Chemical Industry and Engineering Progress ›› 2022, Vol. 41 ›› Issue (12): 6500-6510.DOI: 10.16085/j.issn.1000-6613.2022-0268
• Materials science and technology • Previous Articles Next Articles
SHAN Linna(), YANG Zhensheng(), YAN Guofei, LI Chunli, LI Hao, WANG Zhiying
Received:
2022-02-22
Revised:
2022-03-26
Online:
2022-12-29
Published:
2022-12-20
Contact:
YANG Zhensheng
山林娜(), 杨振生(), 燕国飞, 李春利, 李浩, 王志英
通讯作者:
杨振生
作者简介:
山林娜(1995—),女,硕士研究生,研究方向为膜科学与技术。E-mail:lnshan0528@163.com。
基金资助:
CLC Number:
SHAN Linna, YANG Zhensheng, YAN Guofei, LI Chunli, LI Hao, WANG Zhiying. Asymmetric Janus membranes based on hydrophilic modification of dopamine for efficient oil/water separation[J]. Chemical Industry and Engineering Progress, 2022, 41(12): 6500-6510.
山林娜, 杨振生, 燕国飞, 李春利, 李浩, 王志英. 基于多巴胺亲水改性下Janus膜的制备及其油水乳液分离[J]. 化工进展, 2022, 41(12): 6500-6510.
Add to citation manager EndNote|Ris|BibTeX
URL: https://hgjz.cip.com.cn/EN/10.16085/j.issn.1000-6613.2022-0268
膜样品 | 膜表面元素含量/% | 原子比/% | ||||||
---|---|---|---|---|---|---|---|---|
C | F | O | N | Ca | Si | F/C | O/C | |
M-0 | 53.99 | 46.01 | 0 | 0 | 0 | 0 | 85.82 | 0 |
M-P45 | 74.3 | 3.15 | 17.99 | 4.56 | 0 | 0 | 4.24 | 24.2 |
M-P45-15c | 56.29 | 2.31 | 26.19 | 2.58 | 2.84 | 9.79 | 4.1 | 46.53 |
膜样品 | 膜表面元素含量/% | 原子比/% | ||||||
---|---|---|---|---|---|---|---|---|
C | F | O | N | Ca | Si | F/C | O/C | |
M-0 | 53.99 | 46.01 | 0 | 0 | 0 | 0 | 85.82 | 0 |
M-P45 | 74.3 | 3.15 | 17.99 | 4.56 | 0 | 0 | 4.24 | 24.2 |
M-P45-15c | 56.29 | 2.31 | 26.19 | 2.58 | 2.84 | 9.79 | 4.1 | 46.53 |
膜材料 | O/W乳液 | W/O乳液 | ||||
---|---|---|---|---|---|---|
渗透通量 /L·m-2·h-1 | 滤液含油量TOC /mg·L-1 | 分离效率 /% | 渗透通量 /L·m-2·h-1 | 滤液含油量 /μL·L-1 | 分离效率 /% | |
T/W 3700 | — | 97.5 | W/T 1650 | — | 97 | |
H/W 90 | — | 95 | W/H 927 | — | 98.6 | |
T/W 2100 | 125 | 98.5 | W/T 1300 | 170 | 97.8 | |
P/W 88 | 25 | 97.5 | W/P 880 | 60 | 94.2 | |
T/W 470 | 152 | 98.4 | W/T 290 | 160 | 98.3 |
膜材料 | O/W乳液 | W/O乳液 | ||||
---|---|---|---|---|---|---|
渗透通量 /L·m-2·h-1 | 滤液含油量TOC /mg·L-1 | 分离效率 /% | 渗透通量 /L·m-2·h-1 | 滤液含油量 /μL·L-1 | 分离效率 /% | |
T/W 3700 | — | 97.5 | W/T 1650 | — | 97 | |
H/W 90 | — | 95 | W/H 927 | — | 98.6 | |
T/W 2100 | 125 | 98.5 | W/T 1300 | 170 | 97.8 | |
P/W 88 | 25 | 97.5 | W/P 880 | 60 | 94.2 | |
T/W 470 | 152 | 98.4 | W/T 290 | 160 | 98.3 |
1 | LIU Yuan, SU Yanlei, LI Yafei, et al. Improved antifouling property of PVDF membranes by incorporating an amphiphilic block-like copolymer for oil/water emulsion separation[J]. RSC Advances, 2015, 5(27): 21349-21359. |
2 | PRONK Wouter, DING An, MORGENROTH Eberhard, et al. Gravity-driven membrane filtration for water and wastewater treatment: a review[J]. Water Research, 2019, 149: 553-565. |
3 | GAO Yifan, YAN Ni, JIANG Chengxu, et al. Filtration-enhanced highly efficient photocatalytic degradation with a novel electrospun rGO@TiO2 nanofibrous membrane: Implication for improving photocatalytic efficiency[J]. Applied Catalysis B: Environmental, 2020, 268: 118737. |
4 | SUN Zekun, ZHOU Yuxin, JIAO Yang, et al. Multi-hydrophilic functional network enables porous membranes excellent anti-fouling performance for highly efficient water remediation[J]. Journal of Membrane Science, 2020, 608: 118191. |
5 | SUN S P, HATTON T A, CHAN S Y, et al. Novel thin-film composite nanofiltration hollow fiber membranes with double repulsion for effective removal of emerging organic matters from water[J]. Journal of Membrane Science, 2012, 401/402: 152-162. |
6 | KOROS W J, ZHANG C. Materials for next-generation molecularly selective synthetic membranes[J]. Nature Materials, 2017, 16(3): 289-297. |
7 | SONG Haiming, CHEN Cheng, SHUI Xiaoxue, et al. Asymmetric Janus membranes based on in situ mussel-inspired chemistry for efficient oil/water separation[J]. Journal of Membrane Science, 2019, 573: 126-134. |
8 | MA Houying, HU Yining, YANG Hao, et al. In situ mussel-inspired Janus membranes using catechol and polyethyleneimine as the additives for highly efficient oil/water emulsions separation[J]. Separation and Purification Technology, 2021, 262: 118310. |
9 | LIU Peng, GAO Yining, WANG Fazhou, et al. Superhydrophobic and self-cleaning behavior of Portland cement with lotus-leaf-like microstructure[J]. Journal of Cleaner Production, 2017, 156: 775-785. |
10 | WANG Zijie, LIU Guojun, HUANG Shuaishuai. In situ generated Janus fabrics for the rapid and efficient separation of oil from oil-in-water emulsions[J]. Angewandte Chemie International Edition, 2016, 55(47): 14610-14613. |
11 | WU Jing, WANG Nü, WANG Li, et al. Unidirectional water-penetration composite fibrous film via electrospinning[J]. Soft Matter., 2012, 8(22): 5996-5999. |
12 | WU Mingbang, YANG Haocheng, WANG Jingjing, et al. Janus membranes with opposing surface wettability enabling oil-to-water and water-to-oil emulsification[J]. ACS Applied Materials & Interfaces, 2017, 9(6): 5062-5066. |
13 | GU Jincui, XIAO Peng, CHEN Jing, et al. Janus polymer/carbon nanotube hybrid membranes for oil/water separation[J]. ACS Applied Materials & Interfaces, 2014, 6(18): 16204-16209. |
14 | ISTIROKHATUN Titik, LIN Yuqing, WANG Shengyao, et al. Novel thin-film composite membrane with ultrathin surface mineralization layer engineered by electrostatic attraction induced in-situ assembling process for high-performance nanofiltration[J]. Chemical Engineering Journal, 2021, 417: 127903. |
15 | YANG Yi, SONG Chunyang, WANG Pengcheng, et al. Insights into the impact of polydopamine modification on permeability and anti-fouling performance of forward osmosis membrane[J]. Chemosphere, 2022, 291: 132744. |
16 | LIU Yanlan, AI Kelong, LU Lehui. Polydopamine and its derivative materials: synthesis and promising applications in energy, environmental, and biomedical fields[J]. Chemical Reviews, 2014, 114(9): 5057-5115. |
17 | ZHANG Pengfei, LIU Wenyi, RAJABZADEH Saeid, et al. Modification of PVDF hollow fiber membrane by co-deposition of PDA/MPC-co-AEMA for membrane distillation application with anti-fouling and anti-scaling properties[J]. Journal of Membrane Science, 2021, 636: 119596. |
18 | ZHOU Hui, GUO Zhiguang. Superwetting Janus membranes: focusing on unidirectional transport behaviors and multiple applications[J]. Journal of Materials Chemistry A, 2019, 7(21): 12921-12950. |
19 | GUO Hongshuang, YANG Jing, XU Tong, et al. A robust cotton textile-based material for high-flux oil-water separation[J]. ACS Applied Materials & Interfaces, 2019, 11(14): 13704-13713. |
20 | LIN Y, SALEM M S, ZHANG L, et al. Development of Janus membrane with controllable asymmetric wettability for highly-efficient oil/water emulsions separation[J]. Journal of Membrane Science, 2020, 606: 118141. |
21 | LI Tiantian, LIU Fu, ZHANG Shaofei, et al. Janus polyvinylidene fluoride membrane with extremely opposite wetting surfaces via one single-step unidirectional segregation strategy[J]. ACS Applied Materials & Interfaces, 2018, 10(29): 24947-24954. |
22 | DING Dong, MAO Hengyang, CHEN Xianfu, et al. Underwater superoleophobic-underoil superhydrophobic Janus ceramic membrane with its switchable separation in oil/water emulsions[J]. Journal of Membrane Science, 2018, 565: 303-310. |
23 | ZHANG Weifeng, LIU Na, ZHANG Qingdong, et al. Thermo-driven controllable emulsion separation by a polymer-decorated membrane with switchable wettability[J]. Angewandte Chemie International Edition, 2018, 57(20): 5740-5745. |
24 | LIAO Yuan, TIAN Miao, WANG Rong. A high-performance and robust membrane with switchable super-wettability for oil/water separation under ultralow pressure[J]. Journal of Membrane Science, 2017, 543: 123-132. |
25 | YANG Chao, HAN Na, HAN Changye, et al. Design of a Janus F-TiO2@PPS porous membrane with asymmetric wettability for switchable oil/water separation[J]. ACS Applied Materials & Interfaces, 2019, 11(25): 22408-22418. |
26 | RANA D, MATSUURA T. Surface modifications for antifouling membranes[J]. Chemical Reviews, 2010, 110(4): 2448-2471. |
27 | LIU Yanan, QU Ruixiang, ZHANG Weifeng, et al. Lotus- and mussel-inspired PDA-PET/PTFE Janus membrane: toward integrated separation of light and heavy oils from water[J]. ACS Applied Materials & Interfaces, 2019, 11(22): 20545-20556. |
[1] | CHEN Kuangyin, LI Ruilan, TONG Yang, SHEN Jianhua. Structure design of gas diffusion layer in proton exchange membrane fuel cell [J]. Chemical Industry and Engineering Progress, 2023, 42(S1): 246-259. |
[2] | WANG Yan, QIN Zhenping, LIU Yue, ZHANG Wenhai, GUO Hongxia. Preparation and properties of β-cyclodextrin in-situ modified MoS2 tubular ceramic composite membrane [J]. Chemical Industry and Engineering Progress, 2023, 42(10): 5373-5380. |
[3] | JIA Kang, SU Kunmei, LI Zhenhuan. Preparation and properties of PPS/MWCNT@GO hybrid membrane [J]. Chemical Industry and Engineering Progress, 0, (): 3-0. |
[4] | YE Haixing, CHEN Yuhao, CHEN Yi, SUN Haixiang, NIU Qingshan. Research progress of composite nanofiltration membrane for magnesium and lithium separation [J]. Chemical Industry and Engineering Progress, 2023, 42(4): 1934-1943. |
[5] | CHANG Xiaoqing, PENG Donglai, LI Dongyang, ZHANG Yanwu, WANG Jing, ZHANG Yatao. Recent progress on mixed matrix membrane for efficient C3H6/C3H8 separation [J]. Chemical Industry and Engineering Progress, 2023, 42(4): 1961-1973. |
[6] | CHEN Yi, GUO Yaoli, YE Haixing, LI Yuxuan, NIU Q.Jason. Application of two-dimensional nanomaterials in pervaporation desalination membrane [J]. Chemical Industry and Engineering Progress, 2023, 42(3): 1437-1447. |
[7] | YANG Yuanyuan, LEI Ting, QIN Qingqing, WU Xiao, LI Jian, QIN Shuhao, LI Jiale, ZHANG Bingbing, REN Lulu. Structure and properties of PEO modified PVDF/SMA membrane [J]. Chemical Industry and Engineering Progress, 2023, 42(3): 1515-1526. |
[8] | XIE Yingchun, WANG Qianqian, MA Yongli, SUN Guoqiang, LIU Mingyan. Ultrasonic and ultraviolet coupling degassing and sterilization [J]. Chemical Industry and Engineering Progress, 2023, 42(3): 1629-1637. |
[9] | HAN Fen, YANG Na, SUN Yongli, JIANG Bin, XIAO Xiaoming, ZHANG Lyuhong. Removal of emulsified water in oil by glass fiber coalescer [J]. Chemical Industry and Engineering Progress, 2022, 41(12): 6723-6732. |
[10] | MENG Xiangwei, WU Xiaoli, GAO Zhanpeng, LI Wenpeng, WANG Jingtao. Preparation and organic solvent nanofiltration performance of vermiculite lamellar membranes [J]. Chemical Industry and Engineering Progress, 2022, 41(11): 5986-5995. |
[11] | FANG Longlong, ZHENG Wenji, NING Mengjia, ZHANG Mingyang, YANG Yuqing, DAI Yan, HE Gaohong. Enhanced CO2 separation of mixed matrix membranes by functionalized Zr-MOF [J]. Chemical Industry and Engineering Progress, 2022, 41(9): 4954-4962. |
[12] | SU Shaochun, LIN Chengwei, ZHOU Xinhua, ZHOU Hongjun. Preparation and properties of silanylated polysuccinimide-loaded avermectin [J]. Chemical Industry and Engineering Progress, 2022, 41(8): 4481-4490. |
[13] | ZHU Xiao, ZHU Junyong, ZHANG Yatao. Research progress of metal organic framework/polyamide thin film nanocomposite membrane [J]. Chemical Industry and Engineering Progress, 2022, 41(8): 4314-4326. |
[14] | HAN Guanglu, LU Kuan, LYU Jie, ZHANG Yonghui, CHEN Mohan. Carboxyl graphene composite membranes covalently crosslinked with diols and the n-butanol dehydration properties [J]. Chemical Industry and Engineering Progress, 2022, 41(7): 3801-3807. |
[15] | ZHANG Lizhu, WANG Huan, LI Qiong, YANG Dongjie. Research progress on the preparation of lignin-derived adsorption materials and their application in wastewater treatment [J]. Chemical Industry and Engineering Progress, 2022, 41(7): 3731-3744. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||
京ICP备12046843号-2;京公网安备 11010102001994号 Copyright © Chemical Industry and Engineering Progress, All Rights Reserved. E-mail: hgjz@cip.com.cn Powered by Beijing Magtech Co. Ltd |