化工进展 ›› 2021, Vol. 40 ›› Issue (12): 6897-6906.DOI: 10.16085/j.issn.1000-6613.2020-2565
收稿日期:
2020-12-25
修回日期:
2021-03-17
出版日期:
2021-12-05
发布日期:
2021-12-21
通讯作者:
吴敏
作者简介:
李东梅(1996—),女,硕士研究生,研究方向为污水处理厂温室气体的排放。E-mail:基金资助:
LI Dongmei(), WU Danping, WU Min(), PAN Bo
Received:
2020-12-25
Revised:
2021-03-17
Online:
2021-12-05
Published:
2021-12-21
Contact:
WU Min
摘要:
市政污水处理厂是城市的重要基础设施之一,其因在运行过程中产生大量的CO2、CH4和N2O等气体而被视为温室气体(GHGs)的重要来源之一,同时又因其减排潜力较大,引起了各界学者的广泛关注。GHGs减排需求正推动着污水处理厂朝着优化核心运行参数及资源能源回收的低碳方向发展。本文简述了污水处理厂中GHGs直接排放的主要环节和产生机理以及目前常用核算方法中存在的主要问题,并总结了污水处理厂运行工况的变化,包括温度、pH、进水C/N、污泥停留时间(SRT)、亚硝酸盐浓度、溶解氧(DO)浓度对其直接排放的GHGs的影响。分析表明进水C/N、DO浓度、pH和亚硝酸盐浓度对GHGs的排放影响较为明显且它们的变化更易于进行人为干预,人为减排潜力较大。最后总结了目前已有相关研究存在的主要问题以及对未来研究方向的展望,以期为污水处理厂优化运行工况和GHGs减排提供参考。
中图分类号:
李东梅, 吴丹萍, 吴敏, 潘波. 污水处理厂运行工况对温室气体排放的影响[J]. 化工进展, 2021, 40(12): 6897-6906.
LI Dongmei, WU Danping, WU Min, PAN Bo. Influence of operating parameters on greenhouse gas emission of sewage treatment plants[J]. Chemical Industry and Engineering Progress, 2021, 40(12): 6897-6906.
主体工艺 | 进水氮含量/mg·L-1 | 排放因子(EF) | 参考文献 |
---|---|---|---|
活性污泥法(AS) | — | 0.001 | [ |
硝化反硝化 | TKN=1265±41(污泥上清液) | 0.017 | [ |
厌氧氨氧化 | 0.006 | ||
缺氧好氧工艺法(AO) | TN=50~70;NH4-N=40~60 | 0.0137 | [ |
序批式活性污泥法(SBR) | 0.0269 | ||
氧化沟(OD) | 0.0025 | ||
传统SBR | NH4-N=31 | 0.069±0.002 | [ |
改良SBR | 0.040±0.003 | ||
两段推流式 | TKN=64±6.5;NH4-N=47.4±3.5 | 0.019±0.0025 | [ |
SBR | TN=69±4.5;NH4-N=38.7±2.1 | 0.068 | [ |
AS(日本) | NH4-N=26.5、29 | 0.0014(DO:2.5~3mg·L-1) | [ |
0.0003(DO:1.5~2mg·L-1) | |||
AS(巴西) | NH4-N=27.5±7.1 | 0.001 | [ |
表1 不同工艺污水处理厂N2O排放系数
主体工艺 | 进水氮含量/mg·L-1 | 排放因子(EF) | 参考文献 |
---|---|---|---|
活性污泥法(AS) | — | 0.001 | [ |
硝化反硝化 | TKN=1265±41(污泥上清液) | 0.017 | [ |
厌氧氨氧化 | 0.006 | ||
缺氧好氧工艺法(AO) | TN=50~70;NH4-N=40~60 | 0.0137 | [ |
序批式活性污泥法(SBR) | 0.0269 | ||
氧化沟(OD) | 0.0025 | ||
传统SBR | NH4-N=31 | 0.069±0.002 | [ |
改良SBR | 0.040±0.003 | ||
两段推流式 | TKN=64±6.5;NH4-N=47.4±3.5 | 0.019±0.0025 | [ |
SBR | TN=69±4.5;NH4-N=38.7±2.1 | 0.068 | [ |
AS(日本) | NH4-N=26.5、29 | 0.0014(DO:2.5~3mg·L-1) | [ |
0.0003(DO:1.5~2mg·L-1) | |||
AS(巴西) | NH4-N=27.5±7.1 | 0.001 | [ |
运行参数变化情况 | CO2 | CH4 | N2O | 变化范围 | 参考文献 |
---|---|---|---|---|---|
温度升高 | 无明显变化 | 增加 | 降低 | 温度变化通过季节来体现 | [ |
— | — | 增加 | 10~30℃ | [ | |
增加 | 增加 | 增加 | — | [ | |
pH升高 | — | 无明显变化 | 增加 | 7.5~8.5 | [ |
— | — | 增加 | 6~9 | [ | |
进水C/N增加 | — | 增加 | 降低 | Qcarb:0、5m3·d-1、10m3·d-1 | [ |
无明显变化 | 降低 | 降低 | 7.5~10 | [ | |
降低 | 增加 | 降低 | 1.5~7.5 | [ | |
污泥龄增加 | 略有增加 | 降低 | 略有降低 | 13~42d | [ |
— | — | 降低 | 6~18d | [ | |
— | 增加 | 降低 | 12d、18d | [ | |
亚硝酸盐浓度增加 | — | 降低 | 增加 | 20~140mg·L-1 | [ |
— | — | 增加 | 0~10mg·L-1 | [ | |
— | 降低 | 增加 | 40mg·L-1、80mg·L-1、120mg·L-1 | [ | |
溶解氧浓度增加 | — | 降低 | 降低 | 0~4.5mg·L-1 | [ |
— | 降低 | 降低 | — | [ | |
— | 降低 | 降低 | 1mg·L-1、2mg·L-1、3mg·L-1 | [ |
表2 主要运行工况的变化对3种GHGs排放的影响
运行参数变化情况 | CO2 | CH4 | N2O | 变化范围 | 参考文献 |
---|---|---|---|---|---|
温度升高 | 无明显变化 | 增加 | 降低 | 温度变化通过季节来体现 | [ |
— | — | 增加 | 10~30℃ | [ | |
增加 | 增加 | 增加 | — | [ | |
pH升高 | — | 无明显变化 | 增加 | 7.5~8.5 | [ |
— | — | 增加 | 6~9 | [ | |
进水C/N增加 | — | 增加 | 降低 | Qcarb:0、5m3·d-1、10m3·d-1 | [ |
无明显变化 | 降低 | 降低 | 7.5~10 | [ | |
降低 | 增加 | 降低 | 1.5~7.5 | [ | |
污泥龄增加 | 略有增加 | 降低 | 略有降低 | 13~42d | [ |
— | — | 降低 | 6~18d | [ | |
— | 增加 | 降低 | 12d、18d | [ | |
亚硝酸盐浓度增加 | — | 降低 | 增加 | 20~140mg·L-1 | [ |
— | — | 增加 | 0~10mg·L-1 | [ | |
— | 降低 | 增加 | 40mg·L-1、80mg·L-1、120mg·L-1 | [ | |
溶解氧浓度增加 | — | 降低 | 降低 | 0~4.5mg·L-1 | [ |
— | 降低 | 降低 | — | [ | |
— | 降低 | 降低 | 1mg·L-1、2mg·L-1、3mg·L-1 | [ |
1 | ZICKFELD K, SOLOMON S, GILFORD D M. Centuries of thermal sea-level rise due to anthropogenic emissions of short-lived greenhouse gases[J]. Proceedings of the National Academy of Sciences, 2017, 114(4): 657-662. |
2 | VASILAKI V, CONCA V, FRISON N, et al. A knowledge discovery framework to predict the N2O emissions in the wastewater sector[J]. Water Research, 2020, 178: 115799. |
3 | RODRIGUEZ-GARCIA G, HOSPIDO A, BAGLEY D M, et al. A methodology to estimate greenhouse gases emissions in life cycle inventories of wastewater treatment plants[J]. Environmental Impact Assessment Review, 2012, 37: 37-46. |
4 | LIU S Y, XIAO W D. New wet flue gas desulfurization process using granular limestone and organic acid additives[J]. International Journal of Chemical Reactor Engineering, 2006, 4(1): 1-14. |
5 | MAKTABIFARD M, ZABOROWSKA E, MAKINIA J. Evaluating the effect of different operational strategies on the carbon footprint of wastewater treatment plants case studies from northern Poland[J]. Water Science and Technology, 2019, 79(11): 2211-2220. |
6 | 周兴, 郑有飞, 吴荣军, 等. 2003—2009年中国污水处理部门温室气体排放研究[J]. 气候变化研究进展, 2012, 8(2): 131-136. |
ZHOU X, ZHENG Y F, WU R J, et al. Greenhouse gas emissions from wastewater treatment in China during 2003—2009[J]. Advances in Climate Change Research, 2012, 8(2): 131-136. | |
7 | HAN Z, SUN D, WANG H, et al. Effects of ambient temperature and aeration frequency on emissions of ammonia and greenhouse gases from a sewage sludge aerobic composting plant[J]. Bioresource Technology, 2018, 270: 457-466. |
8 | 王洪臣. 城镇污水处理领域的碳减排[J]. 给水排水, 2010, 36(12): 1-3, 52. |
WANG H C. Carbon abatement in municipal wastewater treatment area[J]. Water & Wastewater Engineering, 2010, 36(12): 1-3, 52. | |
9 | ZHANG X Y, ZHANG M, LIU H, et al. Environmental sustainability: a pressing challenge to biological sewage treatment processes[J]. Current Opinion in Environmental Science & Health, 2019, 12: 1-5. |
10 | KYUNG D, KIM M, CHANG J, et al. Estimation of greenhouse gas emissions from a hybrid wastewater treatment plant[J]. Journal of Cleaner Production, 2015, 95: 117-123. |
11 | CAKIR F Y, STENSTROM M K. Greenhouse gas production: a comparison between aerobic and anaerobic wastewater treatment technology[J]. Water Research, 2005, 39(17): 4197-4203. |
12 | BAO Z Y, SUN S C, SUN D Z. Assessment of greenhouse gas emission from A/O and SBR wastewater treatment plants in Beijing, China[J]. International Biodeterioration & Biodegradation, 2016, 108: 108-114. |
13 | MANNINA G, BUTLER D, BENEDETTI L, et al. Greenhouse gas emissions from integrated urban drainage systems: where do we stand?[J]. Journal of Hydrology, 2018, 559: 307-314. |
14 | FOLEY J, DE HAAS D, HARTLEY K, et al. Comprehensive life cycle inventories of alternative wastewater treatment systems[J]. Water Research, 2010, 44(5): 1654-1666. |
15 | RENOU S, THOMAS J S, AOUSTIN E, et al. Influence of impact assessment methods in wastewater treatment LCA[J]. Journal of Cleaner Production, 2008, 16(10): 1098-1105. |
16 | BAO Z Y, SUN S C, SUN D Z. Characteristics of direct CO2 emissions in four full-scale wastewater treatment plants[J]. Desalination and Water Treatment, 2015, 54(4/5): 1070-1079. |
17 | YAN X, LI L, LIU J X. Characteristics of greenhouse gas emission in three full-scale wastewater treatment processes[J]. Journal of Environmental Sciences, 2014, 26(2): 256-263. |
18 | ELEFSINIOTIS P, LI D. The effect of temperature and carbon source on denitrification using volatile fatty acids[J]. Biochemical Engineering Journal, 2006, 28(2): 148-155. |
19 | LI P Z, WANG S Y, PENG Y Z, et al. The synergistic effects of dissolved oxygen and pH on N2O production in biological domestic wastewater treatment under nitrifying conditions[J]. Environmental Technology, 2015, 36(13): 1623-1631. |
20 | ADOUANI N, LIMOUSY L, LENDORMI T, et al. N2O and NO emissions during wastewater denitrification step: influence of temperature on the biological process[J]. Comptes Rendus Chimie, 2015, 18(1): 15-22. |
21 | SWEETAPPLE C, FU G T, BUTLER D. Multi-objective optimisation of wastewater treatment plant control to reduce greenhouse gas emissions[J]. Water Research, 2014, 55: 52-62. |
22 | MANNINA G, EKAMA G, CANIANI D, et al. Greenhouse gases from wastewater treatment - a review of modelling tools[J]. Science of the Total Environment, 2016, 551/552: 254-270. |
23 | SPÉRANDIO M, POCQUET M, GUO L S, et al. Evaluation of different nitrous oxide production models with four continuous long-term wastewater treatment process data series[J]. Bioprocess and Biosystems Engineering, 2016, 39(3): 493-510. |
24 | NI B-J, YUAN Z. Recent advances in mathematical modeling of nitrous oxides emissions from wastewater treatment processes[J]. Water Research, 2015, 87: 336-346. |
25 | CHURCH J, CLARK P, CAZENAVE A, et al. Climate change 2013: the physical science basis. An overview of the working group Ⅰ contribution to the fifth assessment report of the intergovernmental panel on climate change (IPCC)[J]. Geophysical Research Abstracts, 2014, DOI: 10.10161S0925-7721(01)00003-7. |
26 | NGUYEN T K L, NGO H H, GUO W S, et al. Insight into greenhouse gases emissions from the two popular treatment technologies in municipal wastewater treatment processes[J]. Science of the Total Environment, 2019, 671: 1302-1313. |
27 | MASUDA S, SUZUKI S, SANO I, et al. The seasonal variation of emission of greenhouse gases from a full-scale sewage treatment plant[J]. Chemosphere, 2015, 140: 167-173. |
28 | REN Y G, WANG J H, XU L, et al. Direct emissions of N2O, CO2, and CH4 from A/A/O bioreactor systems: impact of influent C/N ratio[J]. Environmental Science and Pollution Research, 2015, 22(11): 8163-8173. |
29 | LAW Y, JACOBSEN G E, SMITH A M, et al. Fossil organic carbon in wastewater and its fate in treatment plants[J]. Water Research, 2013, 47(14): 5270-5281. |
30 | TSENG L Y, ROBINSON A K, ZHANG X Y, et al. Identification of preferential paths of fossil carbon within water resource recovery facilities via radiocarbon analysis[J]. Environmental Science & Technology, 2016, 50(22): 12166-12178. |
31 | 蔡博峰, 朱松丽, 于胜民, 等. 《IPCC 2006年国家温室气体清单指南2019修订版》解读[J]. 环境工程, 2019, 37(8): 1-11. |
CAI B F,ZHU S L,YU S M, et al. Interpretation of “IPCC 2006 national greenhouse gas inventory guidelines 2019 revised edition”[J]. Environmental Engineering, 2019, 37(8): 1-11. | |
32 | SCHNEIDER A G, TOWNSEND-SMALL A, ROSSO D. Impact of direct greenhouse gas emissions on the carbon footprint of water reclamation processes employing nitrification-denitrification[J]. Science of the Total Environment, 2015, 505: 1166-1173. |
33 | 闫旭, 邱德志, 郭东丽, 等. 中国城镇污水处理厂温室气体排放时空分布特征[J]. 环境科学, 2018, 39(3): 1256-1263. |
YAN X, QIU D Z, GUO D L, et al. Emission inventory of greenhouse gas from urban wastewater treatment plants and its temporal and spatial distribution in China[J]. Environmental Science, 2018, 39(3): 1256-1263. | |
34 | 鲍志远. 典型城市污水处理工艺温室气体排放特征及减排策略研究[D]. 北京: 北京林业大学, 2019. |
BAO Z Y. Research on greenhouse gas emission characteristics and emission reduction strategies of typical urban wastewater treatment process[D]. Beijing: Beijing Forestry University, 2019. | |
35 | 张星, 陈敏东, 高庆先, 等. 生活污水处理厂甲烷的释放通量及其影响因素[J]. 江西农业大学学报, 2018, 40(3): 657-662. |
ZHANG X, CHEN M D, GAO Q X, et al. Methane release flux from domestic sewage treatment plants and its influencing factors[J]. Acta Agriculturae Universitatis Jiangxiensis (Natural Sciences Edition), 2018, 40(3): 657-662. | |
36 | GUISASOLA A, DE HAAS D, KELLER J, et al. Methane formation in sewer systems[J]. Water Research, 2008, 42(6/7): 1421-1430. |
37 | CHAOSAKUL T, KOOTTATEP T, POLPRASERT C. A model for methane production in sewers[J]. Journal of Environmental Science and Health Part A-Toxic/Hazardous Substances & Environmental Engineering, 2014, 49(11): 1316-1321. |
38 | LIU Y W, SHARMA K R, FLUGGEN M, et al. Online dissolved methane and total dissolved sulfide measurement in sewers[J]. Water Research, 2015, 68: 109-118. |
39 | 郝晓地, 程慧芹, 胡沅胜. 碳中和运行的国际先驱奥地利Strass污水厂案例剖析[J]. 中国给水排水, 2014, 30(22): 1-5. |
HAO X D, CHENG H Q, HU Y S. International pioneer of carbon-neutral operation of wastewater treatment: a case study at strass in Austria[J]. China Water & Wastewater, 2014, 30(22): 1-5. | |
40 | 陆家缘. 中国污水处理行业碳足迹与减排潜力分析[D]. 合肥: 中国科学技术大学, 2019. |
LU J Y. Analysis of carbon footprint and emission reduction potential of china’s wastewater treatment industry[D]. Hefei: University of Science and Technology of China, 2019. | |
41 | 蔡博峰, 高庆先, 李中华, 等. 中国城市污水处理厂甲烷排放因子研究[J]. 中国人口·资源与环境, 2015, 25(4): 118-124. |
CAI B F, GAO Q X, LI Z H, et al. Study on the methane emission factors of wastewater treatment plants in China[J]. China Population Resources and Environment, 2015, 25(4): 118-124. | |
42 | KAMPSCHREUR M J, TEMMINK H, KLEEREBEZEM R, et al. Nitrous oxide emission during wastewater treatment[J]. Water Research, 2009, 43(17): 4093-4103. |
43 | SUN S C, CHENG X, SUN D Z. Emission of N2O from a full-scale sequencing batch reactor wastewater treatment plant: characteristics and influencing factors[J]. International Biodeterioration and Biodegradation, 2013, 85: 545-549. |
44 | ZHANG F Z, PENG Y Z, MIAO L, et al. A novel simultaneous partial nitrification Anammox and denitrification (SNAD) with intermittent aeration for cost-effective nitrogen removal from mature landfill leachate[J]. Chemical Engineering Journal, 2017, 313: 619-628. |
45 | MOHANAKRISHNAN J, GUTIERREZ O, MEYER R L, et al. Nitrite effectively inhibits sulfide and methane production in a laboratory scale sewer reactor[J]. Water Research, 2008, 42(14): 3961-3971. |
46 | JIANG G M, GUTIERREZ O, SHARMA K R, et al. Effects of nitrite concentration and exposure time on sulfide and methane production in sewer systems[J]. Water Research, 2010, 44(14): 4241-4251. |
47 | LAW Y Y, YE L, PAN Y P, et al. Nitrous oxide emissions from wastewater treatment processes[J]. Philosophical Transactions of the Royal Society of London Series B: Biological Sciences, 2012, 367(1593): 1265-1277. |
48 | FOLEY J, DE HAAS D, YUAN Z G, et al. Nitrous oxide generation in full-scale biological nutrient removal wastewater treatment plants[J]. Water Research, 2010, 44(3): 831-844. |
49 | 王亚宜, 周东, 赵伟, 等. 污水生物处理实际工艺中氧化亚氮的释放:现状与挑战[J]. 环境科学学报, 2014, 34(5): 1079-1088. |
WANG Y Y, ZHOU D, ZHAO W, et al. The release of nitrous oxide in the actual process of biological wastewater treatment: current situation and challenges[J]. Journal of Environmental Science, 2014, 34(5): 1079-1088. | |
50 | MANNINA G, REBOUCAS T F, COSENZA A, et al. A plant-wide wastewater treatment plant model for carbon and energy footprint: model application and scenario analysis[J]. Journal of Cleaner Production, 2019, 217: 244-256. |
51 | TUMENDELGER A, TOYODA S, YOSHIDA N. Isotopic analysis of N2O produced in a conventional wastewater treatment system operated under different aeration conditions[J]. Rapid Communications in Mass Spectrometry, 2014, 28(17): 1883-1892. |
52 | PAN Y T, AKKER B VAN DEN, YE L, et al. Unravelling the spatial variation of nitrous oxide emissions from a step-feed plug-flow full scale wastewater treatment plant[J]. Scientific Reports, 2016, 6: 20792. |
53 | MELLO W Z D, RIBEIRO R P, BROTTO A C, et al. Nitrous oxide emissions from an intermittent aeration activated sludge system of an urban wastewater treatment plant[J]. Química Nova, 2013, 36(1): 16-20. |
54 | MASSARA T M, MALAMIS S, GUISASOLA A, et al. A review on nitrous oxide (N2O) emissions during biological nutrient removal from municipal wastewater and sludge reject water[J]. Science of the Total Environment, 2017, 596/597: 106-123. |
55 | CHEN Y Y, WANG D B, ZHENG X, et al. Biological nutrient removal with low nitrous oxide generation by cancelling the anaerobic phase and extending the idle phase in a sequencing batch reactor[J]. Chemosphere, 2014, 109: 56-63. |
56 | SUN S C, BAO Z Y, SUN D Z. Study on emission characteristics and reduction strategy of nitrous oxide during wastewater treatment by different processes[J]. Environmental Science and Pollution Research, 2015, 22(6): 4222-4229. |
57 | RODRIGUEZ-CABALLERO A, AYMERICH I, MARQUES R, et al. Minimizing N2O emissions and carbon footprint on a full-scale activated sludge sequencing batch reactor[J]. Water Research, 2015, 71: 1-10. |
58 | 王丝可, 于恒, 左剑恶. 温度和基质浓度对厌氧氨氧化工艺中N2O释放的影响[J]. 环境科学, 2020, 41(11): 5082-5088. |
WANG S K, YU H, ZUO J E. Influence of temperature and substrate concentration on N2O release in anaerobic ammonia oxidation process[J]. Environmental Science, 2020, 41(11): 5082-5088. | |
59 | 马娟, 彭永臻, 王丽, 等. 温度对反硝化过程的影响以及pH值变化规律[J]. 中国环境科学, 2008, 28(11): 1004-1008. |
MA J, PENG Y Z, WANG L, et al. Effect of temperature on denitrification and profiles of pH during the process[J]. China Environmental Science, 2008, 28(11): 1004-1008. | |
60 | MAUCIERI C, BARBERA A C, VYMAZAL J, et al. A review on the main affecting factors of greenhouse gases emission in constructed wetlands[J]. Agricultural and Forest Meteorology, 2017, 236: 175-193. |
61 | PIJUAN M, TORA J, RODRIGUEZ-CABALLERO A, et al. Effect of process parameters and operational mode on nitrous oxide emissions from a nitritation reactor treating reject wastewater[J]. Water Research, 2014, 49:23-33. |
62 | PAN Y T, YE L, NI B J, et al. Effect of pH on N₂O reduction and accumulation during denitrification by methanol utilizing denitrifiers[J]. Water Research, 2012, 46(15): 4832-4840. |
63 | FLORES-ALSINA X, COROMINAS L, SNIP L, et al. Including greenhouse gas emissions during benchmarking of wastewater treatment plant control strategies[J]. Water Research, 2011, 45(16): 4700-4710. |
64 | MIKOSZ J. Analysis of greenhouse gas emissions and the energy balance in a model municipal wastewater treatment plant[J]. Desalination and Water Treatment, 2016, 57(59): 28551-28559. |
65 | KAMPSCHREUR M J, TAN N C G, KLEEREBEZEM R, et al. Effect of dynamic process conditions on nitrogen oxides emission from a nitrifying culture[J]. Environmental Science & Technology, 2008, 42(2): 429-435. |
66 | JIANG G M, GUTIERREZ O, SHARMA K R, et al. Effects of nitrite concentration and exposure time on sulfide and methane production in sewer systems[J]. Water Research, 2010, 44(14): 4241-4251. |
67 | 柳岩, 孙德智, 伦小秀. 污水输送和污水处理过程中CH4产生与排放特征及影响因素研究进展[J]. 环境污染与防治, 2012, 34(5): 91-95. |
LIU Y, SUN D Z, LUN X X. Research progress on methane emission character and influencing factors in wastewater feeding and treatment process[J]. Environmental Pollution and Control, 2012, 34(5): 91-95. | |
68 | WATANABE A, YAMADA H, KIMURA M. Analysis of temperature effects on seasonal and interannual variation in CH4 emission from rice-planted pots[J]. Agriculture, Ecosystems & Environment, 2005, 105(1): 439-443. |
69 | 翟光红, 左孝凡. 污水处理的碳排放空间差异及影响因素分析[J]. 石家庄铁道大学学报(社会科学版), 2020, 14(1): 1-10. |
QU G H, ZUO X F. Spatial differences and influencing factors of carbon emissions from urban wastwater treatment in China[J]. Journal of Shijiazhuang Tiedao University (Social Science Edition), 2020, 14(1): 1-10. | |
70 | GUTIERREZ O, SUDARJANTO G, REN G, et al. Assessment of pH shock as a method for controlling sulfide and methane formation in pressure main sewer systems[J]. Water Research, 2014, 48:569-578. |
71 | MANNINA G, CAPODICI M, COSENZA A, et al. Nitrous oxide from integrated fixed-film activated sludge membrane bioreactor: assessing the influence of operational variables[J]. Bioresource Technology, 2018, 247: 1221-1227. |
72 | 李惠娟, 彭党聪, 刘文博, 等. 不同污水处理工艺非二氧化碳温室气体的释放[J]. 环境科学, 2017, 38(4): 1640-1646. |
LI H J, PENG D C, LIU W B, et al. Non-CO2 greenhouse gas release from different biological wastewater treatment processes[J]. Environmental Science, 2017, 38(4): 1640-1646. | |
73 | BURGESS J E, COLLIVER B B, STUETZ R M, et al. Dinitrogen oxide production by a mixed culture of nitrifying bacteria during ammonia shock loading and aeration failure[J]. Journal of Industrial Microbiology and Biotechnology, 2002, 29(6): 309-313. |
74 | LIN H J, CHEN J R, WANG F Y, et al. Feasibility evaluation of submerged anaerobic membrane bioreactor for municipal secondary wastewater treatment[J]. Desalination, 2011, 280(1/2/3): 120-126. |
75 | ITOKAWA H, HANAKI K, MATSUO T. Nitrous oxide production in high-loading biological nitrogen removal process under low COD/N ratio condition[J]. Water Research, 2001, 35(3): 657-664. |
76 | HU Z, ZHANG J, LI S P, et al. Effect of aeration rate on the emission of N2O in anoxic-aerobic sequencing batch reactors (A/O SBRs)[J]. Journal of Bioscience and Bioengineering, 2010, 109(5): 487-491. |
77 | BOURNAZOU M N, HOOSHIAR K, ARELLANO-GARCIA H, et al. Model based optimization of the intermittent aeration profile for SBRs under partial nitrification[J]. Water Research, 2013, 47(10): 3399-3410. |
78 | 罗涛, 王洪臣, 徐相龙, 等. 微孔曝气气泡生成阶段的并聚规律研究[J].环境工程, 2019, 37(9): 29-33. |
LUO T, WANG H C, XU X L, et al. Study on the law of bubble coalescence during formation phase in bubble aeration[J]. Environmental Engineering, 2019, 37(9): 29-33. | |
79 | FENU A, SMOLDERS S, DE GUSSEM K, et al. Conflicting carbon footprint and energy saving in a side-stream Anammox process[J]. Biochemical Engineering Journal, 2019, 151: 107336. |
80 | RAHMAN A, DE CLIPPELEIR H, THOMAS W, et al. A-stage and high-rate contact-stabilization performance comparison for carbon and nutrient redirection from high-strength municipal wastewater[J]. Chemical Engineering Journal, 2019, 357: 737-749. |
81 | DI BIASE A, KOWALASKI M S, DEVLIN T R, et al. Controlling biofilm retention time in an a-stage high-rate moving bed biofilm reactor for organic carbon redirection[J]. Science of the Total Environment, 2020, 745:141051. |
82 | RAHMAN A, MEERBURG F A, RAVADAGUNDHI S, et al. Bioflocculation management through high-rate contact-stabilization: a promising technology to recover organic carbon from low-strength wastewater[J]. Water Research, 2016, 104: 485-496. |
83 | 张远洋, 郭亚琼, 李娜, 等. N2O回收利用及减排技术研究进展[J].化工环保, 2018, 38(5): 499-504. |
ZHANG Y Y, GUO Y Q, LI N, et al. Research status and progress on N2O abatement and recycling technique[J]. Environmental Protection of Chemical industry, 2018, 38(5): 499-504. |
[1] | 张杰, 王放放, 夏忠林, 赵光金, 马双忱. “双碳”目标下SF6排放现状、减排手段分析及未来展望[J]. 化工进展, 2023, 42(S1): 447-460. |
[2] | 舒斌, 陈建宏, 熊健, 吴其荣, 喻江涛, 杨平. 碳中和目标下推动绿色甲醇发展的必要性分析[J]. 化工进展, 2023, 42(9): 4471-4478. |
[3] | 李佳, 樊星, 陈莉, 李坚. 硝酸生产尾气中NO x 和N2O联合脱除技术研究进展[J]. 化工进展, 2023, 42(7): 3770-3779. |
[4] | 李华华, 李逸航, 金北辰, 李隆昕, 成少安. 厌氧氨氧化-生物电化学耦合废水处理系统的研究进展[J]. 化工进展, 2023, 42(5): 2678-2690. |
[5] | 李文秀, 杨宇航, 黄艳, 王涛, 王镭, 方梦祥. 二氧化碳矿化高钙基固废制备微细碳酸钙研究进展[J]. 化工进展, 2023, 42(4): 2047-2057. |
[6] | 陈崇明, 曾四鸣, 罗小娜, 宋国升, 韩忠阁, 郁金星, 孙楠楠. 基于超交联聚合物前体的碳载钾基CO2吸附剂制备和性能[J]. 化工进展, 2023, 42(3): 1540-1550. |
[7] | 刘丹, 范云洁, 王慧敏, 严政, 李鹏飞, 李家成, 曹雪波. 基于废弃PET的高值化功能性多孔碳材料及其应用进展[J]. 化工进展, 2023, 42(2): 969-984. |
[8] | 孙晖, 孟祥海, 魏景海, 周红军, 徐春明. 绿电制氢生产氨的新场景与实践[J]. 化工进展, 2023, 42(2): 1098-1102. |
[9] | 应璐瑶, 王荣昌. 菌藻共生系统削减抗生素类污染物的去除途径及胁迫响应[J]. 化工进展, 2023, 42(1): 469-479. |
[10] | 陶雨萱, 郭亮, 高聪, 宋伟, 陈修来. 代谢工程改造微生物固定二氧化碳研究进展[J]. 化工进展, 2023, 42(1): 40-52. |
[11] | 赵华琮, 朱炜玄, 叶昊天, 董宏光. 装置蒸汽动力系统与热电厂运行同步优化[J]. 化工进展, 2022, 41(S1): 44-53. |
[12] | 杨学萍. 碳中和背景下现代煤化工技术路径探索[J]. 化工进展, 2022, 41(7): 3402-3412. |
[13] | 龙红明, 丁龙, 钱立新, 春铁军, 张洪亮, 余正伟. 烧结烟气中NO x 和二英的减排现状及发展趋势[J]. 化工进展, 2022, 41(7): 3865-3876. |
[14] | 张丽珠, 王欢, 李琼, 杨东杰. 木质素衍生吸附材料及其在废水处理中的应用研究进展[J]. 化工进展, 2022, 41(7): 3731-3744. |
[15] | 慕彦君, 宋倩倩, 王红秋, 付凯妹, 雪晶, 王春娇. 美国炼化行业低碳发展策略与启示[J]. 化工进展, 2022, 41(6): 2797-2805. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||
京ICP备12046843号-2;京公网安备 11010102001994号 版权所有 © 《化工进展》编辑部 地址:北京市东城区青年湖南街13号 邮编:100011 电子信箱:hgjz@cip.com.cn 本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn |