1 |
中华人民共和国国务院. 中共中央关于制定国民经济和社会发展第十四个五年规划和二〇三五年远景目标的建议[EB/OL].(2020-11-03)[2021-01-15]. .
|
|
State Council of the People's Republic of China. The proposal of the central committee of the communist party of China on the formulation of the 14th five-year plan for national economic and social development and the vision for 2035[EB/OL]. (2020-11-03)[2021-01-15]..
|
2 |
景玲玲, 冯卉, 郭晓林. 基加利修正案情况介绍[J]. 聚氨酯工业, 2017(32):17-18.
|
|
JING Lingling, FENG Hui, GUO Xiaolin. Introduction of the Kigali amendment[J]. Polyurethane Industry, 2017(32):17-18.
|
3 |
United Nations Climate Change. The Paris Agreement (English version) [DB/OL]. (2016-04-22)[2021-01-15]. .
|
4 |
MAOURIS G, ESCRIVA E J S, ACHA S, et al. CO2 refrigeration system heat recovery and thermal storage modelling for space heating provision in supermarkets: an integrated approach[J]. Applied Energy, 2020, 264:114722.
|
5 |
轩福臣, 谢晶. 跨临界CO2制冷循环系统与应用研究进展[J]. 食品与机械, 2019, 35(8):226-231.
|
|
XUAN Fuchen, XIE Jing. Research progress of trans-critical CO2 refrigeration cycle system and application[J]. Food and Machinery, 2019, 35(8):226-231.
|
6 |
李慧, 曹祥, 张春路. 二氧化碳热泵技术的发展及应用案例分析[J]. 化工进展, 2016, 35(S2):421.
|
|
LI Hui, CAO Xiang, ZHANG Chunlu. Developments and application analysis of carbon dioxide heat pump[J]. Chemical Industry and Engineering Progress, 2016, 35(S2):421.
|
7 |
孙志利, 马一太. 单级跨临界二氧化碳带膨胀机循环与四种双级循环的热力学分析[J]. 制冷学报, 2016(37):53-59.
|
|
SUN Zhijian, MA Yitai. Thermodynamic analysis of one kind of single-stage with expender and four kinds of two-stage transcritical carbon dioxide refrigeration cycle[J]. Journal of Refrigeration, 2016(37):53-59.
|
8 |
TSIMPOUKIS D, SYNGOUNAS E, PETSANAS D, et al. Energy and environmental investigation of R744 all-in-one configurations for refrigeration and heating/air conditioning needs of a supermarket[J]. Journal of Cleaner Production, 2020, 279(4): 123234.
|
9 |
LIU Shengchun, LI Zheng, DAI Baomin, et al. Energy, economic and environmental analyses of the CO2 heat pump system compared with boiler heating system in China[J]. Energy Procedia, 2017, 105: 3895-3902.
|
10 |
SONG Yulong, CAO Feng. The evaluation of the optimal medium temperature in a space heating used transcritical air-source CO2 heat pump with an R134a subcooling device[J]. Energy Conversion and Management, 2018, 166: 409-423.
|
11 |
NEBOT-ANDRÉS L, SÁNCHEZ D, CALLEJA-ANTA D, et al. Experimental determination of the optimum working conditions of a commercial transcritical CO2 refrigeration plant with a R-152a dedicated mechanical subcooling[J]. International Journal of Refrigeration, 2021, 121: 258-268.
|
12 |
SHARIATZADEH O, ABOLHASSANI S, RAHMANI M, et al. Comparison of transcritical CO2 refrigeration cycle with expander and throttling valve including/excluding internal heat exchanger: exergy and energy points of view[J]. Applied Thermal Engineering, 2016, 93: 779-787.
|
13 |
ZHANG Zhengying, WANG Hongli, TIAN Lili, et al. Thermodynamic analysis of double-compression flash intercooling transcritical CO2 refrigeration cycle[J]. Journal of Supercritical Fluids, 2016, 109:100-108.
|
14 |
DAI Baomin, LIU Shengchun, LI Hailong, et al. Energetic performance of transcritical CO2 refrigeration cycles with mechanical subcooling using zeotropic mixture as refrigerant[J]. Energy, 2018, 105: 205-221.
|
15 |
JAMALI S, YARI M, MOHAMMADKHANI F. Performance improvement of a transcritical CO2 refrigeration cycle using two-stage thermoelectric modules in sub-cooler and gas cooler[J]. International Journal of Refrigeration, 2017, 74: 105-115.
|
16 |
LLOPIS R, EBOT-ANDRÉS L, SÁNCHEZ D, et al. Subcooling methods for CO2 refrigeration cycles: a review[J]. International Journal of Refrigeration, 2018, 93: 85-107.
|