1 |
秦翠兰, 王磊元, 刘飞, 等. 畜禽粪便生物质资源利用的现状与展望[J]. 农机化研究, 2015, 37(6): 234-238.
|
|
QIN Cuilan, WANG Leiyuan, LIU Fei, et al. Status and prospects of livestock manure utilization of biomass resources[J]. Journal of Agricultural Mechanization Research, 2015, 37(6): 234-238.
|
2 |
王广, 曾加其, 王丹凤. 畜禽粪污综合利用模式探讨[J]. 畜禽业, 2021, 32(1): 28.
|
|
WANG Guang, ZENG Jiaqi, WANG Danfeng. Comprehensive utilization model of livestock and poultry manure [J]. Livestock and Poultry Industry, 2021, 32(1): 28.
|
3 |
CANTRELL K B, HUNT P G, UCHIMIYA M, et al. Impact of pyrolysis temperature and manure source on physicochemical characteristics of biochar[J]. Bioresource Technology, 2012, 107: 419-428.
|
4 |
张祖康. 污水处理场废渣的减量和资源化[J]. 石油化工环境保护, 2000(3): 1-5.
|
|
ZHANG Z K. Decreasing and utilizing waste sludge of wastewater treatment plant[J]. Environment Protection in Petrochemical Industry, 2000(3): 1-5.
|
5 |
蔺丽丽, 蒋文举, 金燕, 等. 微波法制备污泥活性炭研究[J]. 环境工程学报, 2007, 1(4): 119-122.
|
|
LIN Lili, JIANG Wenju, JIN Yan, et al. Study on activated carbon made from sewage sludge by microwave[J]. Chinese Journal of Environmental Engineering, 2007, 1(4): 119-122.
|
6 |
GONZÁLEZ-GUTIÉRREZ L V, GONZÁLEZ-ALATORRE G, ESCAMILLA-SILVA E M. Proposed pathways for the reduction of a reactive azo dye in an anaerobic fixed bed reactor[J]. World Journal of Microbiology and Biotechnology, 2009, 25(3): 415-426.
|
7 |
ARDEJANI F D, BADII K, LIMAEE N Y, et al. Adsorption of Direct Red 80 dye from aqueous solution onto almond shells: effect of pH, initial concentration and shell type[J]. Journal of Hazardous Materials, 2008, 151(2/3): 730-737.
|
8 |
KALLEL F, BOUAZIZ F, CHAARI F, et al. Interactive effect of garlic straw on the sorption and desorption of Direct Red 80 from aqueous solution[J]. Process Safety and Environmental Protection, 2016, 102: 30-43.
|
9 |
AHMAD A L, PUASA S W, ZULKALI M M D. Micellar-enhanced ultrafiltration for removal of reactive dyes from an aqueous solution[J]. Desalination, 2006, 191(1/2/3): 153-161.
|
10 |
ALVENTOSA-DELARA E, BARREDO-DAMAS S, ALCAINA-MIRANDA M I, et al. Ultrafiltration technology with a ceramic membrane for reactive dye removal: optimization of membrane performance[J]. Journal of Hazardous Materials, 2012, 209/210: 492-500.
|
11 |
KIM T H, PARK C, YANG J, et al. Comparison of disperse and reactive dye removals by chemical coagulation and Fenton oxidation[J]. Journal of Hazardous Materials, 2004, 112(1/2): 95-103.
|
12 |
SZPYRKOWICZ L, JUZZOLINO C, KAUL S N. A comparative study on oxidation of disperse dyes by electrochemical process, ozone, hypochlorite and Fenton reagent[J]. Water Research, 2001, 35(9): 2129-2136.
|
13 |
NOROOZI B, SORIAL G A. Applicable models for multi-component adsorption of dyes: a review[J]. Journal of Environmental Sciences, 2013, 25(3): 419-429.
|
14 |
SADEGH H, ALI G A M, GUPTA V K, et al. The role of nanomaterials as effective adsorbents and their applications in wastewater treatment[J]. Journal of Nanostructure in Chemistry, 2017, 7(1): 1-14.
|
15 |
SUZAIMI N D, GOH P S, MALEK N A N N, et al. Enhancing the performance of porous rice husk silica through branched polyethyleneimine grafting for phosphate adsorption[J]. Arabian Journal of Chemistry, 2020, 13(8): 6682-6695.
|
16 |
AHMADI Z, RAMEZANI H, AZIZI S N, et al. Synthesis of zeolite NaY supported Mn-doped ZnS quantum dots and investigation of their photodegradation ability towards organic dyes[J]. Environmental Science and Pollution Research International, 2020, 27(9): 9707-9717.
|
17 |
ALAKHRAS F, ALHAJRI E, HAOUNATI R, et al. A comparative study of photocatalytic degradation of Rhodamine B using natural-based zeolite composites[J]. Surfaces and Interfaces, 2020, 20: 100611.
|
18 |
BOUDECHICHE N, FARES M, OUYAHIA S, et al. Comparative study on removal of two basic dyes in aqueous medium by adsorption using activated carbon from Ziziphus lotus stones[J]. Microchemical Journal, 2019, 146: 1010-1018.
|
19 |
OTERO M, ROZADA F, CALVO L F, et al. Kinetic and equilibrium modelling of the methylene blue removal from solution by adsorbent materials produced from sewage sludges[J]. Biochemical Engineering Journal, 2003, 15(1): 59-68.
|
20 |
SMITH K M, FOWLER G D, PULLKET S, et al. Sewage sludge-based adsorbents: a review of their production, properties and use in water treatment applications[J]. Water Research, 2009, 43(10): 2569-2594.
|
21 |
龚真萍, 赵红, 郑永杰, 等. 生物炭材料的制备及其在印染废水处理中的应用[J]. 染整技术, 2021, 43(12): 1-4.
|
|
GONG Zhenping, ZHAO Hong, ZHENG Yongjie, et al. Preparation of biochar material and its application in dyeing and printing wastewater treatment[J]. Textile Dyeing and Finishing Journal, 2021, 43(12): 1-4.
|
22 |
朱国婷, 邢献军, 汪家权, 等. 酸预处理活性炭对废水染料的吸附研究[J]. 环境科学与技术, 2016, 39(S2): 160-165.
|
|
ZHU Guoting, XING Xianjun, WANG Jiaquan, et al. Study on the adsorption of dyes in wastewater on activated carbon pre-treated with acid[J]. Environmental Science & Technology, 2016, 39(S2): 160-165.
|
23 |
张志芳, 邵红, 孔祥西, 等. 花生壳活性炭的制备及其对染料废水的脱色性能研究[J]. 沈阳化工大学学报, 2014, 28(2): 130-136.
|
|
ZHANG Zhifang, SHAO Hong, KONG Xiangxi, et al. Decoloring capability of activated carbon from peanut shell to dye wastewater[J]. Journal of Shenyang University of Chemical Technology, 2014, 28(2): 130-136.
|
24 |
孙良媛, 刘涛, 张乐. 中国规模化畜禽养殖的现状及其对生态环境的影响[J]. 华南农业大学学报(社会科学版), 2016, 15(2): 23-30.
|
|
SUN Liangyuan, LIU Tao, ZHANG Le. The pollution of scale livestock and poultry breeding and its influence on eco-environment[J]. Journal of South China Agricultural University (Social Science Edition), 2016, 15(2): 23-30.
|
25 |
武淑霞, 刘宏斌, 黄宏坤, 等. 我国畜禽养殖粪污产生量及其资源化分析[J]. 中国工程科学, 2018, 20(5): 103-111.
|
|
WU Shuxia, LIU Hongbin, HUANG Hongkun, et al. Analysis on the amount and utilization of manure in livestock and poultry breeding in China[J]. Engineering Science, 2018, 20(5): 103-111.
|
26 |
CHLOPIN W, BALANDIN A. Über Die adsorption des bariumchlorids durch das kolloidale mangansuperoxydhydrat in wäßrigen lösungen[J]. Zeitschrift Für Anorganische Und Allgemeine Chemie, 1925, 149(1): 157-166.
|
27 |
LANGMUIR I. The constitution and fundamental properties of solids and liquids[J]. Journal of the Franklin Institute, 1917, 183(1): 102-105.
|
28 |
AKSU Z. Biosorption of reactive dyes by dried activated sludge: equilibrium and kinetic modelling[J]. Biochemical Engineering Journal, 2001, 7(1): 79-84.
|
29 |
HO Y S, MCKAY G. Pseudo-second order model for sorption processes[J]. Process Biochemistry, 1999, 34(5): 451-465.
|
30 |
NAUTIYAL P, SUBRAMANIAN K A, DASTIDAR M G. Adsorptive removal of dye using biochar derived from residual algae after in situ transesterification: alternate use of waste of biodiesel industry[J]. Journal of Environmental Management, 2016, 182: 187-197.
|
31 |
AKGÜL M. Enhancement of the anionic dye adsorption capacity of clinoptilolite by Fe3+-grafting[J]. Journal of Hazardous Materials, 2014, 267: 1-8.
|
32 |
LIU N, ZHU M L, WANG H, et al. Adsorption characteristics of Direct Red 23 from aqueous solution by biochar[J]. Journal of Molecular Liquids, 2016, 223: 335-342.
|
33 |
JIANG R Q, YU G W, NDAGIJIMANA P, et al. Effective adsorption of direct Red 23 by sludge biochar-based adsorbent: adsorption kinetics, thermodynamics and mechanisms study[J]. Water Science and Technology, 2021, 83(10): 2424-2436.
|
34 |
REN X L, LAI X H, ZHU K J, et al. Removal of acid turquoise blue 2G from aqueous solution by adsorbent derived from sludge and straw: kinetic, isotherm and thermodynamic study[J]. Desalination and Water Treatment, 2016, 57(1): 440-448.
|
35 |
SUN Y B, DING C C, CHENG W C, et al. Simultaneous adsorption and reduction of U( Ⅵ ) on reduced graphene oxide-supported nanoscale zerovalent iron[J]. Journal of Hazardous Materials, 2014, 280: 399-408.
|
36 |
VADIVELAN V, KUMAR K V. Equilibrium, kinetics, mechanism, and process design for the sorption of methylene blue onto rice husk[J]. Journal of Colloid and Interface Science, 2005, 286(1): 90-100.
|
37 |
韩闯. 污泥生物炭水热制备及其对染料脱色研究[D]. 上海: 东华大学, 2017.
|
|
HAN Chuang. Preparation of sludge biochar and its decolorization of dye[D]. Shanghai: Donghua University, 2017.
|
38 |
KANG J, ZHANG H Y, DUAN X G, et al. Magnetic Ni-Co alloy encapsulated N-doped carbon nanotubes for catalytic membrane degradation of emerging contaminants[J]. Chemical Engineering Journal, 2019, 362: 251-261.
|
39 |
王泽庆, 朱耀辉, 仲茜溪, 等. 南疆棉花秸秆生物炭对水中亚甲基蓝的吸附特性[J]. 广东化工, 2020, 47(5): 22-26.
|
|
WANG Z Q, ZHU Y H, ZHONG X X, et al. Adsorption characteristics of aqueous methylene blue by biochar pyrolyzed from cotton straw in south Xinjiang[J]. Guangdong Chemical Industry, 2020, 47(5): 22-26.
|
40 |
YAO Y, ZHANG Y, GAO B, et al. Removal of sulfamethoxazole (SMX) and sulfapyridine (SPY) from aqueous solutions by biochars derived from anaerobically digested bagasse[J]. Environmental Science and Pollution Research International, 2018, 25(26): 25659-25667.
|
41 |
LUO F, CHEN Z L, MEGHARAJ M, et al. Simultaneous removal of trichloroethylene and hexavalent chromium by green synthesized agarose-Fe nanoparticles hydrogel[J]. Chemical Engineering Journal, 2016, 294: 290-297.
|
42 |
WENG X L, LIN S, ZHONG Y H, et al. Chitosan stabilized bimetallic Fe/Ni nanoparticles used to remove mixed contaminants-amoxicillin and Cd (II) from aqueous solutions[J]. Chemical Engineering Journal, 2013, 229: 27-34.
|
43 |
GONG J, LIU J, JIANG Z W, et al. A facile approach to prepare porous cup-stacked carbon nanotube with high performance in adsorption of methylene blue[J]. Journal of Colloid and Interface Science, 2015, 445: 195-204.
|
44 |
SONG X D, XUE X Y, CHEN D Z, et al. Application of biochar from sewage sludge to plant cultivation: influence of pyrolysis temperature and biochar-to-soil ratio on yield and heavy metal accumulation[J]. Chemosphere, 2014, 109: 213-220.
|
45 |
陈思. 污泥-稻壳共热解及生物炭吸附特性研究[D]. 武汉: 武汉大学, 2019.
|
|
CHEN Si. Study on the co-pyrolysis of sludge-rice hull and the adsorption properties of biochar[D]. Wuhan: Wuhan University, 2019.
|