experiments and simulations[J]. Chemical Industry and Engineering Progress, 2024, 43(7): 4164-4172.
何海军, 王乃继. 基于实验与仿真的最优蒸汽管网保温结构确定[J]. 化工进展, 2024, 43(7): 4164-4172.
Add to citation manager EndNote|Ris|BibTeX
URL: https://hgjz.cip.com.cn/EN/10.16085/j.issn.1000-6613.2024-0215
序号 | 测量参数 | 测量仪器 | 精度等级 |
---|---|---|---|
1 | 管内温度 | K型铠装热电偶 MIK-WRNK | ±1.5℃ |
2 | 层间温度 | Pt100热电阻 MIK-WZP-Y | A级 ±(0.15+0.002|t|)℃ |
3 | 环境温度 | Pt100热电阻 MIK-WZP-Y | A级 ±(0.15+0.002|t|)℃ |
4 | 周长 | 皮尺 | ±0.01m |
5 | 数据记录 | MIK-R6000C无纸记录仪 | 0.2%FS±1d |
序号 | 测量参数 | 测量仪器 | 精度等级 |
---|---|---|---|
1 | 管内温度 | K型铠装热电偶 MIK-WRNK | ±1.5℃ |
2 | 层间温度 | Pt100热电阻 MIK-WZP-Y | A级 ±(0.15+0.002|t|)℃ |
3 | 环境温度 | Pt100热电阻 MIK-WZP-Y | A级 ±(0.15+0.002|t|)℃ |
4 | 周长 | 皮尺 | ±0.01m |
5 | 数据记录 | MIK-R6000C无纸记录仪 | 0.2%FS±1d |
序号 | 影响因素 | 保温结构 |
---|---|---|
1 | 对流层 | 厚度180mm,4层保温,4层反射层,30mm披肩单层对流层 |
2 | 厚度180mm,4层保温,4层反射层,30mm披肩双层对流层 | |
3 | 厚度180mm,4层保温,4层反射层,30mm披肩无对流层 | |
4 | 披肩厚度 | 厚度180mm,4层保温,4层反射层,无披肩单层对流层 |
5 | 厚度180mm,4层保温,4层反射层,40mm披肩单层对流层 | |
6 | 厚度180mm,4层保温,4层反射层,50mm披肩单层对流层 | |
7 | 反射层 | 厚度180mm,4层保温,无反射层,30mm披肩单层对流层 |
8 | 厚度180mm,4层保温,1层反射层,30mm披肩单层对流层 | |
9 | 厚度180mm,4层保温,2层反射层,30mm披肩单层对流层 | |
10 | 厚度180mm,4层保温,3层反射层,30mm披肩单层对流层 | |
11 | 保温厚度 | 厚度120mm,4层保温,4层反射层,30mm披肩单层对流层 |
12 | 厚度130mm,4层保温,4层反射层,30mm披肩单层对流层 | |
13 | 厚度140mm,4层保温,4层反射层,30mm披肩单层对流层 | |
14 | 厚度150mm,4层保温,4层反射层,30mm披肩单层对流层 | |
15 | 厚度160mm,4层保温,4层反射层,30mm披肩单层对流层 | |
16 | 厚度170mm,4层保温,4层反射层,30mm披肩单层对流层 |
序号 | 影响因素 | 保温结构 |
---|---|---|
1 | 对流层 | 厚度180mm,4层保温,4层反射层,30mm披肩单层对流层 |
2 | 厚度180mm,4层保温,4层反射层,30mm披肩双层对流层 | |
3 | 厚度180mm,4层保温,4层反射层,30mm披肩无对流层 | |
4 | 披肩厚度 | 厚度180mm,4层保温,4层反射层,无披肩单层对流层 |
5 | 厚度180mm,4层保温,4层反射层,40mm披肩单层对流层 | |
6 | 厚度180mm,4层保温,4层反射层,50mm披肩单层对流层 | |
7 | 反射层 | 厚度180mm,4层保温,无反射层,30mm披肩单层对流层 |
8 | 厚度180mm,4层保温,1层反射层,30mm披肩单层对流层 | |
9 | 厚度180mm,4层保温,2层反射层,30mm披肩单层对流层 | |
10 | 厚度180mm,4层保温,3层反射层,30mm披肩单层对流层 | |
11 | 保温厚度 | 厚度120mm,4层保温,4层反射层,30mm披肩单层对流层 |
12 | 厚度130mm,4层保温,4层反射层,30mm披肩单层对流层 | |
13 | 厚度140mm,4层保温,4层反射层,30mm披肩单层对流层 | |
14 | 厚度150mm,4层保温,4层反射层,30mm披肩单层对流层 | |
15 | 厚度160mm,4层保温,4层反射层,30mm披肩单层对流层 | |
16 | 厚度170mm,4层保温,4层反射层,30mm披肩单层对流层 |
1 | DE ROSA Mattia, BIANCO Vincenzo. Optimal insulation layer for heated water pipes under technical, economic and carbon emission constraints[J]. Energy, 2023, 270(1): 126961. |
2 | SURESH Sankar, SUNDAR Mahima, LOKAVARAPU Bhaskara Rao. Optimum insulation thickness in process pipelines[J/OL]. [2024-04-15]. . . |
3 | ZHANG Tianhu, LI Aoqi, HARI Qiga, et al. Economic thickness and life cycle cost analysis of insulating layer for the urban district steam heating pipe[J]. Case Studies in Thermal Engineering, 2022, 34: 102058. |
4 | TERHAN Meryem. Optimization insulation thickness and reduction of CO2 emissions for pipes in all generation district heating networks[J]. Science Progress, 2022, 105(3): 368504221122287. |
5 | SALEM Essam A, FARID KHALIL M, SANHOURY Asmaa S. Optimization of insulation thickness and emissions rate reduction during pipeline carrying hot oil[J]. Alexandria Engineering Journal, 2021, 60(3): 3429-3443. |
6 | KÜREKCİ Nuri Alpay, Mehmet ÖZCAN. A practical method for determination of economic insulation thickness of steel, plastic and copper hot water pipes[J]. Journal of Thermal Engineering, 2020, 6(1): 72-86. |
7 | KAYFECI Muhammet. Determination of energy saving and optimum insulation thicknesses of the heating piping systems for different insulation materials[J]. Energy and Buildings, 2014, 69: 278-284. |
8 | LI Fating, Pengfei JIE, FANG Zhou, et al. Determining the optimum economic insulation thickness of double pipes buried in the soil for district heating systems[J]. Frontiers in Energy, 2021, 15(1): 170-185. |
9 | 尚小标, 李广超, 肖利平, 等. 大温度梯度下含锆型硅酸铝纤维板的透波性能[J]. 化工进展, 2023, 42(3): 1551-1561. |
SHANG Xiaobiao, LI Guangchao, XIAO Liping, et al. Wave transmission performance of zirconium aluminum silicate fiberboard under large temperature gradient[J]. Chemical Industry and Engineering Progress, 2023, 42(3): 1551-1561. | |
10 | 徐得华, 靳虎, 徐雪青, 等. 多功能智能型反射隔热涂料的制备与性能表征[J]. 化工进展, 2017, 36(9): 3388-3394. |
XU Dehua, JIN Hu, XU Xueqing, et al. Preparation and characterization of smart building paints with multiple functions[J]. Chemical Industry and Engineering Progress, 2017, 36(9): 3388-3394. | |
11 | PEREIRA David J.S., VIEGAS Carlos, PANÃO Miguel R.O., Heat transfer model of fire protection fiberglass thermal barrier coated with thin aluminium layer[J]. International Journal of Heat and Mass Transfer, 2022, 184: 122301. |
12 | 韩申杰, 张恩浩, 卢芸. 建筑用生物质基纤维素保温气凝胶研究进展[J]. 复合材料学报, 2024, 41(1): 108-120. |
HAN Shenjie, ZHANG Enhao, LU Yun. Research progress of biomass-based cellulose insulation aerogel for building[J]. Acta Materiae Compositae Sinica, 2024, 41(1): 108-120. | |
13 | 潘月磊, 程旭东, 闫明远, 等. 二氧化硅气凝胶及其在保温隔热领域应用进展[J]. 化工进展, 2023, 42(1): 297-309. |
PAN Yuelei, CHENG Xudong, YAN Mingyuan, et al. Silica aerogel and its application in the field of thermal insulation[J]. Chemical Industry and Engineering Progress, 2023, 42(1): 297-309. | |
14 | 穆锐, 刘元雪, 欧忠文, 等. 气凝胶复合材料的制备及其保温隔热应用进展[J/OL]. [2024-04-15]. . . |
MU Rui, LIU Yuanxue, Zhongwen OU, et al. Progress in aerogel composite’s preparation and thermal insulation application[J/OL]. [2024-04-10]. . . | |
15 | 熊文婷, 罗启基, 鄢春根. 二氧化硅基气凝胶材料及其制备技术的专利分析[J]. 化工进展, 2024, 43(4): 1912-1922. |
XIONG Wenting, LUO Qiji, YAN Chungen. Silica-based aerogel materials and their preparation technology from a patent analysis[J]. Chemical Industry and Engineering Progress, 2024, 43(4): 1912-1922. | |
16 | WANG Yipu, TU Zhengtao, YUAN Linyang. Analysis of thermal energy storage optimization of thermal insulation material and thermal insulation structure of steam pipe-line[J]. Thermal Science, 2020, 24(5 Part B): 3249-3257. |
17 | 闫秋会, 孙晓阳, 罗杰任, 等. SiO2气凝胶提高岩棉和玻璃棉性能的实验研究[J]. 化工进展, 2019, 38(6): 2847-2853. |
YAN Qiuhui, SUN Xiaoyang, LUO Jieren, et al. Experimental study on improving the performance of rock wool and glass wool by silica aerogel[J]. Chemical Industry and Engineering Progress, 2019, 38(6): 2847-2853. | |
18 | 荣雁. 新型绝热材料在稠油注蒸汽管线保温中的应用[J]. 材料导报, 2020, 34(S1): 173-177. |
RONG Yan. Application of new thermal insulation material in thermal insulation of heavy oil steam injection pipeline[J]. Materials Reports, 2020, 34(S1): 173-177. | |
19 | HAYRULLIN Aidar, HAIBULLINA Aigul, SINYAVIN Alex. Insulation thermal conductivity heating networks during transportation thermal energy under dry and moisturizing condition: A comparative study of the guarded hot plate and guarded hot pipe method[J]. Transportation Research Procedia, 2022, 63: 1074-1080. |
20 | HUEPPE Christian, GEPPERT Jasmin, STAMMINGER Rainer, et al. Age-related efficiency loss of household refrigeration appliances: Development of an approach to measure the degradation of insulation properties[J]. Applied Thermal Engineering, 2020, 173: 115113. |
21 | YU Xiao, TIAN Xuesong. A fault detection algorithm for pipeline insulation layer based on immune neural network[J]. International Journal of Pressure Vessels and Piping, 2022, 196: 104611. |
22 | DZHALA Roman, VERBENETS Bohdan, DZHALA Vasyl, et al. Contactless testing of insulation damages distribution of the underground pipelines[J]. Procedia Structural Integrity, 2022, 36: 17-23. |
23 | 国家能源局. 发电厂保温油漆设计规程: [S]. 北京: 中国计划出版社, 2019. |
National Energy Bureau of the People’s Republic of China. Code for designing insulation and painting of power plant: [S]. Beijing: China Planning Press, 2019. | |
24 | 翟天龙, 康志勤, 唐海波. 600℃过热蒸汽输送管道保温的实验研究[J]. 化学工程, 2016, 44(5): 38-42. |
ZHAI Tianlong, KANG Zhiqin, TANG Haibo. Experimental study of insulation of 600℃ superheated steam pipeline[J]. Chemical Engineering (China), 2016, 44(5): 38-42. | |
25 | 李小鹏. 直埋蒸汽管道保温层厚度优化与经济性研究[D]. 秦皇岛: 燕山大学, 2021. |
LI Xiaopeng. Study on thickness optimization and economy of insulation layer for directly buried steam pipeline[D].Qinhuangdao: Yanshan University, 2021. |
[1] | ZHAO Weigang, ZHANG Qianqian, LAN Yuling, YAN Wen, ZHOU Xiaojian, FAN Mizi, DU Guanben. Research progress and prospect of the core materials for vacuum insulation panel [J]. Chemical Industry and Engineering Progress, 2024, 43(7): 3910-3922. |
[2] | MU Lianbo, WANG Suilin, LU Junhui, LIU Guichang, ZHAO Liqiu, LIU Jincheng, HAO Anfeng, ZHANG Tong. Analysis of flue gas deep waste heat recovery with cooperative flue gas pressure control for alkane dehydrogenation heating furnace [J]. Chemical Industry and Engineering Progress, 2024, 43(6): 3029-3041. |
[3] | ZHANG Qiaoling, MA Zuhao, YU Ziyuan, LIU Zijun, HUANG Biyun, YANG Zhendong, MA Haoran. Convection heat transfer research of supercritical R134a in mini-channel of tube [J]. Chemical Industry and Engineering Progress, 2024, 43(4): 1667-1675. |
[4] | SUN Chao, AI Shiqin, LIU Yuechan. Numerical simulation plate side flow heat transfer new plate-shell heat exchanger with considering physical property changes and shell heat transfer [J]. Chemical Industry and Engineering Progress, 2024, 43(4): 1676-1689. |
[5] | WANG Yanhong, JIANG Lei, XUE Shuai, LI Hongwei, JIA Yuting. Analysis on heat transfer characteristics of supercritical methane in precooling channels [J]. Chemical Industry and Engineering Progress, 2024, 43(4): 1690-1699. |
[6] | ZHU Yanni, WANG Wei, SUN Yanchenhao, WEI Gang, ZHANG Dawei. Numerical simulation of centrifugal spray drying based on single-droplet evaporation [J]. Chemical Industry and Engineering Progress, 2024, 43(4): 1700-1710. |
[7] | ZHAO Jilong, GUO Yuxiang, CHEN Hongxia, YUAN Dazhong, DU Xiaoze. Experimental and numerical simulation on heat transfer characteristics of vertical cesium heat pipes [J]. Chemical Industry and Engineering Progress, 2024, 43(4): 1711-1719. |
[8] | QIAN Zhiguang, WANG Shixue, ZHU Yu, YUE Like. Start-up characteristics of high-temperature proton exchange membrane fuel cell stacks based on flat heat pipes [J]. Chemical Industry and Engineering Progress, 2024, 43(4): 1754-1763. |
[9] | SUN Xian, LIU Jun, WANG Xiaohui, SUN Changyu, CHEN Guangjin. Review of experimental and numerical simulation research on the development of natural gas hydrate reservoir with underlying gas [J]. Chemical Industry and Engineering Progress, 2024, 43(4): 2091-2103. |
[10] | YU Yanfang, DING Pengcheng, MENG Huibo, SHI Bowen, YAO Yunjuan. Heat transfer enhancement of non-Newtonian fluid in the blade-type static mixer [J]. Chemical Industry and Engineering Progress, 2024, 43(3): 1145-1156. |
[11] | DING Lihua, XU Hongtao, ZHANG Chenyu. Analysis of the heat storage performance of the latent heat storage unit combined with frustum wavy tube [J]. Chemical Industry and Engineering Progress, 2024, 43(3): 1214-1223. |
[12] | JIAN Yu, CHEN Baoming, GONG Hanyu. Enhanced heat transfer characteristics of phase change heat storage systems based on hierarchically structured skeletons [J]. Chemical Industry and Engineering Progress, 2024, 43(2): 649-658. |
[13] | ZHU Bingguo, GONG Kaigang, PENG Bin. Heat transfer characteristics of supercritical CO2 with high mass flux in vertical tube [J]. Chemical Industry and Engineering Progress, 2024, 43(2): 937-947. |
[14] | GAI Hongwei, ZHANG Chenjun, QU Jingying, SUN Huailu, TUO Yongxiao, WANG Bin, JIN Xu, ZHANG Xi, FENG Xiang, CHEN De. Research progress on catalytic dehydrogenation process intensification for liquid organic hydride carrier hydrogen storage [J]. Chemical Industry and Engineering Progress, 2024, 43(1): 164-185. |
[15] | XIAO Hui, ZHANG Xianjun, LAN Zhike, WANG Suhao, WANG Sheng. Advances in flow and heat transfer research of liquid metal flowing across tube bundles [J]. Chemical Industry and Engineering Progress, 2023, 42(S1): 10-20. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||
京ICP备12046843号-2;京公网安备 11010102001994号 Copyright © Chemical Industry and Engineering Progress, All Rights Reserved. E-mail: hgjz@cip.com.cn Powered by Beijing Magtech Co. Ltd |