1 |
MACKANIC D G, CHANG T H, HUANG Z J, et al. Stretchable electrochemical energy storage devices[J]. Chemical Society Reviews, 2020, 49(13): 4466-4495.
|
2 |
MA R, CHEN Z T, ZHAO D N, et al. Ti3C2Tx MXene for electrode materials of supercapacitors[J]. Journal of Materials Chemistry A, 2021, 9(19): 11501-11529.
|
3 |
DONG Y, ZHU J Y, LI Q Q, et al. Carbon materials for high mass-loading supercapacitors: filling the gap between new materials and practical applications[J]. Journal of Materials Chemistry A, 2020, 8(42): 21930-21946.
|
4 |
YANG G, ZHANG Y M, CAI Y, et al. Advances in nanomaterials for electrochromic devices[J]. Chemical Society Reviews, 2020, 49(23): 8687-8720.
|
5 |
ANDO Y, OKUBO M, YAMADA A, et al. Capacitive versus pseudocapacitive storage in MXene[J]. Advanced Functional Materials, 2020, 30(47): 2000820.
|
6 |
HU M M, ZHANG H, HU T, et al. Emerging 2D MXenes for supercapacitors: status, challenges and prospects[J]. Chemical Society Reviews, 2020, 49(18): 6666-6693.
|
7 |
AHMED A, HOSSAIN M M, ADAK B, et al. Recent advances in 2D MXene integrated smart-textile interfaces for multifunctional applications[J]. Chemistry of Materials, 2020, 32(24): 10296-10320.
|
8 |
SHIN H, EOM W, LEE K H, et al. Highly electroconductive and mechanically strong Ti3C2Tx MXene fibers using a deformable MXene gel[J]. ACS Nano, 2021, 15(2): 3320-3329.
|
9 |
ZHANG C F, PARK S N, SERAL‐ASCASO A, et al. High capacity silicon anodes enabled by MXene viscous aqueous ink[J]. Nature Communications, 2019, 10: 849.
|
10 |
XU S K, WEI G D, LI J Z, et al. Binder-free Ti3C2Tx MXene electrode film for supercapacitor produced by electrophoretic deposition method[J]. Chemical Engineering Journal, 2017, 317: 1026-1036.
|
11 |
GHIDIU M, LUKATSKAYA M R, ZHAO M Q, et al. Conductive two-dimensional titanium carbide ‘clay’ with high volumetric capacitance[J]. Nature, 2014, 516(7529): 78-81.
|
12 |
LING Z, REN C E, ZHAO M Q, et al. Flexible and conductive MXene films and nanocomposites with high capacitance[J]. PNAS, 2014, 111(47): 16676-16681.
|
13 |
LUKATSKAYA M R, MASHTALIR O, REN C E, et al. Cation intercalation and high volumetric capacitance of two-dimensional titanium carbide[J]. Science, 2013, 341(6153): 1502-1505.
|
14 |
SYAMSAI R, KOLLU P, JEONG S K, et al. Synthesis and properties of 2D-titanium carbide MXene sheets towards electrochemical energy storage applications[J]. Ceramics International, 2017, 43(16): 13119-13126.
|
15 |
LI H, CHEN R, ALI M, et al. In situ grown MWCNTs/MXenes nanocomposites on carbon cloth for high-performance flexible supercapacitors[J]. Advanced Functional Materials, 2020, 30(47): 2002739.
|
16 |
XIA Y, MATHIS T S, ZHAO M Q, et al. Thickness-independent capacitance of vertically aligned liquid-crystalline MXenes[J]. Nature, 2018, 557(7705): 409-412.
|
17 |
VAHIDMOHAMMADI A, MONCADA J, CHEN H Z, et al. Thick and freestanding MXene/PANI pseudocapacitive electrodes with ultrahigh specific capacitance[J]. Journal of Materials Chemistry A, 2018, 6(44): 22123-22133.
|
18 |
MALESKI K, MOCHALIN V N, GOGOTSI Y. Dispersions of two-dimensional titanium carbide MXene in organic solvents[J]. Chemistry of Materials, 2017, 29(4): 1632-1640.
|
19 |
ALHABEB M, MALESKI K, ANASORI B, et al. Guidelines for synthesis and processing of two-dimensional titanium carbide (Ti3C2Tx MXene)[J]. Chemistry of Materials, 2017, 29(18): 7633-7644.
|
20 |
FENG X M, LI R M, MA Y W, et al. One-step electrochemical synthesis of graphene/polyaniline composite film and its applications[J]. Advanced Functional Materials, 2011, 21(15): 2989-2996.
|
21 |
SHIN J G, PARK C S, JUNG E Y, et al. Synthesis of a polyaniline nanoparticle using a solution plasma process with an Ar gas bubble channel[J]. Polymers, 2019, 11(1): 105.
|
22 |
QIAN A, HYEON S E, SEO J Y, et al. Capacitance changes associated with cation-transport in free-standing flexible Ti3C2Tx (T=O, F, OH) MXene film electrodes[J]. Electrochimica Acta, 2018, 266: 86-93.
|
23 |
XU H Z, ZHENG D H, LIU F Q, et al. Synthesis of an MXene/polyaniline composite with excellent electrochemical properties[J]. Journal of Materials Chemistry A, 2020, 8(12): 5853-5858.
|
24 |
HU M M, LI Z J, HU T, et al. High-capacitance mechanism for Ti3C2Tx MXene by in situ electrochemical Raman spectroscopy investigation[J]. ACS Nano, 2016, 10(12): 11344-11350.
|
25 |
WANG H B, ZHANG J F, WU Y P, et al. Surface modified MXene Ti3C2 multilayers by aryl diazonium salts leading to large-scale delamination[J]. Applied Surface Science, 2016, 384: 287-293.
|
26 |
SARYCHEVA A, GOGOTSI Y. Raman spectroscopy analysis of the structure and surface chemistry of Ti3C2Tx MXene[J]. Chemistry of Materials, 2020, 32(8): 3480-3488.
|