Chemical Industry and Engineering Progress ›› 2025, Vol. 44 ›› Issue (S1): 388-399.DOI: 10.16085/j.issn.1000-6613.2025-0182
• Materials science and technology • Previous Articles
WU Gang1(
), SHEN Zhenhua2, JIAO Feng2(
), HE Yongqing3(
)
Received:2025-02-10
Revised:2025-03-31
Online:2025-11-24
Published:2025-10-25
Contact:
JIAO Feng, HE Yongqing
通讯作者:
焦凤,何永清
作者简介:吴刚(1975—),男,博士,副教授,研究方向为多相流动与传热机理。E-mail:wugang@xsyu.edu.cn。
基金资助:CLC Number:
WU Gang, SHEN Zhenhua, JIAO Feng, HE Yongqing. Characterization of melting heat transfer properties of metal-foam composite phase change materials under non-uniform heat flow[J]. Chemical Industry and Engineering Progress, 2025, 44(S1): 388-399.
吴刚, 沈珍华, 焦凤, 何永清. 非均匀热流下金属泡沫复合相变材料的熔化传热特性[J]. 化工进展, 2025, 44(S1): 388-399.
Add to citation manager EndNote|Ris|BibTeX
URL: https://hgjz.cip.com.cn/EN/10.16085/j.issn.1000-6613.2025-0182
| 参数 | 铜 | 固态石蜡 | 液态石蜡 |
|---|---|---|---|
| 型号 | T2紫铜 | 58# | — |
| 密度/g·cm-3 | 8.9 | 0.85 | 0.81 |
| 熔点/℃ | 1083 | 58 | — |
| 热导率/W·m-1·K-1 | 388 | 0.558 | 0.33 |
| 比热容/J·kg-1·℃-1 | 386 | 2520 | 2690 |
| 参数 | 铜 | 固态石蜡 | 液态石蜡 |
|---|---|---|---|
| 型号 | T2紫铜 | 58# | — |
| 密度/g·cm-3 | 8.9 | 0.85 | 0.81 |
| 熔点/℃ | 1083 | 58 | — |
| 热导率/W·m-1·K-1 | 388 | 0.558 | 0.33 |
| 比热容/J·kg-1·℃-1 | 386 | 2520 | 2690 |
| [1] | NÓBREGA Cláudia R E S, ISMAIL Kamal A R, LINO Fátima A M. Solidification around axial finned tube submersed in PCM: Modeling and experiments[J]. Journal of Energy Storage, 2020, 29: 101438. |
| [2] | ZAREI Mohammad Javad, BAZAI Hassan, SHARIFPUR Mohsen, et al. The effects of fin parameters on the solidification of PCMs in a fin-enhanced thermal energy storage system[J]. Energies, 2020, 13(1): 198. |
| [3] | KHALILMOGHADAM Pooria, Abbas RAJABI-GHAHNAVIEH, SHAFII Mohammad Behshad. A novel energy storage system for latent heat recovery in solar still using phase change material and pulsating heat pipe[J]. Renewable Energy, 2021, 163: 2115-2127. |
| [4] | PUTRA Nandy, SANDI Adjie Fahrizal, ARIANTARA Bambang, et al. Performance of beeswax phase change material (PCM) and heat pipe as passive battery cooling system for electric vehicles[J]. Case Studies in Thermal Engineering, 2020, 21: 100655. |
| [5] | ROSTAMI Sara, AFRAND Masoud, SHAHSAVAR Amin, et al. A review of melting and freezing processes of PCM/nano-PCM and their application in energy storage[J]. Energy, 2020, 211: 118698. |
| [6] | Mesut ABUŞKA, Seyfi ŞEVIK, KAYAPUNAR Arif. Experimental analysis of solar air collector with PCM-honeycomb combination under the natural convection[J]. Solar Energy Materials and Solar Cells, 2019, 195: 299-308. |
| [7] | SHENG Nan, RAO Zhonghao, ZHU Chunyu, et al. Honeycomb carbon fibers strengthened composite phase change materials for superior thermal energy storage[J]. Applied Thermal Engineering, 2020, 164: 114493. |
| [8] | REN Qinlong, GUO Penghua, ZHU Jianjun. Thermal management of electronic devices using pin-fin based cascade microencapsulated PCM/expanded graphite composite[J]. International Journal of Heat and Mass Transfer, 2020, 149: 119199. |
| [9] | ZOU Ting, LIANG Xianghui, WANG Shuangfeng, et al. Effect of expanded graphite size on performances of modified CaCl2·6H2O phase change material for cold energy storage[J]. Microporous and Mesoporous Materials, 2020, 305: 110403. |
| [10] | DINESH Battula Venkata Sai, BHATTACHARYA Anirban. Comparison of energy absorption characteristics of PCM-metal foam systems with different pore size distributions[J]. Journal of Energy Storage, 2020, 28: 101190. |
| [11] | 见禹, 陈宝明, 宫晗语. 基于分级结构骨架相变储热系统强化传热特性[J]. 化工进展, 2024, 43(2): 649-658. |
| JIAN Yu, CHEN Baoming, GONG Hanyu. Enhanced heat transfer characteristics of phase change heat storage systems based on hierarchically structured skeletons[J]. Chemical Industry and Engineering Progress, 2024, 43(2): 649-658. | |
| [12] | Besir KOK. Examining effects of special heat transfer fins designed for the melting process of PCM and nano-PCM[J]. Applied Thermal Engineering, 2020, 170: 114989. |
| [13] | CALIANO Martina, BIANCO Nicola, GRADITI Giorgio, et al. Analysis of a phase change material-based unit and of an aluminum foam/phase change material composite-based unit for cold thermal energy storage by numerical simulation[J]. Applied Energy, 2019, 256: 113921. |
| [14] | COZZOLINO Raffaello, CHIAPPINI Daniele, BELLA Gino. Experimental characterisation of a novel thermal energy storage based on open-cell copper foams immersed in organic phase change material[J]. Energy Conversion and Management, 2019, 200: 112101. |
| [15] | PATEL Parthkumar, BHINGOLE P P, MAKWANA Dhaval. Manufacturing, characterization and applications of lightweight metallic foams for structural applications: Review[J]. Materials Today: Proceedings, 2018, 5(9): 20391-20402. |
| [16] | TAN Weng Cheong, Lip Huat SAW, THIAM Hui San, et al. Overview of porous media/metal foam application in fuel cells and solar power systems[J]. Renewable and Sustainable Energy Reviews, 2018, 96: 181-197. |
| [17] | GAEDTKE Maximilian, ABISHEK S, Ryan MEAD-HUNTER, et al. Total enthalpy-based lattice Boltzmann simulations of melting in paraffin/metal foam composite phase change materials[J]. International Journal of Heat and Mass Transfer, 2020, 155: 119870. |
| [18] | TAUSEEF-UR-REHMAN, Hafiz Muhammad ALI, JANJUA Muhammad Mansoor, et al. A critical review on heat transfer augmentation of phase change materials embedded with porous materials/foams[J]. International Journal of Heat and Mass Transfer, 2019, 135: 649-673. |
| [19] | WANG Zichen, ZHANG Zhuqian, JIA Li, et al. Paraffin and paraffin/aluminum foam composite phase change material heat storage experimental study based on thermal management of Li-ion battery[J]. Applied Thermal Engineering, 2015, 78: 428-436. |
| [20] | YANG Xiaohu, BAI Qingsong, ZHANG Qunli, et al. Thermal and economic analysis of charging and discharging characteristics of composite phase change materials for cold storage[J]. Applied Energy, 2018, 225: 585-599. |
| [21] | YAO Yuanpeng, WU Huiying, LIU Zhenyu, et al. Pore-scale visualization and measurement of paraffin melting in high porosity open-cell copper foam[J]. International Journal of Thermal Sciences, 2018, 123: 73-85. |
| [22] | YANG Xiaohu, WEI Pan, CUI Xin, et al. Thermal response of annuli filled with metal foam for thermal energy storage: An experimental study[J]. Applied Energy, 2019, 250: 1457-1467. |
| [23] | CUI H T. Experimental investigation on the heat charging process by paraffin filled with high porosity copper foam[J]. Applied Thermal Engineering, 2012, 39: 26-28. |
| [24] | ZHU Feng, HU Xusheng, WANG Xuecai, et al. Experimental and numerical investigation of the melting process of aluminum foam/paraffin composite with low porosity[J]. Numerical Heat Transfer, Part A: Applications, 2020, 77(12): 998-1013. |
| [25] | RIGHETTI Giulia, LAZZARIN Renato, NORO Marco, et al. Phase change materials embedded in porous matrices for hybrid thermal energy storages: Experimental results and modeling[J]. International Journal of Refrigeration, 2019, 106: 266-277. |
| [26] | MALLOW Anne, ABDELAZIZ Omar, GRAHAM Samuel. Thermal charging performance of enhanced phase change material composites for thermal battery design[J]. International Journal of Thermal Sciences, 2018, 127: 19-28. |
| [27] | LI W Q, QU Z G, HE Y L, et al. Experimental and numerical studies on melting phase change heat transfer in open-cell metallic foams filled with paraffin[J]. Applied Thermal Engineering, 2012, 37: 1-9. |
| [28] | ALLEN Michael J, BERGMAN Theodore L, FAGHRI Amir, et al. Robust heat transfer enhancement during melting and solidification of a phase change material using a combined heat pipe-metal foam or foil configuration[J]. Journal of Heat Transfer, 2015, 137(10): 102301. |
| [29] | MARRI Girish Kumar, BALAJI C. Experimental and numerical investigations on the effect of porosity and PPI gradients of metal foams on the thermal performance of a composite phase change material heat sink[J]. International Journal of Heat and Mass Transfer, 2021, 164: 120454. |
| [30] | GHAHREMANNEZHAD Ali, XU Huijin, SALIMPOUR Mohammad Reza, et al. Thermal performance analysis of phase change materials (PCMs) embedded in gradient porous metal foams[J]. Applied Thermal Engineering, 2020, 179: 115731. |
| [31] | ZHUANG Yijie, LIU Zibiao, XU Wenbin. Effects of gradient porous metal foam on the melting performance and energy storage of composite phase change materials subjected to an internal heater: A numerical study and PIV experimental validation[J]. International Journal of Heat and Mass Transfer, 2022, 183: 122081. |
| [32] | YANG Xiaohu, WEI Pan, WANG Xinyi, et al. Gradient design of pore parameters on the melting process in a thermal energy storage unit filled with open-cell metal foam[J]. Applied Energy, 2020, 268: 115019. |
| [33] | WANG Zhifeng, WU Jiani, LEI Dongqiang, et al. Experimental study on latent thermal energy storage system with gradient porosity copper foam for mid-temperature solar energy application[J]. Applied Energy, 2020, 261: 114472. |
| [34] | ZHENG Zhangjing, YANG Chao, XU Yang, et al. Effect of metal foam with two-dimensional porosity gradient on melting behavior in a rectangular cavity[J]. Renewable Energy, 2021, 172: 802-815. |
| [35] | YANG Jialin, YANG Lijun, XU Chao, et al. Numerical analysis on thermal behavior of solid-liquid phase change within copper foam with varying porosity[J]. International Journal of Heat and Mass Transfer, 2015, 84: 1008-1018. |
| [1] | SUN Bin, DU Jianguo, WANG Lingbao, BU Xianbiao, GONG Yulie, LI Huashan. Optimization of working fluid for U-shaped well supercritical power generation system driven by hot dry rock [J]. Chemical Industry and Engineering Progress, 2025, 44(9): 4945-4953. |
| [2] | DAI Guilong, WANG Xiaoyu, HUANGFU Jiangfei, GONG Lingzhu. Convection heat transfer characteristics of pore-scale Laguerre Voronoi open-cell foam [J]. Chemical Industry and Engineering Progress, 2025, 44(8): 4394-4407. |
| [3] | LIU Jianhong, LIU Dong, SHANG Fumin, YANG Kai, ZHENG Chaofan, CAO Xin. Heat transfer performance analysis of pulsating heat pipe heat exchanger with asymmetric structure [J]. Chemical Industry and Engineering Progress, 2025, 44(7): 3727-3736. |
| [4] | CAO Shuang, LIU He, GUO Jiaju, HU Chunxia, YANG Wolong, WU Xuehong. R245fa flow boiling heat transfer characteristics in enhanced tube with gradient porous coating [J]. Chemical Industry and Engineering Progress, 2025, 44(7): 3794-3803. |
| [5] | YANG Xinliu, LIU Qiang, CAO Qian, CUI Yueming, FANG Chaohe. Effect of reservoir seepage on heat transfer performance of a single-well downhole coaxial geothermal heat exchanger [J]. Chemical Industry and Engineering Progress, 2025, 44(7): 3860-3868. |
| [6] | ZHANG Chunhua, WANG Guoqing, ZHANG Lijun, LU Bona, ZHOU Cong, LIU Junjie. Twisted-tape-based heat transfer enhancement technology: Advances and challenges in vortex structure regulation [J]. Chemical Industry and Engineering Progress, 2025, 44(6): 3163-3174. |
| [7] | MA Zixuan, SHI Ruichen, LIU Mingjie, YANG Yingjie, SONG Ziyu, MEI Xiaopeng, GAO Xiaofeng, HONG Longcheng, YAO Siyu, ZHANG Zhiguo, REN Qilong. Design and performance optimization of reactors for catalytic hydrogen production from cycloalkanes: Frontline progress and challenges [J]. Chemical Industry and Engineering Progress, 2025, 44(5): 2919-2937. |
| [8] | MENG Fanzhi, SUN Bing, YANG Zhe. Impact and risk assessment of feedstock substitution on new process safety in chemical production [J]. Chemical Industry and Engineering Progress, 2025, 44(5): 2955-2971. |
| [9] | SONG Yiqi, LI Xue, YE Mao, LIU Zhongmin. Particle-resolved lattice Boltzmann simulations for sedimentation of catalyst particles with endothermic reaction [J]. Chemical Industry and Engineering Progress, 2025, 44(5): 2984-2996. |
| [10] | WANG Lei, WANG Yan, GAN Yufeng, LUO Kai, FEI Hua, LUAN Yanding. Heat transfer characteristics of supercritical CO2 in different heated mini-channels under horizontal flow condition [J]. Chemical Industry and Engineering Progress, 2025, 44(4): 1945-1956. |
| [11] | WANG Jiaqi, LIU Jiaxing, WEI Haoqi, ZHOU Xinlin, CHENG Chuanxiao, GE Kun. Rhamnolipid-enhanced CO2 hydrate production [J]. Chemical Industry and Engineering Progress, 2025, 44(4): 1998-2007. |
| [12] | YUAN Mengli, SONG Yuncai, LI Wenying, FENG Jie. Heat and mass transfer law of photothermal-driven lignite fixed-bed gasification process [J]. Chemical Industry and Engineering Progress, 2025, 44(4): 2008-2019. |
| [13] | WANG Meijie, WEI Liuke, JIA Baoyin, LAN Xingying, GAO Jinsen, SHI Xiaogang. Research progress on heat transfer enhancement of LNG open rack vaporizer [J]. Chemical Industry and Engineering Progress, 2025, 44(3): 1206-1217. |
| [14] | ZHANG Zhe, JI Xianbing, YANG Yuhao, LIU Jiaxuan, YAO Bocheng. Boiling heat transfer performance on multiscale structure sintered groove surface [J]. Chemical Industry and Engineering Progress, 2025, 44(2): 669-676. |
| [15] | WANG Siyi, XU Jianliang, DAI Zhenghua, WU Guoyi, WANG Fuchen. Numerical simulation of chemical vapor deposition in polycrystalline silicon reduction furnace [J]. Chemical Industry and Engineering Progress, 2025, 44(2): 706-716. |
| Viewed | ||||||
|
Full text |
|
|||||
|
Abstract |
|
|||||
|
京ICP备12046843号-2;京公网安备 11010102001994号 Copyright © Chemical Industry and Engineering Progress, All Rights Reserved. E-mail: hgjz@cip.com.cn Powered by Beijing Magtech Co. Ltd |